
Proposal of PhD Thesis

Using Concurrency for First-Order Analytic Tableaux

Context and Position

Research on parallel satisfiability solving, meaning satisfiability in propositional logic
(SAT), began in the early 1990’s and is still actively pursued today [7]. Research on
parallel theorem proving, meaning automatic theorem proving (ATP) in first-order logic,
began in the mid and late 1980’s, flourished in the 1990’s, and came pretty much to a
halt in the early 2000’s [10]. Concerning first-order logic, most of the work concerns
model-based methods, where a theorem-proving method is model-based, if the state of
a derivation contains a representation of a candidate partial model that unfolds with the
derivation. For the tableau method for example, there are model-elimination tableaux,
which are based on clausal tableaux.

Regarding the tableau method [6], as initially designed by Beth and Hintikka [1, 3],
which manipulates first-order formulas (and not clauses), no work appears in the liter-
ature as far as the authors know. This kind of tableaux is interesting because it does
not transform the initial formula (no Skolemisation, no clausification), and it produces a
genuine proof at the end in the sequent calculus without cut. In addition, this method
could naturally and advantageously extend to concurrency. Indeed, the tableau method
is based on a tree-like proof search in which all branches are to be closed (i.e. we
look for a contradiction in each branch). Thus, we could imagine trying to close all
the branches in parallel. Nevertheless, the problem is more complex than it seems
because in first-order logic, there are dependencies between branches. We look for a
substitution of metavariables (also called free variables in the literature, and which are
introduced by existential quantifiers for which we look for an instantiation) such that all
branches are closed simultaneously.

Objectives

In this PhD thesis, we would like to focus on concurrency for analytic tableaux, which
deals with first-order formulas. As we are interested in proof search, we will consider

1



tableaux with metavariables, which allow us to find (by unification) instances for exis-
tential formulas. As said previously, this will consist in closing all the branches of a
proof search tree in parallel while taking into account the dependencies introduced by
the metavariables, and we will present, in the following, the different advantages and
problems of such a proof search.

Exploring all branches of a proof search tree in parallel has several advantages. One
of them is that some branches can provide possible instances for metavariables while
others will not. A sequential exploration of the branches must choose a branch to be
explored and if the latter does not provide instances for metavariables, a long search
may be done in this branch before the conditions of fairness require us to change the
branch to be explored. This is the case with the formula: ∃x.x = a ∧ F(x), where a
is a constant and F(x) any formula. If we start exploring the branch corresponding to
F(x), we may not find a proof, while the first branch immediately gives us the instance
a for x. A parallel exploration of the branches would allow us to find the instance a
for x quickly. With such a parallel exploration, there is the problem of knowing if we
instantiate immediately as soon as we find an instance and how we avoid redoing work
already done in the proof search.

Another advantage of parallel branch exploration is that it will be possible to better
deal with purely classical theorems, which require several metavariables for an exis-
tential variable in order to be able to find the proof. For example, if we consider the
formula ∃x.P (x) ⇒ P (a) ∧ P (b), where a and b are constants and P a predicate, two
instantiations are required (one with a and one with with b). In the case of destructive
management of metavariables, we will first try to find the proof with one metavariable,
which will produce a failure. We will then try with two metavariables and find the proof.
A parallel exploration of the branches could show us very quickly that two separate
instances are suitable for x, and we could see right away that two metavariables are
necessary without waiting for a failure of the proof search. It will be necessary to look
carefully at how this method is combined with the one mentioned previously, which
restarts the proof search as soon as an instance has been found in a branch.

Currently, there are several parallel programming approaches. These approaches
can be classified according to targeted hardware infrastructures (taxonomy of Flynn [2]).
We are in particular interested in MIMD (Multiple Instruction, Multiple Data) architec-
tures, including multi-core processors and distributed systems, with a shared or a dis-
tributed memory space, and SIMD (Single Instruction, Multiple Data) computers, like
GPUs. In each classification, many programming models are also proposed, with dif-
ferent levels of abstraction. A model with a low level of abstraction, like multithread-
ing, usually combines functional aspects with non-functional ones (parallelism man-
agement, synchronization, data sharing/transfer, scheduling, etc.), while a high level
of abstraction, like workflow programming [5, 12, 11], allows a developer to focus on
functional aspects and delegate the management of other aspects to a middle-ware.

A main objective of this PhD thesis is to propose a strategy and a programming model
that are suitable and efficient for solving problems with the tableau method, while en-
abling execution traceability. For this, it will be necessary to well understand the tableau
method to determine in particular how data are used, how they can be shared between
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branches to explore, how they can be exploited for result traceability, and which par-
allel structures should be used. A meticulous study of existing parallel programming
approaches is also necessary to identify those close to meet a suitable level of ab-
straction, ideally an infrastructure independent model enabling execution on multi-core
processors as well as on distributed systems. The aim is to ensure scalability, porta-
bility, and extensibility. At first glance, starting from workflow based models could meet
our aim.

Finally, it will be necessary to ensure that the parallel strategy of exploration of proof
search space remains sound and complete. To do so, it will be necessary to use a
formalism able to deal with processes (a process is created for each new branch) and
communication between processes (for example, a process that has found an instance
for a metavariable must report it to the other processes to possibly interrupt their proof
search). Many process calculi have existed since the 1980s, such as Milner’s CCS [8]
(or its extension with the π-calculus [9]) or Hoare’s CSP [4]. Note that we will use these
formalisms as frameworks to prove the soundness and completeness of our method,
and in particular, we will not be interested in using implementations of these formalisms.

Additional Remarks

The PhD thesis will be co-supervised by:

• David Delahaye (LIRMM, Univ. de Montpellier, CNRS, David.Delahaye@lirmm.fr);

• Hinde Bouziane (LIRMM, Univ. de Montpellier, CNRS, Hinde.Bouziane@lirmm.fr).
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