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Highlights 3 

- Efficient techniques are needed to monitor vulnerable elasmobranchs in space and time. 4 

- Deep learning applied to images is a powerful tool for automated wildlife monitoring. 5 
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- This study is a step forward for ray monitoring in coral reef ecosystems. 7 
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Abstract  11 

Reliable and efficient techniques are urgently needed to monitor elasmobranch populations that 12 

face increasing threats worldwide. Aerial video-surveys provide precise and verifiable observations 13 

for the rapid assessment of species distribution and abundance in coral reefs, but the manual 14 

processing of videos is a major bottleneck for timely conservation applications. In this study, we 15 

applied deep learning for the automated detection and mapping of vulnerable eagle rays from 16 

aerial videos. A light aircraft dedicated to touristic flights allowed us to collect 42 hours of aerial 17 

video footage over a shallow coral lagoon in New Caledonia (Southwest Pacific). We extracted the 18 

videos at a rate of one image per second before annotating them, yielding 314 images with eagle 19 

rays. We then trained a convolutional neural network with 80% of the eagle ray images and 20 

evaluated its accuracy on the remaining 20% (independent data sets). Our deep learning model 21 

detected 92% of the annotated eagle rays in a diversity of habitats and acquisition conditions 22 

across the studied coral lagoon. Our study offers a potential breakthrough for the monitoring of ray 23 

populations in coral reef ecosystems by providing a fast and accurate alternative to the manual 24 

processing of aerial videos. Our deep learning approach can be extended to the detection of other 25 

elasmobranchs and applied to systematic aerial surveys to not only detect individuals but also 26 

estimate species density in coral reef habitats.  27 
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 28 

1. Introduction 29 

Elasmobranchs, a subclass of cartilaginous fishes composed of sharks, rays, skates and sawfish, 30 

are among the most endangered animal taxa in the oceans (Dulvy et al. 2021). These species are 31 

intrinsically sensitive to human activities due to their slow growth rate and limited reproduction 32 

capacity, preventing them from quickly recovering from overexploitation (Pacoureau et al., 2021). 33 

Elasmobranchs are primarily threatened by targeted fisheries and incidental catches, although 34 

habitat degradation is a growing threat for coastal species (Dulvy et al. 2021; Yan et al. 2021). 35 

Within the 1,199 species of elasmobranchs assessed by the IUCN in 2021, 10.4% were listed as 36 

near-threatened, 15% as vulnerable, 10.1% as endangered (compared to 4.1% in 2010), 7.5% as 37 

critically endangered, and 12.9% as data deficient (Dulvy et al. 2021). Rays are even more 38 

threatened than sharks with 36% of all species threatened compared to 31.2% (Dulvy et al. 2021). 39 

Currently, the limited knowledge and monitoring of elasmobranch abundance and distribution is a 40 

major impediment to the implementation of targeted conservation measures (Jabado et al., 2018). 41 

To fill these knowledge gaps, new techniques are urgently needed to efficiently and rapidly monitor 42 

threatened elasmobranchs in space and time in order to identify their key habitats and provide 43 

abundance estimates at the basis of IUCN assessments. 44 

Video-surveys from drones or light aircraft are increasingly used to assess the distribution, 45 

behavior and abundance of marine megafauna (Hodgson, Kelly, and Peel 2013; Kelaher et al. 46 

2020; Schofield et al. 2017). Such digital surveys are particularly suited to study sharks and rays in 47 

coral lagoons where clear and shallow waters facilitate their detection (Kiszka et al., 2016; Rieucau 48 

et al., 2018). Video-surveys offer important advantages over traditional observer-based surveys by 49 

generating precise and verifiable observations that are free from observer fatigue and subjectivity 50 

(Colefax, Butcher, and Kelaher 2018; Kelaher et al. 2019). However, manual video analysis is a 51 

major bottleneck for timely conservation applications, as visualizing hours of footage is both 52 

extremely time-consuming and error-prone (Ditria, 2020; Norouzzadeh et al., 2018; Villon et al., 53 

2018). Deep learning algorithms offer great promises to overcome this limitation by allowing the 54 

automated identification and detection of species on images (Christin, Hervet, and Lecomte 2019; 55 

Norouzzadeh et al. 2018; Torney et al. 2019; Eikelboom et al. 2019). Such models have been 56 

successfully applied for the detection of sea turtles (Dujon et al., 2021; Gray et al., 2018), dugongs 57 

