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ABSTRACT

This paper deals with face tracking in difficult conditions of non calibrated camera, strong head motions, thanks
to a deformable 3D model. In those conditions, the proposed approach is able to detect and track a face. The
novelty is mainly due to a multi-resolution Active Model search which allows to catch strong head motions.
Results show an improvement between the single and the multi-resolution technique. Near real-time results are
also provided.
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1. INTRODUCTION

This paper deals with face tracking in video sequences with the used of a deformable 3D face-model. Current
problems in face tracking are real-time constraint and the lack of robustness to luminosity variations, occlusions,
fast motions and strong rotations. In this paper we focus especially on the fast motions, the strong rotations
and the real-time problems. Our approach lies on a multi-resolution Active Model search (AM search). The
novelties of our approach are the multi-resolution Active Model search and the near real-time performances.

In this paper we are limiting the test to an Active Model (AM) instead of an Active Appearance Model
(AAM) as Dornaika and Ahlberg.! We do not then learn any texture modes variations. Our paper bring an
improvement to Active Appearance Model approach? (the multi-resolution) but for the experiments and the
approach justification we do not need to use the property of variation on textures and then we do not use a
complete AAM approach. Additional improvements to the AAM approach, proposed in this paper, are the use
of a 3D model and the illustration, trough a complete implementation, that our face tracking solution is near
real-time.

In comparison to La Cascia et al® approach we use a deformable model which is richer than their rigid
cylindrical model. Our model’s deformations are proceeded directly during the tracking which gives additional
informations about the face animation.

In comparison to 3D Model based tracking using an rigid model* and a offline camera calibration, our tracking
results are good despite no previous calibration. Our technique may thus be used for video sequences where
camera characteristics are not known. Moreover, our approach allows a 3D model deformation. Some idea may
nevertheless be catch from those matching points techniques. Indeed, as explain in,* jitter and drift during
tracking may be drastically reduced by using bundle adjustment and small number of matching points.

Lets also note that statistical approaches (particule filtering) give promising solutions. The probabilistic
approaches provide better robustness to occlusions and could easily be added to deformable 3D model.® The
main problem of those solutions are their high CPU consuming time which make them unsuited for real-time
applications.

Briefly, the first aim of this paper is to study the interest of multi-resolution Active Model search in the case
of a tracking using a 3D-deformable face model in order to be more robust to strong motions. The second aim is
to illustrate the real-time feasibility of approaches using a rough 3D deformable model. This paper is composed
of two parts: the offline learning step (Section 2) where the pre-processing computations are explained and the
tracking step (Section 3) where the multi-resolution Active Model search is analysed.
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2. OFFLINE LEARNING STEP

During the offline learning step the objective is to learn for a given person its specific 3D shape (Section 2.1), its
specific texture (Section 2.2) and its specific update matrix (Section 2.3). Figure 1 shows the shaped 3D-face
model and its associated texture obtained after the offline learning step. Note that this offline learning step may
easily be extend to an AAM learning where a face data-base would have been used.! More details on shape
learning and texture learning may be found in.°
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Figure 1. 3D shaped mesh and model’s texture.

2.1. Shape learning

In order to learn the 3D shape of a specific person to track, we are using as input some 2D face feature points.
The 2D feature points may be set manually or obtained thanks to an automatic approach.

A 3D-face model (CANDIDE-37) is then deformed in order to best fit the 2D feature points. This deformation
is proceed thanks to the minimization of the distance error F between the input set of 2D feature points {(u;, v;)'}
and a set of 2D points {(u},v})!}:
E=> (ui—u)?+ (v; — v))>. (1)
i
The set of 2D points {(u}, v})!} is obtained by applying on 3D vertex three linear operations: a shape deformation

1) 7
(S;.0), an animation displacement (A;.«) and a week perspective projection* (Thx4) as expressed in the following

equation:
( Z ) = T2><4. AZ‘.Oé + SiO’ + Mz ) (2)

M]
where S; and and A; are respectively the shape unit and the animation unit matrix, expressing the possible
displacement of a vertex i. The displacement intensity is expressed by the weighting vectors ¢ and «. Equation
1 minimization gives parameters T4, 0, and «. Parameters T4 and o are then used to deform the average 3D
model and thus learn the specific face shape. More details on the minimization and the underlining hypothesis
are given in."
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2.2. Texture learning

