A Simple Reflective Interpreter

Stanley Jefferson
Daniel P. Friedman

IMSA ’92 International Workshop on
Reflection and Meta-Level Architecture
Tokyo, November 4-7, 1992

A Simple Reflective Interpreter

Stanley Jefferson *
Daniel P. Friedman 1

Department of Computer Science
Indiana University
Bloomington, IN 47405

Abstract

Procedurally reflective programming languages enable user
programs to semantically extend the language itself, by per-
mitting them to run at the level of the language implementa-
tion with access to their context. The reflective tower, first
introduced by Brian Smith [9, 10], is the principal archi-
tecture for such languages. It is informally described as an
infinitely ascending tower of meta-circular interpreters, con-
nected by a mechanism that allows programs at one level to
run at the next higher level. Various accounts of the reflec-
tive tower have been published, including a meta-circular
definition, operational definitions, and denotational defini-
tions. We present an operational account of the main as-
pects of the reflective tower, which we claim is simpler than
previous accounts. Our approach is to implement a finite
tower where each level literally runs the level directly below
it. A complete Scheme implementation is included.

1 Introduction

The principal characteristic of reflective programming lan-
guages is that they are extensible. That is, they permit the
user to define new language constructs at the semantic level
by effectively adding lines of code to the language processor
itself. Lisp-based reflective programming languages, such as
3-Lisp [9, 10], Brown [12], and Blond [2], provide such an
extension capability by permitting user-level code to be run
as if it were interpreter code with access to the interpreter’s
current expression, environment, and continuation. With
this language extension capability, otherwise primitive lan-
guage constructs, such as catch, throw, call/cc, boundp, and
quote, can be defined as user procedures.

The reflective tower, first introduced by Smith [9, 10],
provides a unified and coherent architecture for reflec-
tive programming languages. The reflective tower is non-
effectively described as an infinitely ascending tower of meta-
circular interpreters. The interpreter at the bottom of the

*Supported by grant NSF CCR 89-01919. Current affiliation:
Hewlett-Packard Laboratories, 3500 Deer Creek Road, Building 26U,
Palo Alto, CA 94304-1392

TSupported by grants NSF CCR 89-01919 and NSF CCR 90-00597.

48

tower executes user input, and every other interpreter in the
tower executes the interpreter immediately below it. The
levels are crucially connected by a mechanism that permits
a program running at one level to provide code that is to run
at the next higher level. Various accounts of the reflective
tower architecture have been given including a meta-circular
definition [9, 10], operational definitions [4, 1], and denota-
tional definitions based on the meta-continuation concept
[12, 2]. We give another account that we believe is simpler
and more easily understood than previous accounts.

Our approach is to give a literal model of a finite reflec-
tive tower. An interpreter for a small, simplified subset of
Scheme [8] is implemented in Scheme. This interpreter is
written in its own subset of Scheme so that it can literally
run itself. This permits finite towers of the interpreter to
be run (albeit inefficiently). Then, a few modifications are
made so that the interpreters in a finite tower are connected
as in the infinite reflective tower. Once the literal model of a
finite reflective tower is understood, the behavior of an infi-
nite reflective tower can be easily understood as the limiting
behavior of a finite reflective tower as its height approaches
infinity.

The literal definition is similar to the meta-circular defi-
nition of 3-Lisp. It differs in that it runs, it is not circular,
and it does not reconstruct evaluation and quotation. The
literal model is simpler than the operational and denota-
tional models since it models the reflective tower implicitly
rather than explicitly. All of the models are interesting and
useful because they clarify different aspects of reflection.

The rest of this paper is organized as follows: section 2
gives a brief overview of the reflective tower architecture;
section 3 presents a simple interpreter that is capable of
interpreting itself; section 4 derives a language extension
mechanism for this interpreter; section 5 presents the imple-
mentation of our reflective interpreter; section 6 is a com-
parison with related work; and section 7 is the conclusion.

2 Overview of the Reflective Tower Architecture

The reflective tower is described as an infinitely ascending
tower of meta-circular interpreters. The interpreter at the
tower’s bottom executes user input, and every other inter-
preter in the tower executes the interpreter immediately be-
low it. Each interpreter state is passed around as three ar-
guments to the interpreter: an expression, environment and
continuation. An interpreter running at one level may have
a different state than an interpreter running at a different
level. Normally, the interpreters share a global environment.

Reifying procedures provide a mechanism for running
code at the next higher level and gaining access to that
level’s state in the form of an expression, environment, and
continuation. A reifying procedure, or simply reifier, has
three formal parameters. When a reifier is applied, its body
is Tun as if it were code belonging to the interpreter run-
ning the application. The body is run in an environment
where the first formal parameter is bound to the list of un-
evaluated arguments, the second formal parameter is bound
to the environment argument of the interpreter running the
application, and the third formal parameter is bound to the
continuation argument of the interpreter. In a fully meta-
circular model of the architecture, the body of a reifier has
access to the procedures and structures that the interpreter
itself has. Since reifying procedures can themselves invoke
reifying procedures, it is possible to run user code at arbi-
trarily high levels of the tower.

