A HIGH CAPACITY REVERSIBLE WATERMARKING SCHEME

Marc CHAUMONT and William PUECH

marc.chaumont@lirmm.fr and william.puech@lirmm.fr LIRMM, UMR CNRS 5506, Université de Montpellier II, Université de Nîmes.

INTRODUCTION TO REVERSIBILITY CONCEPT:

The watermarked Works (in the case of reversible watermarking) need only to be recognizable, and salt-and-pepper artifacts might not be a serious problem."

(Digital Watermarking and Steganography, Cox, Miller, Bloom, Fridrich, Kalker, 2007, p. 382)

- The 2 main requirements for a reversible watermarking are capacity and rapidity,
- 3 categories of reversible watermarking schemes: the compression-based, the histogram-based and the expansion-based,
- The current paper is an **improvement of** the expansion-based algorithm of D. Coltuc: "Improved Capacity Reversible Watermarking", ICIP'2007.

ALGORITHM:

Mathematical part:

- n ≥ 3
- $T: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

 $T(x_1,x_2) = (n+1).x_1 - n.x_2.$

• the image is noted I and the watermarked image I_{w}

General embedding algorithm:

STEP 1: Classify pixels into 3 different classes: embedding, to-correct and original.

embedding pixel $\equiv 0 \le T(I(i), I(i+1))$ and $T(I(i), I(i+1)) + n \le 255$ to-correct pixel $\equiv T(I(i),I(i+1)) < 0$ or T(I(i),I(i+1)) + n > 255, ≡ stand before a *to-correct* pixel. original pixel

STEP 2: Embed into embedding pixels

the corrective-codes + the message.

Note that <u>embedding</u> pixels:

- are T transformed: $I_T(i) = T(I(i), I(i+1))$.
- must embed a coefficient w belonging to [1, n]: $I_w(i) = I_T(i) + w$.

General extraction algorithm:

STEP 1: Classify pixels into 3 different classes: embedding, to-correct and original, Extract from embedding pixels the corrective-codes + the message.

STEP 2: Correct the to-correct pixels.

Details of STEP 1 of embedding:

Scan image I from left to right and top to bottom begin

if pixel i is an embedding pixel

then apply transformation to I: $I_T(i) = T(I(i), I(i+1))$

else - find next pixel j which is an embedding pixel

- alternate *unmodified pixel* and *to-correct* pixel between i and j-1 or between i-1 and j-1 (depending of **j-i** parity)

end-if end

All pixels in the *to-correct* state are modified such that:

$$\begin{split} c &\leftarrow (I(i) + n.I(i+1)) \ mod \ (n+1); \\ if \ (I(i) - c) &< 0 \ \ then \ \ c \leftarrow -(n+1-c); \\ I_w(i) &\leftarrow I(i) - c. \end{split}$$

with c a corrective-code which will have to be embedded.

Details of STEP 1 of extraction:

Scan image I from right to left and bottom to top begin

if pixel i is such that $(I_w(i) + n.I(i+1)) \mod (n+1) \neq 0$ then pixel i is an embedding pixel

extract coefficient w

- correct pixel i

else - alternate <u>unmodified pixel</u> and <u>to-correct</u> pixel until finding an embedding pixel

end-if end

RESULTS AND CONCLUSIONS:

228x256 head image

watermarked image, n=4. PSNR=19.8 dB payload=0.99 bpp

watermarked image,

n=4. PSNR=19.6 dB

payload=1.7 bpp

states map white: embedding pixels red: to-correct pixels black: original pixels

states map white: embedding pixels red: to-correct pixels black: original pixels

Real payload in function of parameter n for few classical 512x512, 8-bits images

Image	payload		PSNR
Airplane	457 256 bits	1.74 bpp	20.90 dB
Lena	445 294 bits	1.70 bpp	19.60 dB
Godhill	435 040 bits	1.66 bpp	18.56 dB
Peppers	418 710 bits	1.60 bpp	19.56 dB
Boat	409 444 bits	1.56 bpp	19.52 dB
Barbara	285 620 bits	1.09 bpp	18.82 dB
Baboon	195 608 bits	0.75 bpp	$16.10~\mathrm{dB}$

Payload on few classical grey-level images, 512x512, 8-bits per pixel with n=4

Conclusion:

- One of the **highest** reversible watermarking schemes for its **capacity**,
- A very low complexity approach.
 - → Future work should take into account *corrective-codes* compression, security with order-scan, tradeoff between distortion and payload.

TSAR French Project ANR SSIA 2006-2008 Languedoc-Roussillon Region

