
A Fast and Efficient Method to Protect Color Images

Chaumont M. and Puech W.

Laboratory LIRMM, UMR CNRS 5506, University of Montpellier II
161, rue Ada, 34392 MONTPELLIER CEDEX 05, FRANCE

ABSTRACT

In this paper, we propose a method to embed the color information of an image in a corresponding grey-level
image. The objective of this work is to allow free access to the grey-level image and give color image access
only if you own a secret key. This method is made of three major steps which are a fast color quantization,
an optimized ordering and an adapted data hiding. The principle is to build an index image which is, in the
same time, a semantically intelligible grey-level image. In order to obtain this particular index image, which
should be robust to data hiding, a layer running algorithm is proceeded to sort the K colors of the palette. The
major contributions of this paper are the fast color quantization, the optimized layer running algorithm, the color
palette compression and the adapted data hiding.

Keywords: Data-Hiding, Color Image Secured, Color Palette, Compression.

1. INTRODUCTION

Nowadays, only few secure solutions are proposed in order to give both a free access to low-quality images and a
secure access to the same images with an higher quality. Our proposed solution is built on a data-hiding method.
The image may be freely obtained but its high quality visualization requires a secret key. More precisely, in our
solution, a grey-level image is freely accessible but only secret key owners may rebuild the color image. Our
aim is thus to protect the color information by embedding this information in the grey level image. Note that
this work is though to be used to give a limited access to the private digital painting data-base of the Louvre
Museum of Paris, France.

The originality of this paper is to build an index image which is, in the same time, a semantically intelligible
grey-level image. In order to obtain this particular index image, which should be robust to data hiding, we
propose an optimized K color ordering algorithm called the layer running algorithm. This paper carry on the
previous work of Chaumont and Puech.1 The new contributions are the faster quantization step, the optimized
layer running algorithm, the new embedding step and the color palette compression.

Lots of works propose to hide information by using the decomposition of a color image in an index image and
a color palette. The data-hiding may occur in the index image2 or in the color palette.3,4 Nevertheless, none of
those technics tries to protect the color information i.e hide the color palette in the index image. Indeed, in our
method we sort the colors of the color palette in order to get: 1. an index image which is near of the luminance
of the original color image and 2. a color palette whose consecutive colors are close. By doing this, we obtain
an index image and a color palette well adapted for the purpose of data-hiding and color information secured.
Other works based on wavelet decomposition and sub-band substitution propose solutions to embed the chroma
informations in a grey-level image.5–7 Their areas are perceptive compression and image authentification for
Campisi et al5 and Zhao et al6 and image printing for Queiroz and Braun.7 Even if those techniques embed the
color information, their approach and their purpose are clearly different from that exposed in that paper.

In section 2, we present the different steps of our method: the fast color quantization, the optimized layer
running algorithm, the new data-hiding method and the color palette compression. In section 3, results are
presented and compared to our previous proposed method.1

marc.chaumont@lirmm.fr; phone: +33 (0)4 67 41 85 14; william.puech@lirmm.fr; phone: +33 (0)4 67 41 86 85.



2. THE PROPOSED METHOD

2.1. Color quantization

Reducing the color number of a color image is a classical quantization problem. The optimal solution, to extract
the K colors, is obtained by solving:

{Pı,k, C(k)} = arg min
Pı,k,C(k)

N∑
ı=1

K∑
k=1

Pı,k.dist2(I(ı), C(k)), (1)

and ∀ı, ∃!k′, Pı,k′ = 1 and ∀k 6= k′, Pı,k = 0,

where I is a color image of dimension N pixels, C(k) is the kth color of the research K colors, dist is a distance
function in the color space (L2 in the RGB color space), and Pı,k ⊂ {0, 1} is the membership value of pixel ı to
color k.

A well known solution to minimize the Equ. (1), and then to obtain the K colors, is to use the ISODATA
k-mean clustering algorithm.8 Pı,k is defined as:

∀ı, ∀k, Pı,k =

{
1 if k = arg

{k′}
{ min

k′∈[1,K]
dist(I(ı), C(k′))},

0 otherwise,
with C(k) =

∑N
ı=1 Pı,k × I(ı)∑N

ı=1 Pı,k

.