3 A Simple Interpreter

We begin by presenting a garden variety interpreter for a
subset of Scheme. This interpreter, referred to as 7, is writ-
ten in its own language so that it can interpret itself. It
is written in continuation-passing style. The extended BNF
for the subset of the Scheme language implemented by Z fol-
lows (non-terminals are printed in italic font and terminals
are printed in typewriter font).

exp = (exp {exp}”)
| (lambda ({identifier}*) {exp}t)
| (if exp exp exp)
| (set!identifier exp)
| (quote exp)
| identifier
| constant
The syntactic categories of identifiers and constants are the
same as in Scheme. The remaining notable characteristics
of 7 follow: set! assigns to an unbound identifier; only a
small subset of Scheme primitives is implemented; and error
detection and reporting is almost non-existent.

Other than expressions, the principal structures manipu-
lated by 7 are environments, continuations, and procedures.
As usual, a continuation is a procedure of one argument.
Environments are represented by association lists. Each ele-
ment of the association list is a pair consisting of an identifier
and a value. The interpreter handles two types of proce-
dures. The two types are represented as lists and are dis-
tinguished by a tag. A compound procedure is represented
by a list containing a tag, formal parameters, a procedure
body, and an environment. The body of a compound proce-
dure is a non-empty list of expressions. The environments
contained in compound procedures and passed around by
the interpreter only list the bindings that extend the global
environment; whenever a variable binding is looked up (via
get-pair) the global environment is searched if necessary. A
primitive procedure contains a tag and an operator symbol.
For example, the identity procedure is ’ (compound (x) (x)
()), and the addition procedure is ’ (primitive +). We
follow the convention that e, r and k are expression, envi-
ronment, and continuation, respectively.

49

Following are the Scheme definitions of some of the prin-
cipal procedures that define Z. Since the interpreter must
interpret itself, the definitions are also 7 definitions. All of
the supporting definitions are given in the appendix. The
procedure evaluate dispatches on the syntactic type of its
expression operand e.

(set! evaluate
(lambda (e r k)
((if (constant? e)
evaluate-constant
(if (variable? e)
evaluate-variable
(if (if? e)
evaluate-if
(if (assignment? e)
evaluate-assignment
(if (abstraction? e)
evaluate-abstraction
evaluate-combination)))))
er k)

As usual, an abstraction simply evaluates to a procedure.
Following are the details, since a good understanding is re-
quired in the next section.

(set! evaluate-abstraction
(lambda (e r k)
(k (make-compound
(formals-part e) (body-part e) r))))

(set! make-compound
(lambda (formals body r)
(1ist ’compound formals body r)))

Combinations are evaluated in a conventional manner.
The operator is evaluated to obtain a procedure, and the
operands are evaluated to obtain arguments. Then the body
of the procedure is evaluated in the procedure’s lexical en-
vironment extended by binding the procedure’s formal pa-
rameters to its arguments.

(set! evaluate-combination
(lambda (e r k)
(evaluate (operator-part e) r
(lambda (proc)
(evaluate-operands (operands-part e) r
(lambda (args)
(apply-procedure proc args k)))))))

(set! apply-procedure
(lambda (proc args k)
(if (compound? proc)
(evaluate-sequence

(procedure-body proc)

(extend
(procedure-environment proc)
(procedure-parameters proc)
args)

k)

(k (apply-primitive
(procedure-name proc) args)))))

Evaluate-operands produces a list of arguments from a list
of operands. Evaluate-sequence successively evaluates a

sequence of expressions, yielding the value of the final ex-
pression. Apply-primitive simply passes the task of ap-
plying a primitive to the language processor running the
interpreter.

The global environment of 7, bound to global-env, must
be initialized with bindings for the primitive procedures.

(set! initialize-global-env
(lambda ()
(set! global-env
(extend
empty—env
(primitive-identifiers)
(mapper make-primitive
(primitive-identifiers))))))

A read-eval-print loop is provided by the following pro-
cedure.

(set! openloop
(lambda (read-prompt write-prompt)
(display read-prompt)
(evaluate (read) empty-env
(lambda (v)
(display write-prompt)
(if (eq? v (void))
"Nothing will be displayed"
(write v))
(newline)
(openloop read-prompt write-prompt)))))

Openloop always prints its output prompt after the input
expression has finished running, even though no output is
printed when an expression returns a void value.

The following transcript illustrates starting the inter-

preter and running an expression (“>” is the Scheme prompt).

> (load "simple.ss'")

> (initialize-global-env)
> (openloop "0> " "0: ")
0> (+ 2 3)

0: 5

0>

Since the interpreter is written in its own language, it is
possible to load the interpreter and have it run itself. The
definition of 7 includes the following procedure for loading
source files.