(Mannocci et al., 2021), pinnipeds (Dujon et al., 2021; Padubidri et al., 2021) and whales (Gray et 58 

al. 2019; Guirado et al. 2019). Although there are a few applications for elasmobranchs, these are 59 

generally dedicated to monitoring shark risks (Gorkin et al., 2020) rather than conservation 60 

objectives requiring abundance and distribution estimates. Accurate deep learning models would 61 

drastically increase the efficiency of aerial monitoring for these threatened species. 62 



 

3 

In this study, we combined aerial video-surveys and deep learning to detect eagle rays and map 63 

their distribution throughout a lagoon in New Caledonia, Southwest Pacific. New Caledonia hosts 64 

exceptional coral reefs and lagoons, which form one of the three most extensive reef systems in 65 

the world (Ceccarelli et al., 2013). Eagle rays are conspicuous rays of the Myliobatidae family that 66 

are easily spotted from the surface owing to their relatively large size and characteristic diamond 67 

shape (Last, White, and Pogonoski 2010), making them good candidates for automated detection 68 

on aerial images. Two species of Myliobatidae are present in New Caledonia, the spotted eagle 69 

ray, Aetobatus narinari which is common, and the rarer mottled eagle ray, Aetomylaeus maculatus 70 

(Fricke, Kulbicki, and Wantiez 2011). These species have been classified as globally endangered 71 

by the IUCN in 2020 (Dulvy et al. 2020; Rigby et al. 2020), stressing the urgent need to monitor the 72 

trends of their populations to feed global indicators like the Living Planet Index (Pacoureau et al., 73 

2021). We trained and evaluated a deep learning model to automatically detect eagle rays on 74 

aerial images collected from an ultra-light motor plane (ULM). We then mapped their distribution 75 

across the studied lagoon. Our study unravels the potential of deep learning applied to aerial 76 

surveys for monitoring the distribution of vulnerable elasmobranchs in coral reefs.  77 

2. Material and methods 78 

2.1. Video data collection 79 

Video-surveys were conducted from an amphibious ULM (AirMax SeaMax) operating touristic 80 

flights over the Poé lagoon on the Western coast of New Caledonia (Supplementary Figure A). 81 

This lagoon is shallower than 5 m and characterized by shallow reef, seagrass and sandy habitats. 82 

The barrier reef includes three deep passes and channels reaching 30 m. Part of the Poé lagoon 83 

was declared as a natural reserve (IUCN category IV) in 2006 and is located within the broader 84 

South Province Park created in 2009 and the UNESCO World Heritage area established in 2008. 85 

A GoPro Hero Black 7 camera was mounted under the right wing of the ULM, pointing downward. 86 

The camera was configured to record videos at a rate of 24 frames per second in linear field of 87 

view mode at a resolution of 2.7 K (2,704 x 1,520 pixels) with integrated image stabilization. The 88 

camera was manually triggered by the pilot before each flight. Telemetry data, including GPS 89 

coordinates and altitudes, were also recorded by the GoPro along each flight (at a rate of 8 to 12 90 

positions per second). The mean altitude across all flights was 152 m (standard deviation SD= 52 91 

m). At this altitude the image covered a mean surface area of 161 m × 287 m corresponding to a 92 

ground sampling distance of 11 cm per pixel. In total, over 42 hours of videos representing 36 fly 93 

days were collected from September 2019 to January 2020 in good weather conditions. 94 
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2.2. Image annotation 95 

Image annotation is a crucial prerequisite before applying deep learning models (Gray et al., 2018; 96 

Norouzzadeh et al., 2018; Villon et al., 2020). All videos were first visualized by a team of students 97 

who recorded the times at which they spotted eagle rays (and other megafauna species). Videos 98 

that contained at least one eagle ray (representing 114 videos from a total of 228 (Table 1)) were 99 

then imported into a custom online application (http://webfish.mbb.univ-montp2.fr/) (Supplementary 100 