Nevertheless, in our approach the K number is significant in comparison to the original number of colors. If
we proceed with a classical k-mean algorithm, the number of colors extracted will often be below K. Indeed,
it is the well known problem of death classes. Moreover, the k-mean algorithm is quite long in CPU time in
comparison to non optimal but faster algorithms such that octree color quantization algorithm of Gervautz and
Purgathofer,9 Median Cut algorithm10. . . To overcome those two problems (”death classes” and ”CPU time”),
we are using the octree color quantization algorithm as an initialization to the k-mean algorithm: Pı,k are set
from the result obtained with the octree color quantization algorithm.

2.2. Layer running

Once the color quantization has been processed, the obtained K color image could be represented by an index
image and a color palette. The index image is noted down Index and is defined such that:

∀ı ∈ [1, N ], Index(ı) = arg max
k∈[1,K]

Pı,k.

The color palette is noted down Palette and ∀k ∈ [1,K], Palette(k) = C(k).

Our goal is to solve two constraints; the first constraint is to get an index image where each grey-level is not
too far from the luminance of the original color image; the second constraint is that in the color palette, two
consecutive colors should be close.

Thanks to the color quantization, we already own an index image and a color palette. Our problem is then
to find a permutation function which permutes in the same time the values of the index image and the values of
the color palette. The best permutation function Φ is found by solving:

Φ = arg min
Φ

N∑
ı=1

dist2(Y (ı),Φ(Index(ı))) + λ

K−1∑
k=1

dist2(Palette(Φ−1(k)), Palette(Φ−1(k + 1))), (2)

where Y is the luminance of the original color image, and λ is the Lagrangian value. The Φ permutation function
is a bijective function in N defined such that Φ : [1..K] → [1..K].

In a first approximation, the Equ. (2) is solved thanks to an heuristic algorithm: the layer running algorithm.1

The aim of this algorithm is to find an ordering for the K colors such that consecutive colors are close and such
that colors are ordered from the darkest to the lightest. This ordering defines for each kth color a k′ position
which gives us the Φ function such that Φ(k) = k′.



Figure 1. A view of the layer running in the RGB cube.

To find an ordering of the K colors, the algorithm runs the color space to build the ordered suite of colors,
illustrated Figure 1. This running is obtained by jumping from color to color, into the color space, by choosing
the closer color from the current one. The first color of this suite is chosen as the darkest one among the K
colors. An additional constraint to this running is that we limit the color research to colors which are not too
far in luminance. This signify that the running in the color space is limited to a layer defined on luminance
information. This layer running algorithm could then be seen as a kind of 3D spiral run in the color space.

This layer running algorithm own an implicit hidden parameter which is the layer size used during the color
running in the color space. Since our goal is to minimize the Equ. (2), a satisfying way to automatically set
this parameter is to test all the possible values for this layer size parameter and to keep the layer size value
minimizing the equation. Knowing that the possible values of the layer size parameter belong to the range [1,K]
and that it is very fast to make just one run in the color space, this gives an elegant and rapid solution to
approximate the Equ. (2).

Another problem still unsolved is the tuning of the lambda parameter. The equation below gives more details
on the way lambda is expressed:

λ = α×N/(3× (K − 1)), (3)

with α the value balancing the two constraints evoke above and expressed by Equ. (2). For example, an α value
set to 1 means giving the same weight to the two constraints, an α value set to 0.5 signifies an index image
nearest to the luminance image, a contrario an α value set to 2 means a color palette more continuous.

2.3. Spatial data hiding method

The methods in spatial domain embed directly the information into the pixel of the original image. The first
techniques embedded the bit message in a sequential way in the LSB (Low Significant Bit) of the pixel image.11,12

They have been improved by using a PRNG (Pseudo-Random Number Generator) and a secret key in order to
have private access to the embedded information. The PRNG spreads over the image the message and makes
hard the steganalyses.13 Although those spatial hiding methods are not robust against attacks, they enable to
embed a great amount of information. Note that the embedding process can be made more robust by using a
more significant bits such the fourth bit of the pixel image.14



For this paper, we have used an algorithm to embed the color palette information in the LSB (Low Significant
Bit) of the image of N pixels. The objective is thus to embed a message M made up of m bits b (M = b1b2...bm).
The embedding factor, in bit/pixel, is:

Ef = m/N.

