3D-FACE MODEL TRACKING

BASED ON A MULTI-RESOLUTION ACTIVE SEARCH

Marc CHAUMONT and William PUECH

marc.chaumont@lirmm.fr and william.puech@lirmm.fr LIRMM, UMR CNRS 5506, Université de Montpellier II

GOAL:

Robust and real-time tracking of a face (and its animations) in a un-calibrated video sequence. **PRINCIPLE:**

An offline learning (3D model shape, texture, update matrix) and a online multi-resolution active search.

OFFLINE LEARNING STEP

1- Shape learning (σ learning):

Least square minimization of:

$$\{T_{2\times 4}, \sigma, \alpha\} = \arg\min_{\{T_{2\times 4}, \sigma, \alpha\}} \underbrace{\sum_{i} (u_i - u_i')^2 + (v_i - v_i')^2}_{},$$

with: $\{(u_i, v_i)^t\}$: a set of 2D image points (manually set)

 $\{(u'_i, v'_i)^t\}$: a set of 3D points displaced and then projected

$$(u_i', v_i')^t = T_{2\times 4}.\underbrace{[A_i.\alpha + S_i\sigma + M_i]}_{M_i'}.$$

 T_{2x4} : affine projection

 $S_i \sigma$: shape displacement (σ : intensity vector of shape units)

 $A_i \alpha$: animation displacement (α : intensity vector of animation units)

2- Texture learning (I_m learning):

3- Update Matrix Learning (U learning):

Given an image resolution and a texture resolution compute U:

Update matrix U (Negative pseudo-inverse of the gradient matrix G)

$$U = -(G^TG)^{-1}G^T, \qquad \begin{array}{c} \textit{W(I_t)} : \text{image I}_t \text{ warped }\\ \textit{I_m} : \text{model's texture}\\ \textit{r(p)} : \text{residue}\\ \textit{p} : \text{animation vector}\\ \textit{r(p)} = W(I_t) - I_m. \end{array}$$

: animation vector α

and pose matrix T_{2x4}

Matrix U are computed for each couple: (image resolution × texture resolution)

INLINE TRACKING STEP

1- Face localization (for the 1st image):

- Use of a face (frontal view) detector algorithm; (grey bounding box on the Figure below).
- Deduce a rough initial pose T 2x4 by guessing few/ 2D feature points and minimizing E; (white mesh on the Figure below).
- Run the Multi-resolution Active Model Search.

Multi-Resolution Active Model Search:

For each *valid** couple $(r_i \times r_t)$ = (image resolution × texture resolution) run the algorithm

<u>ALGORITHM</u>

Repeat until convergence

- Warped the current image i.e compute W(I_t); I_t is at resolution r_i and W warp to r_t resolution.
- Compute the current residue $r(p) = W(I_t) I_m$.
- Compute the **update parameter** vector $\Delta p = U_{r_i,r_t} \times r(p)$.
- Modify the 3D model and its pose $p = p + \Delta p$.

RESULTS & CONCLUSION

RESULTS:

Tracking with multi-resolution: Images 3, 13, 25; Erik sequence

3D Mesh: Images 3, 13, 25; Erik sequence

Tracking without multi-resolution: Images 3, 8, 13; rotation sequence

Tracking **with multi-resolution**: Images 3, 8, 13; rotation sequence

CONCLUSION:

A face **real-time** tracker (catching face animations) **robust to strong motions**. Future works will deal with matrix dimension reduction and particle filtering.