Figure B). Next, images were extracted from all videos at a rate of one image per second, 101 

representing a compromise between image diversity and annotation time. 102 

The annotation procedure consisted in manually drawing rectangle bounding boxes around 103 

identified eagle rays and associating labels to these individuals. Only individuals that could be 104 

identified without ambiguity as eagle rays, owing to their large size, diamond shape and dark 105 

colour, were annotated. Although Aetomylaeus maculatus is generally smaller than Aetobatus 106 

narinari, their color patterns are similar (light spots on a dark disc) so they are easily confused in 107 

situ. The presence of a long spine near the tail’s base of A. narinari can help to differentiate it from 108 

A. maculatus which has a long but spineless tail (Froese and Pauly 2021). Since we could not 109 

distinguish one or the other species on aerial videos we built a generic eagle ray (i.e., 110 

Myliobatidae) detector, although most sightings were likely of A. narinari which is much more 111 

common in New Caledonia (Fricke et al., 2011). Each annotation yielded a text file containing the 112 

coordinates and label of the bounding box, along with the corresponding image in jpeg format 113 

(examples of images are provided in Supplementary Figure C). 114 

2.3. Eagle ray detection model 115 

We used a convolutional neural network (CNN), a class of deep learning models that is widely 116 

applied for image classification and object detection, i.e., the task of simultaneously localizing and 117 

classifying objects on images (LeCun, Bengio, and Hinton 2015). CNNs represent by far the most 118 

commonly used category of deep learning models in ecology (Christin, Hervet, and Lecomte 2019). 119 

They are formed by stacked groups of convolutional layers and pooling layers that are particularly 120 

suited to process image inputs. Convolutional layers extract local combinations of pixels known as 121 

‘features’ from images. In the convolution operation, a filter defined by a set of weights computes 122 

the local weighted sum of pixels over the three colour channels of a given image (LeCun, Bengio, 123 

and Hinton 2015). In practice, CNNs are fed with large amounts of images in which target objects 124 

have been manually annotated so they can be trained to associate labels to a given object. During 125 

this training phase, the weights are iteratively modified to obtain the desired answer by minimizing 126 

the error function between the output of the CNN and the correct answer through a process called 127 

backpropagation (LeCun, Bengio, and Hinton 2015). The final output of the CNN is a confidence 128 

score for each of the learned objects. 129 
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We selected a Faster R-CNN network (Ren et al. 2016) publicly available from the Tensorflow 130 

model zoo and tuned it for eagle ray detection on aerial images. The Faster R-CNN is a deep 131 

learning algorithm specialized for object detection that consists of two fully-convolutional networks: 132 

(1) a region proposal network, which predicts object positions along with their ‘objectness’ scores 133 

and (2) a detection network, which extracts features from the proposed regions and provides class 134 

labels for the bounding boxes. We specifically used a Faster-RCNN with a ResNet-101 backbone, 135 

a deep architecture in which layers have been reformulated as residual functions of input layers, 136 

leading to better optimization and increased accuracy. Our eagle ray detection framework followed 137 

the three main steps detailed below: 1) Image pre-processing, 2) Model training and 3) Model 138 

accuracy assessment. The eagle ray detection framework is illustrated in Figure 1. 139 

2.4. Image pre-processing 140 

A total of 314 ULM images containing at least one eagle ray (representing 372 individual 141 

encounters) were extracted out of the 79,325 collected images (Table 1). Bounding boxes 142 

surrounding eagle rays spanned on average 25 x 25 pixels (pi) on the 2,704 x 1,520 pi images, 143 

corresponding to a ratio of 0.0002 between the bounding box area and the image area. To 144 

maximize the detection of small eagle rays on ULM images, we split each image into four images 145 

with half the original size (i.e., 1,352 x 760 pi). This yielded 308 images with eagle rays (353 146 

individual encounters), as rays located across image boundaries were lost. Image splitting 147 

approaches are known to efficiently boost detection accuracy by increasing the relative pixel area 148 

of small objects with respect to the entire images, thereby limiting detail losses when images are 149 

processed throughout the network (Unel, Ozkalayci, and Cigla 2019) . 150 

Next, images were randomly partitioned, using 80% of images for the training (and validation) 151 

subset (corresponding to approximately 250 images) and 20% of images (approx. 60 images) for 152 

the testing subset. Full independence between subsets was ensured by selecting images 153 

belonging to different videos between the subsets. The training subset was then artificially 154 

augmented by applying random transformations to images, including rotations (by -10 to +10 155 

degrees), translations (by -10 to +10 %), scaling (by 80 to 120%), horizontal and vertical flipping, 156 

and contrast modification (i.e., multiplying all image pixels with a value ranging from 0.6 to 1.4). 157 