The original image is then divided in areas of size b1/Efc pixels. Each area is used to hide only one bit b

of the message. This splitting procedure guarantees that the message is spread homogeneously over the whole
image. Lets remark that when the color palette is compressed, one embed less than 3× 256× 8 = 6144 bits
(the number of colors is K = 256) in the index image.

Consequently, the embedding factor Ef , only depends on the image size N . In our process, the PRNG selects
randomly, for each region, a pixel Index(ı). In order to get a marked pixel IndexM (ı), the LSB of this selected
pixel Index(ı) is then modified according to the message bit b:

IndexM (ı) =

{
Index(ı) if b = Index(ı) mod 2,
arg

k
mink∈{Index(ı)−1,Index(ı)+1}∩{1,...,K} (Palette(Index(ı))− Palette(k))2 otherwise.

Thus, the index value Index(ı) is modified of +1 or −1 when b 6= Index(ı) mod 2. The best choice for this
modification is then to choose the closest color between Palette(Index(ı)+1) and Palette(Index(ı)−1) in order
to minimize the distance to the color Palette(Index(ı)). This way to embed the color palette ensure that each
marked pixel is at worst modified by one grey-level and in the same time that the rebuilt color pixel would not
be very far from the right color value.

2.4. Color palette compression
As explain above, an uncompressed color palette is a to-embed information that necessitates 6144 bits to be
represented. One then compress this information in order to reduce the bit quantity to embed and to reduce the
degradation over the index image and the rebuilt color image. Statistical algorithms (Shannon-Fano, Huffman
or Arithmetic) are well adapted to reduce the coding cost but in the case of very small information quantity -
which is the case here- the descriptive header tends to be costly in comparison to the source coding. Adaptive
techniques or pre-learned tables which allow the suppression of this header are not satisfying in the case of very
small information quantity. The solution is then to compress the description header adaptively to the problem
of color palette compression.

The solution to compress the color palette is to encode statistically the error of prediction (differential
encoding + entropy encoding) of each color belonging to the color palette. The Huffman algorithm has been
used for the experiments. The descriptive header allowing to the decoder to rebuild the association between
source symbols and codes is described on Figure 2.

Figure 2. Descriptive header of the coded color palette.

The min (resp. max) value stands for the minimum (resp. maximum) value of the color prediction errors.
A topological bit is set to 1 if the associated color error value is present. fs is the number of bits on which each
frequency will be coded. The rest of the header is the frequencies of each present color error prediction. The
originality of this header stands mainly on the topological size reduction. Most of the time, minimum (resp.
maximum) value of the color error predictions are around -64 (resp. 64). With a minimum (resp. maximum)
value of the color error predictions equals to -64 (resp. 64) one reduced the topological quantity of 356 bits
(decrease of 511 bits to 155 bits).



3. RESULTS

We present the results of our method on three color images of size 256× 256 pixels: baboon, airplane and house.
The baboon image owns a lot of different colors, the airplane image owns very few colors and is light-colored and
the house image owns tint areas. The obtained results show that the approach is efficient whatever the image
type. Below, the different steps of the algorithm are commented on the baboon image.

(a) (b) (c) (d) (e)

Figure 3. Application of the layer running algorithm: a) Luminance of the original color image, b) Index image after
color ordering, c) Color palette after color ordering, d) Original color image, e) Rebuilt color image from the index-marked
image.

After the fast quantization step (with K = 256 colors) and the optimized layer running algorithm step, we
obtain an index image and its color palette show on Figures 3.b and 3.c. Note that the index image (Figure 3.b) is
more contrasted than the luminance of the original color image (Figure 3.a) but keeps its semantic intelligibility.
Also note that in the color palette, Figure 3.c, consecutive colors are colorimetricly close.