For an easier intelligibility we will name the image map: the image domain and the texture map: the texture
domain. Once the 3D-model is shaped and the T5y4 pose is obtained (Section 2.1), the texture may be learned.
This learning step is a simple warping procedure. The 3D mesh is projected onto the 2D image map in order to

*The week perspective projection is also known as orthographic projection, graduate orthographic projection or affine
projection.



give a 2D mesh in the image domain. The same process is done to obtained a 2D mesh in the texture domain.
Then, each texture triangle from the 2D mesh of the image domain is warped to the corresponding triangle in
the texture domain.

Lets note that the warping process needs two computational costly informations for each pixel: its associated
triangle, and its three barycenter coefficients. Those informations are computed offline and do not change during
the tracking process (indeed, the 2D mesh in the texture domain do not move). This pre-processing allows to
pass of any 3D graphics card for image warping since it enables faster processing during the tracking step.®

2.3. Update matrix learning

Thus, once the texture, the 3D shape and the 3D pose are known, one compute the update matrix used for the
tracking.

2.3.1. Single-resolution

During the tracking the objective is to project as well as possible the 3D model onto the image map in order to
minimize the intensity difference computed between image I; and projected model’s texture. Without high lost
of precision, one prefer minimizing the difference between the warped image’ W (I;) and the model’s texture I,,,
(Equ. 3.). This choice is done for real-time reason. Indeed, during the tracking step, the warping computation
from image domain to texture domain is faster than the inverse warping due to offline pre-processed computation
during texture learning (described in Section 2.2).

E(p) = lr(p)II* = [[W (L) — L. (3)

Parameter p involved in minimization of Equ. (3) is composed of the animation vector («) and the pose
matrix (Thx4) (see Section 2.1). A first order Taylor expansion gives:

or(p
rip+ Ap) =r(p) + T ap.
p
During the model fitting, we wish to minimize the equation ||r(p + Ap)||>. So we are looking for the Ap which
minimizes this equation. The solution of this least square problem is to choose Ap such that:

Ap - U?”(p)a
withU = —(GTG)™'G7,
and G = M

op

The update U matrix may be processed offline before the tracking. This update matrix is known as the
negative pseudo-inverse of the gradient matrix G¥. G is computed by numeric differentiation such that the jt*

column of G is estimated with:
r(p+ hq;) —r(p — hg;)
2h ’

where h is a disturbance value and g; is a vector with all elements zero except the j*" element that equals to one.

G, =

tThe warping operation (image domain to texture domain) only transforms visible triangles. Hidden triangle regions in
the texture domain will not be taken into account in the gradient descent computation (r(p) equals zero in those regions).

1@ is a high dimension matrix. The number of lines is the number of parameters p, and the number of columns is the
number of pixels.



2.3.2. Multi-resolution

With a single-resolution approach, the face target is lost when there is a strong head motion. To overcome that
problem, we have chosen to use a multi-resolution tracking similarly to multi-resolution motion estimation.? The
multi-resolution approaches allow to keep valid the linear hypothesis near to the solution. Thus, multi-resolution
pyramids are built (an image pyramid, a model’s texture pyramid and 2D mesh pyramids). A U,, ,, matrix is
then computed for each couple (r;,r:) where r; is a given image resolution and r; is a given texture resolution.
Figure 2 shows few (r;, r;) possible couples.

During the tracking step, the low resolutions allow to catch strong motions (parameter p is roughly estimated)
and high resolutions allow to catch motion details (parameter p is refine). Lets remark that experiments show
that low resolutions are only of interest for the pose computation (and not for the facial animations) and that
texture size should be similar to face-region size.
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Figure 2. Multi-resolution matrix computations

3. TRACKING: ACTIVE MODEL SEARCH
3.1. Initialisation: face localization

In the case of face tracking, the face localization is in general a difficult problem.'® Even with a full implemen-
tation of an AAM approach one should initialized the 3D-face model pose relatively close to the solution. In the
case of frontal view, many solutions have been proposed and the best results seem to be obtained by methods
using a previous learning and a complete image scan (Neural Network, Hidden Markov Model, Support Vector
Machine, Naive Bayes Classifier ...). We have then chosen to use one of this technique to localize the face.!