Artificial data augmentation is a particularly efficient technique for improving the generalization 158 

performance and accuracy of object detection models (Zoph et al., 2019). 159 

2.5 Model training  160 

We initialized our Faster R-CNN with pre-trained weights based on  the COCO (Common Objects 161 

in Context) dataset (Lin et al., 2015) downloaded from the Tensorflow model zoo. This process of 162 

applying previously learned knowledge to solve a new problem, called transfer learning, improves 163 
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model accuracy and generalization when a limited annotated dataset is available (Chen, Zhang, 164 

and Ouyang 2018). We then trained the Faster R-CNN using a stochastic gradient descent 165 

optimizer with a momentum of 0.9 for the loss function (Qian, 1999). We applied a learning rate of 166 

10−3, a L2 regularization (with a lambda of 0.004), and a dropout of 50% to mitigate overfitting 167 

(Srivastava et al., 2014). The training was stopped after 50,000 iterations to prevent overfitting as 168 

indicated by an increasing loss function for the validation subset (Sarle, 1995). 169 

2.6 Model accuracy assessment 170 

The Faster R-CNN was then applied for eagle ray detection on the test subset and its accuracy 171 

was evaluated using a 5-fold cross-validation. K-fold cross-validation is a common procedure for 172 

evaluating machine learning models while preventing systematic biases due to the partitioning of 173 

data subsets (Wong, 2015). The initialized model was trained five times, each time with a different 174 

training subset and its accuracy was evaluated five times, each time on an independent test 175 

subset. 176 

We applied lenient thresholds of 50% for both the confidence score of predictions and the overlap 177 

of predictions with observations, since minimizing false negatives is more crucial than avoiding 178 

false positives in the case of rare megafauna species (Villon et al., 2020). As such, a predicted 179 

bounding box that was associated with a confidence score of at least 50% and that overlapped at 180 

least 50% in surface with an annotated eagle ray was considered a true positive (TP). Predicted 181 

bounding boxes not corresponding to an annotated bounding box were false positives (FP), while 182 

annotated  bounding boxes not corresponding to a predicted bounding box were false negatives 183 

(FN). For each cross-validation test subset, the number of TPs, FPs and FNs were computed and 184 

performance metrics were calculated as described below. 185 

Precision is the percentage of TPs with respect to all predictions (Equation (1)). It represents the 186 

percentage of predictions that are correct (the closest to 1, the fewest false positives): 187 

Precision= TP / (TP + FP)       (1) 188 

Recall (or sensitivity) is the percentage of TPs with respect to all annotated objects (Equation (2)). 189 

It represents the percentage of positives that are actually predicted (the closest to 1, the fewest 190 

false negatives): 191 

Recall= TP / (TP + FN)       (2)  192 

Finally, the f1-score evaluates the balance between FPs and FNs. It is an overall measure of 193 

accuracy calculated as the harmonic mean of precision and recall (Equation (3)). 194 

F1-score= 2 x Recall x Precision / (Recall + Precision)   (3) 195 
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Finally, the mean and standard deviation of the performance metrics were computed across the 5-196 

fold cross-validations splits.  197 

We used the open-source Tensorflow object detection API version 1 (Abadi et al., 2016) in Python 198 

version 3 for the training and testing of our model. One training process lasted on average 3 hours 199 

on a NVIDIA Quadro P6000 GPU with 64 GB of RAM. The application of the model took on 200 

average 5 seconds per image. 201 

2.7 Spatial distribution of eagle rays   202 

Locations of eagle ray occurrences obtained from both manual annotation and the deep learning 203 

model were mapped in the study area by retrieving the GPS coordinates of their image identifiers. 204 

Locations of all ULM tracks were also mapped by retrieving the GPS coordinates of all video 205 

images. To account for the heterogeneous sampling effort, the encounter rate (individuals/km) was 206 

mapped throughout the study area. To do so, we created a spatial grid of 0.005° longitude x 0.005° 207 

latitude and summed the number of eagle rays and the length of ULM tracks in each cell. The 208 

number of individuals was then divided by the length of ULM tracks per cell to obtain the encounter 209 

rate. All maps were produced in R (version 4.0.3) with the OpenStreetMap (Fellows, 2019) and 210 

ggplot2 packages (Wickham et al., 2020). 211 

3. Results  212 

3.1 Deep learning model accuracy 213 

Our deep learning model trained with 255 images on average (range= 252 - 259 between cross-214 

validations) accurately detected eagle rays on independent images from the same lagoon. The 215 

model reached a mean precision of 0.90 on test images (SD= 0.08), meaning that 90% of the 216 

model predictions corresponded to a manually annotated eagle ray (i.e., were TPs) (Figure 2). 217 