In comparison to our previous approach,1 this new quantization method is really faster. For example, for
the baboon 256×256, the quantization is 19 times∗ more rapid to get the same color PSNR quality of 33.7 dB†.
Moreover, the layer size used in the layer running algorithm is automatically set in order to minimize the Equ. (2)
with α set to 5 (see Equ. (3)). As a consequence the PSNR of the rebuilt color image is slightly improved because
of a better color-palette ordering (see PSNR comparison on Table 1).

The length of our embedded message (color palette) after source coding and header computation gives a
length message of m = 5110 bits. In order to be able to recover the embedded color-palette at the receiver, the
embedding factor for an image of 256 × 256 pixels, is keep to Ef = 6144/(256 × 256) = 0.093 bit/pixel. The
index image after color ordering is then cut in block of 10 pixels. In each 10-pixel block, a bit of the color palette
is embedded at the position selected by the PRNG as explain in Section 2.3. The secured is obtain through the
used of a secret key of 128 bits as a seed for the PRNG. The distribution of the message over the image is then
key-related.

Thanks to the color palette compression there is a reduction in comparison to our previous approach1 of the
number of disturb index-pixels due to the data-hiding. The PSNR between the index image and the index-marked
one is then increasing from 58.1 dB for1 to 62.2 dB.

Figure 3.e shows the rebuilt color image from the index-marked one. This image is visually near from the
original quantified one and the PSNR(quantized,rebuilt) of 42.3 dB confirms this feeling. The rebuilt color image is
growing from 32.89 dB for our previous work1 to only 33.31 dB. Nevertheless, there is a neat visual improvement
due to the embedding technique. Note that the color palette compression and the optimized layer running
algorithm are two other contributions which explain the improvement.

Few PSNR values are given on the Table 1 for the three images. One could remark that rebuilt color images
are of good quality (over 33 dB). PSNR values for index images are under 20 dB which is in general a poor

∗Experiments were proceed on an Intel Pentium(R) 3.2 GHz with 1GB RAM and it takes 1 min. versus 19 min. for
our previous approach.1

†In Chaumont and Puech article,1 quantization were obtained by running a Fuzzy c-mean algorithm and then a k-mean
algorithm.



result but it is known that PSNR measure is not well adapted in case of strong contrast distortion. Indeed, the
index images are visually pleasant. By comparing the results of our previous method1 with the proposed one
(Table 1), we could note a quality improvement of the rebuilt color images. Those improvements are due to the
layer running algorithm optimization, the adapted data-hiding method and the color palette compression.

Table 1. PSNR comparisons.

images PSNR(luminance,index−marked) PSNR(color image,rebuilt) color palette
previous method1 proposed method previous method1 proposed method coding cost

baboon 16.31 dB 16.75 dB 32.89 dB 33.31 dB
header: 693 bits
source: 4417 bits
sum: 5110 bits

airplane 12.95 dB 12.87 dB 38.89 dB 39.90 dB
header: 761 bits
source: 3552 bits
sum: 4313 bits

house 18.56 dB 18.64 dB 38.07 dB 39.27 dB
header: 728 bits
source: 3833 bits
sum: 4561 bits

Other results on Figures 4 and 5 show the right behavior for house, airplane, peppers and lena image.

4. CONCLUSION

In this paper, we have proposed an improvement to a method hiding the color information in a grey-level image.
This method is made of three major steps which are the color quantization, the color ordering and the data
hiding. Those steps have been improved thanks to an acceleration of the quantization, a layer running algorithm
optimization, a better data-hiding and color palette compression. The obtained results show a real improvement
in complexity and in quality.

ACKNOWLEDGMENTS

This investigation was in part supported by the TSAR project which is a french national project ANR-05-
SSIA-0017-05 of the ANR ARA SSIA (Agence Nationale de la Recherche, Action de Recherche Amont, Sécurité
Systèmes Embarqués et Intelligence Ambiante).

We would like also to thank Mr Lahanier Christian of the C2RMF (Centre de Recherche et de Restauration
des Musées de France) and the Louvre Museum for the digital paintings and for valuable discussions.