3.2. Active Model Search

After the face localization, the Active Model search is proceeded by the multi-resolution gradient descent. For
each walid couple (r;,r:), the 3D model is iteratively updated until convergence or until a fixed number of
iterations. The Active Model search algorithm is composed of four steps:

e Projection of the current image at resolution r; into the texture domain at resolution r; (knowing the
current 3D model pose and its animation),



e Computation of the residue r(p) of Equ. (3),
e Computation of the update parameter vector: Ap = U,, », X 7(p),

e Modification of the 3D model and its pose such that p = p + Ap.

The wvalid couples (r;,r:) used for the multi-resolution Active Model search are the diagonal couples (see the
coordinate system on Figure 2) and the run goes from low resolutions to high ones. This scan choice allows to
catch strong motions and is well fit for real-time constraint.

Lets remark that lots of computation are processed offline. Online computations are the image pyramid
building, the 3D mesh projections, the images warpings (with the used of pre-processed accelerators), the image
differences, the matrix products and the 3D model updates. Actually, the costly operations are the matrix
products.

4. RESULTS

Tracking results are shown on two sequences. The sequence named rotation (30Hz, 360 x 288), comes from the
M2VTS data-base and shows a person rotating the head and owning glasses. The second sequence named erik
(CIF, 10Hz) shows a spoken person with lots of facial expressions and head motions. Below, the different steps
of our multi-resolution face tracker are illustrated and commented.

For the first image, a face localization as to be proceeded. Remember that this may also be necessary with
a complete AAM implementation. Figure 3 shows the result of a face localization, on the first image of the
rotation sequence, by using a face detector.!’ The grey bounding box shows the face localization. Thanks to
this bounding box, one deduce few 2D facial feature points and one minimize Equ. 1 in order to obtain an initial
pose Ty 4.5 The mesh (in white) represents the results of the 3D mesh projection obtained after this initial
pose processing. Once this rough initialization as been computed, one run the multi-resolution active search (see
Section 2.3.2), on this first image, in order to best fit in the 3D-face model.

Figure 3. Localization of the face and rough model pose deduction

Figures 4 and 5 show the tracking results on few images. One see on the rotation sequence that the multi-
resolution approach performs better results than the single-resolution approach. Indeed, there is a strong head
motion in this sequence and the linearisation hypothesis is no more valid for the single-resolution approach. For
the erik sequence, one observe that even if the face region is small, the facial expressions are well recovered. One
should remark that those results are obtained without any previous camera calibration.



(b) Tracking with multi-resolution search; Images 3, 8 and 13 of the rotation sequence.

Figure 4. Comparison between a tracking with or without a multi-resolution search.
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Figure 5. Illustration of multi-resolution tracking on erik sequence.



A software platform for web-cam acquisition, face tracking and screen displaying has been implemented using
OpenCV library. Experimental conditions where a texture-image of size 100 x 100, two levels of resolution, four
iterations (resp. seven iterations) for resolution one (resp. resolution zero), non-natural desktop light conditions,
and an Intel Pentium 2.4 GHz. With those difficult lighting conditions, the tracking have been released at 8Hz.
One should note that this low frequency is due to the high texture-image size and to a non fully optimized code.
A way to increase this frequency would be to decrease the texture-image size (40x40 is used in”) but results are
less robust. Another solution would be to reduce the update matrix dimension (see Section 2.3.1) or to use local
descriptors'? instead of luminance information.

5. CONCLUSION

In this paper we proposed a face tracker based on a deformable 3D model catching facial expressions. The
tracking is proceeded by a multi-resolution Active Model search (gradient descent). The novelties are the multi-
resolution approach and the experimental proof of real-time possibilities. Results show an improvement of the
tracking in the case of strong motions, the possibility to catch facial expressions even with small face-regions
and an evaluation of real-time possibilities. Future works will deal with discriminant local descriptors, matrix
dimension reduction and with statistical approach such as particle filtering.
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