False positives were primarily associated with coral patches. The mean recall was 0.92 (SD= 218 

0.06), meaning that 92% of the annotated eagle rays were detected (Figure 2). The model 219 

successfully detected eagle rays in various contexts, as illustrated in Figure 2 and Supplementary 220 

Figure D. The mean f1-score balancing FPs and FNs was 0.91 (SD= 0.06). Precision, recall and 221 

the f1-score showed little sensitivity to the prediction confidence score (Figure 3).  222 

3.2 Spatial distribution of eagle rays 223 

Eagle rays detected from the deep learning model were distributed throughout the study area, but 224 

appeared concentrated in a more intensively surveyed portion of the barrier reef near the 225 

easternmost channel (Figure 4-a). The few FPs and FNs were scattered across the lagoon and on 226 

the barrier reef (Supplementary Figure E-1). The encounter rate map, accounting for the 227 
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heterogeneous sampling effort, confirmed the slightly higher occurrence of eagle rays on the 228 

barrier reef compared to the lagoon (Figure 4-b). The spatial distributions of detected eagle rays 229 

and their encounter rates were similar to that of all annotated eagle rays (Supplementary Figures 230 

E-2 and E-3). 231 

4. Discussion  232 

More than one third of all cartilaginous fishes are threatened with extinction, primarily due to 233 

overfishing (Dulvy et al. 2021). Rays are no exception as they represent 56.3% of threatened 234 

chondrichthyan and 12.3% of ray species are still lacking sufficient data for assessment (Dulvy et 235 

al. 2021). As human activities continue to jeopardize these species (Pacoureau et al., 2021; Yan et 236 

al., 2021), there is an urgent need for reliable and efficient approaches for monitoring populations. 237 

Our study revealed the potential of deep learning for the accurate detection of eagle rays in coral 238 

reef ecosystems. Our model trained with fewer than 260 aerial images was able to detect 92% of 239 

the eagle rays on independent images from the same lagoon. Our study paves the way towards 240 

automated ray population monitoring in coral reefs by providing a fast and accurate alternative to 241 

the manual processing of aerial images (Kelaher et al. 2020; Kiszka et al. 2016). While deep 242 

learning for elasmobranch aerial detection has been applied in the context of beach surveillance 243 

(Gorkin et al. 2020), we present its first implementation towards ecological and conservation 244 

applications, including species distribution mapping). 245 

4.1. Eagle ray detection accuracy  246 

Our model achieved a very good detection performance despite the modest size of the training 247 

dataset. Obtaining large amounts of images for training deep learning models is a major bottleneck 248 

for ecological and conservation applications (Christin, Hervet, and Lecomte 2019). To overcome 249 

this limitation, we relied on transfer learning and artificial data augmentation, two efficient 250 

techniques that are widely used for training models in data-limited situations (Schneider et al., 251 

2020). The model was successful at avoiding missed occurrences (false negatives), which is most 252 

critical when the objective is to detect vulnerable species that occur in low numbers such as rays 253 

and sharks (Villon et al., 2020). Eagle rays were consistently detected across the diversity of 254 

habitats (e.g., soft bottom and barrier reef) and acquisition conditions (e.g., luminosity, altitude and 255 

camera angle) in our study area. The robustness of the model at detecting eagle rays in more 256 

contexts and its generalization to new data could be further increased by expanding the size of 257 

both the training and the test datasets and the contextual variety at new sites in New-Caledonia 258 

and beyond. Moreover, there is a need to test the model’s generalizability to a larger dataset in the 259 

future, as the size of the test dataset is also limited. The model was equally successful at avoiding 260 

false positives, with few misdetections primarily associated with coral patches. To eliminate these 261 
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false positives, coral patch annotations could be incorporated into the training dataset so that the 262 

model explicitly learns this class. As deep learning algorithms rapidly improve, we could further 263 

enhance our eagle ray detection method by using most up-to-date object detection CNNs such as 264 

the YOLOv3 that achieved a high performance on fish detection (Jalal et al., 2020). 265 