Finally, we thank Mr Allier Simon a student of the CUFR (Centre Universitaire de Formation et de Recherche)
de Nı̂mes, France, for bringing together all the modules and for its Gervautz and Purgathofer9 algorithm imple-
mentation.



(a1) (b1) (a2) (b2)

(c1) (d1) PSNR = 18.64 dB (c2) (d2) PSNR = 12.87 dB

(e1) (f1) PSNR = 39.27 dB (e2) (f2) PSNR = 39.9 dB

Figure 4. Application of the layer running algorithm: a1-a2) Luminance of the original color image, b1-b2) Index image
after color ordering, c1-c2) Color palette after color ordering, d1-d2) Index-marked image, e1-e2) Original color image,
f1-f2) Rebuilt color image from the index-marked image.



(a1) (b1) (a2) (b2)

(c1) (d1) PSNR = 19.76 dB (c2) (d2) PSNR = 19.11 dB

(e1) (f1) PSNR = 36.32 dB (e2) (f2) PSNR = 38.63 dB

Figure 5. Application of the layer running algorithm: a1-a2) Luminance of the original color image, b1-b2) Index image
after color ordering, c1-c2) Color palette after color ordering, d1-d2) Index-marked image, e1-e2) Original color image,
f1-f2) Rebuilt color image from the index-marked image.



REFERENCES
1. M. Chaumont and W. Puech, “A Color Image in a Grey-Level Image,” in IS&T Third European Conference

on Colour in Graphics, Imaging, and Vision, CGIV’2006, pp. 226–231, (Leeds, UK), June 2006.
2. J. Fridrich, “A New Steganographic Method for Palette-Based Images,” in Proceedings of the IS&T PICS

conference, Apr. 1998.
3. M.-Y. Wu, Y.-K. Ho, and J.-H. Lee, “An Iterative Method of Palette-Based Image Steganography,” Pattern

Recognition Letters 25, pp. 301–309, 2003.
4. C. Tzeng, Z. Yang, and W. Tsai, “Adaptative Data Hiding in Palette Images by Color Ordering and Mapping

With Security Protection,” IEEE Transaction on Communications 52(5), pp. 791–800, 2004.
5. P. Campisi, D. Kundur, D. Hatzinakos, and A. Neri, “Compressive Data Hiding: An Unconventional

Approach for Improved Color Image Coding,” EURASIP Journal on Applied Signal Processing 2002(2),
pp. 152–163, 2002.

6. Y. Zhao, P. Campisi, and D. Kundur, “Dual Domain for Authentication and Compression of Cultural
Heritage Images,” IEEE Transaction on Image Processing 13(3), pp. 430–448, 2004.

7. R. de Queiroz and K. Braun, “Color to Gray and Back: Color Embedding Into Textured Gray Images,”
IEEE Transaction on Image Processing 15(6), pp. 1464–1470, 2006.

8. G. H. Ball and D. J. Hall, “ISODATA, A novel Method of Data Analysis and Pattern Classification,” in
Proceedings of the International Communication Conference, June 1966.

9. M. Gervautz and W. Purgathofer, “A Simple Method for Color Quantization: Octree Quantization,” Graph-
ics Gems, A.S. Glassner , pp. 287–293, 1990.

10. P. Heckbert, “Color Image Quantization for Frame Buffer Display,” Computer Graphics 16(3), pp. 297–303,
1982.

11. W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for Data Hiding,” I.B.M. Systems Journal 35(3-
4), pp. 313–336, 1996.

12. N. Nikolaidis and I. Pitas, “Robust Image Watermarking in the Spatial Domain,” Signal Processing 66(3),
pp. 385–403, 1998.

13. J. Fridrich and M. Goljan, “Practical Steganalysis: State-of-the-Art,” in Proceeding of SPIE Photonics
West, Electronic Imaging, SPIE’2002, 4675, pp. 1–13, 2002.

14. J. Rodrigues, J. Rios, and W. Puech, “SSB-4 System of Steganography using Bit,” in 5th International Work-
shop on Image Analysis for Multimedia Interactive Services, WIAMIS’2004, (Lisboa, Portugal), Apr. 2004.