4.2. Comparison with other monitoring methods 266 

Effective conservation requires up-to-date and high quality data collected with limited monetary 267 

and human costs over repeated periods (Fust and Loos 2020). Previous studies on the distribution 268 

and movements of eagle rays have relied on acoustic (DeGroot et al., 2020) and satellite telemetry 269 

(Ajemian and Powers 2014). Active acoustic telemetry implies following the individuals in order to 270 

determine their movements in the water column, but is generally restricted to few individuals and 271 

necessitates a large array of hydrophones (DeGroot et al., 2020). Satellite telemetry allows 272 

tracking rays over potentially large spatial scales, but is constrained by the frequency and precision 273 

of GPS data and associated costs (Ajemian and Powers 2014). Both methods are intrusive as they 274 

require catching and manipulating individuals to attach the tags properly. Surveys from scuba 275 

divers and baited remote underwater videos (Rizzari, Frisch, and Magnenat 2014; Ward-Paige 276 

2017) are also used for elasmobranch censuses, especially for species that live further from the 277 

surface . However, these underwater surveys are limited in their spatial extent and may fail to 278 

detect the most elusive species (Juhel et al., 2017). Moreover, observations may not be precisely 279 

located and are not verifiable, unlike those derived from video footage.  280 

In this study, aerial images collected from an off-the-shelf camera and processed with a deep 281 

learning algorithm allowed us to precisely locate eagle rays in a coral lagoon at low financial and 282 

operational costs. The opportunistic use of an aircraft dedicated to touristic flights led to an 283 

heterogeneous survey effort, preventing the estimation of  abundance from the traditional strip 284 

transect methodology (Kiszka et al., 2016; Sykora-Bodie et al., 2017). Nevertheless, our accurate 285 

algorithm will be applicable to images collected along systematically-designed transects for 286 

abundance estimation in the future. Despite the heterogeneous survey effort, the current method 287 

suggests a widespread distribution of eagle rays across a variety of coral reef habitats, which is in 288 

accordance with previous study (Ajemian and Powers 2014). Future studies should seek to 289 

quantify habitat preferences of eagle rays by linking effort-corrected encounter rates to local habitat 290 

information (Ajemian, Powers, and Murdoch 2012; DeGroot et al. 2020). 291 

Shark and ray monitoring requires detection and census methods that are adapted to the studied 292 

habitats. While aerial surveys are very efficient in coral reefs with clear and shallow waters, open 293 

water or turbid waters (e.g., estuaries, mangroves) require non-visual methods such as acoustic 294 

telemetry. Environmental DNA is also an innovative method at the species level that can be 295 

notably used to detect rare species including elasmobranchs (Boussarie et al., 2018). Coral 296 
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lagoons are major habitats for eagle rays (DeGroot et al. 2020; Ajemian, Powers, and Murdoch 297 

2012) and  our aerial approach proved  efficient for monitoring populations in these habitats. Our 298 

approach can be complemented by other methods (e.g., eDNA, acoustic telemetry) in habitats 299 

where eagle rays can occur (Ajemian and  Powers 2014; Sellas et al. 2015) but waters are deep or 300 

turbid. 301 

4.3. Implications for elasmobranchs monitoring in coral reefs 302 

Data on population trends and distributions of rays and sharks are difficult to collect; yet, such 303 

information is critical to establish appropriate conservation and management actions (Dwyer et al., 304 

2020; MacNeil et al., 2020; Pacoureau et al., 2021). Our approach combining video-surveys and 305 

deep learning offers a potential breakthrough for the automated monitoring of eagle rays in coral 306 

reef ecosystems. The ability of our model at detecting eagle rays in the variety of habitats and 307 

conditions encompassed by our data highlights its potential robustness in a broad range of 308 

contexts. Future work should assess the model transferability to other coral lagoons in New 309 

Caledonia and beyond. Robust detection models would be particularly beneficial for ray monitoring 310 

in the Indo-Pacific biodiversity triangle where conservation efforts are most urgent due to 311 

pronounced levels of human threats (Dulvy et al. 2021). Our deep learning approach could be 312 

applied to other distinctive elasmobranchs, provided sufficient images of these species are 313 

available for training the model.  314 

Finally, our approach could be extended to systematic video-surveys from manned aircraft or 315 

drones to not only detect individuals, but also count them to derive abundance estimates and 316 

species density maps in a study area. Drones make a viable alternative to manned aircraft for 317 

marine megafauna surveys (Gray et al., 2018; Hodgson et al., 2013; Kelaher et al., 2020; Kiszka et 318 

al., 2016), alleviating safety risks, monetary costs and carbon emissions (Hodgson et al., 2013). 319 

However, the use of drones is subject to strict airspace regulations, and legislation in many areas 320 

necessitates the pilot to maintain visual-line-of-sight with the drone (Raoult et al., 2020).  The 321 

platform choice will ultimately depend on the study question and the required imagery 322 

characteristics. Using an aircraft dedicated to touristic flights allowed us to achieve greater spatial 323 

and temporal coverage than would have been possible with a single drone and with no need to 324 

acquire permits. This method could be implemented in other touristic locations (e.g., Australia, 325 

French Polynesia, the Caribbean) where local companies operate scenic, low altitude flights over 326 

coastal areas. 327 

Overall, our cost-effective approach succeeded in collecting high-quality images for training a deep 328 

learning model able to detect 92% of eagle rays in coral reefs. This new eagle ray detector will be 329 

critical for deriving abundance estimates in order to closely monitor these vulnerable populations in 330 

the future. 331 
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Tables 544 

Table 1: Overview of the New Caledonia video database. Abbreviations: SD= standard deviation, 545 
pi= pixels. 546 

Number of 

videos 

Mean video 

duration 

Total video 

duration 

Total 
number of 

images  
Number of individual 

encounters 

114 

11.70 min  
(SD= 0.93 

min) 
equivalent 

to  

11 min 42 s  
22 h 14 min  

19 s  79,325 

2,704 x 
1,520 pi 
images 

1,352 x 760 
pi images 

2,704 x 
1,520 pi 
images 

1,352 x 760 
pi images 

314 308 372 353 

 547 

 548 
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Figures 550 

 551 

Figure 1: Eagle ray detection framework with three main steps. 1) Image pre-processing: Images 552 

are extracted from the ULM videos and manually annotated. These images are then partitioned 553 

into independant training, validation and test sets. Training and validation sets are augmented by 554 

applying random transformations such as rotations and translations to images. 2) Training: A 555 

Faster R-CNN with weights pre-trained on the COCO dataset is downloaded from the Tensorflow 556 

model zoo and trained on the training set. The training is stopped before overfitting as indicated by 557 

an increasing loss function for the validation set. 3) Model accuracy assessment: The trained 558 

Faster R-CNN is applied for eagle ray detection on the test set. Precision, recall and the f1-score 559 

are then derived to evaluate the model accuracy. The final output is a detected bounding box with 560 

an associated confidence score for each of the detected eagle rays. These steps are detailed in 561 

sections 2.4., 2.5. and 2.6. 562 

 563 

 564 

 565 

 566 

 567 
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 568 

569 

Figure 2: Results of eagle ray detection on test images for a prediction confidence score of 50%. 570 

The left graph shows the mean percentage of true positives (TPs) and false positives (FPs) with 571 

respect to all predictions. The right graph shows the mean percentage of TPs and false negatives 572 

(FNs) in the observations. The error bars are the standard deviations from the means. Examples 573 

are provided below the graphs for a TP in green (prediction associated with an annotation shown in 574 

white), a FP in red (prediction not corresponding to an annotation; here a coral patch) and a FN 575 

(annotation not corresponding to a prediction). Further examples of detection results are provided 576 

in Appendix D.  577 

 578 

579 
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 580 

Figure 3: Mean precision, recall and f1-score on the test images for varying prediction confidence 581 

scores. The standard deviation is represented by the shaded area. 582 

 583 

 584 
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  585 

 586 

Figure 4: Spatial distribution of (a) eagle ray detections (dots) from the deep learning model 587 

mapped by retrieving the GPS coordinates of their image identifiers and the corresponding ULM 588 

flight tracks (black lines) and (b) the encounter rate (individuals/km) of detected eagle rays 589 

calculated on a spatial grid of 0.005° longitude x 0.005° latitude (the calculation is detailed in 590 

section 2.7). 591 
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