(set! loadfile
(lambda (file)
((lambda(port)
((lambda (loop)
(set! loop
(lambda (v)
(if (eof-object? v)
(close-input-port port)
(evaluate v empty-env
(lambda (ignore)
(loop (read port)))))))
(loop (read port)))
%))
(open-input-file file))))

Using, loadfile, we create a two-level tower of 7 inter-
preters:

50

> (load "simple.ss'")

> (initialize-global-env)
> (loadfile "simple.ss")

> (openloop "0> " "0: ")
0> (initialize-global-env)
0:

0> (openloop "1> " "1: ')
1> (+ 2 3)

1: 5

1>

The absence of a level-0 output prompt after the second
openloop indicates that the second openloop has not fin-
ished running. We orient the tower in the same way as
3-LISP (i.e., the level above runs the level below), but our
level numbering convention is reversed from that of 3-LISP.

7 traps unbound variable errors and exits. Notice how
a level is lost in the following continuation of the previous
transcript.

1> xxx

Error: symbol not bound: xxx
0:

0>

The level-1 T displays the error message and exits. Control
then passes to the level-0 openloop, which indicates that
level-1 returned a void value by printing a level-0 output
prompt with no value following it.

4 Adding an Extension Mechanism

We now consider adding a mechanism to Z that would en-
able user-supplied code to be run at the level of the inter-
preter. As it stands, 7 never runs user code at the level of
the interpreter. Rather, user code is simply inspected, de-
composed and manipulated by the code that implements 7.
The mechanism that we propose to study is a (rather im-
practical) special form (exit ezp) that runs its unevaluated
operand at the level of the interpreter code and then exits
the interpreter. We’ve chosen exit solely for its simplicity
and ability to illustrate some fundamental ideas. We use
Tezir to refer to the putative interpreter that extends 7 with
the exit mechanism. The following illustrates the behavior
of exit in a two-level tower.

1> (+ 5 (x 3 2))

1: 11

1> (+ 5 (exit (* 3 2)))
0: 6

0>

At the very least, a new line must be added to evaluate
in order to dispatch exit forms. Assume that in Z.,;: the
following line has been added to the definition of evaluate
immediately after the dispatch line for assignment (and that
parentheses have been appropriately adjusted).

(if (exit? e) evaluate-exit

Then, the evaluation of (exit ezp) should proceed as if
evaluate-exit were temporarily defined as

(lambda (e r k)
exp)

We need a way of abstracting exzp from this expression in
terms of e. This is not directly possible since lambda does
not evaluate its arguments. Also, we reject as too compli-
cated and inelegant the possibility of dynamically modify-
ing the procedure objects constituting Z.,;;. We proceed
by deriving an acceptable definition of evaluate-exit from
the previous lambda expression. The derivation requires the
additional assumption that exp is closed in the global envi-
ronment. The preceding lambda expression can be written
as

(lambda (e r k)
((lambda () exp)))

Since a lambda expression evaluates to a procedure (formed
by make-compound), we may write the above as

(lambda (e r k)
((make-compound
»() (list (quote exp)) ()

Finally, we may abstract exp, yielding the following defini-
tion of evaluate-exit

(set! evaluate-exit
(lambda (e r k)
((make-compound

() (cdr e) 2O

The expression
(make-compound ’() (cdr e) ’())

evaluates to a procedure object, say proc, of Z.zit. The
problem is that proc probably won’t be recognized as a pro-
cedure object by the language processor running Z.,;:. For
example, when only one level of Z.zi+ is run by our Scheme
system, the following session ensues:

0> (exit (% 3 2))
Error: attempt to apply non-procedure

(compound () ((* 3 2))).
>

However, if the language processor that is running Z..:+ rec-
ognizes the procedure objects of Z.z;+, then this definition of
evaluate-exit works. Thus, we are led to consider a two-
level tower of interpreters, where Z.,;: is run by either Z.z;¢
or Z. The more levels there are in the tower, the higher in
the tower an exit expression can be successfully run. For
example, the expression (exit (exit 17)) fails in a two-
level tower:

0> (openloop "1> " "1: ')

1> (exit (exit 17))

Error: attempt to apply non-procedure
(compound () (17) ().

>

On the other hand, (exit (exit 17)) would run without
error in a three-level tower, returning to level 0. Of course,
uniformity of the levels would be achieved by modeling an
infinite tower as in Brown, 3-LISP, and Blond.

There is nothing mysterious about our final definition of
evaluate-exit. The expression

((make-compound ’ () (cdr e) >()))

in the definition of evaluate-exit runs the argument of
exit at the level of interpreter code because it is an instance
of the following basic observation:

51

If the combination (exzpo expi ...) is run at level
l and expo evaluates to a compound procedure
object p, then the body of p is run at level [.

The ability to run user code at the level of interpreter code
is a consequence of:

1. the basic observation;

2. the capability for user code to create procedure objects
dynamically; and

3. the capability of the interpreter to interpret itself, so
that a tower could be created.

Ttem 2 is included because an interpreter running at level
I+ 1 is run as user code by the interpreter at level I (using
our level numbering for prompts).

In Z..i+ we have an instance of crossing semantic levels,
where exp is treated both as data and code. When Zcyit
interprets the user expression (exit exp), it treats the ex-
pression as data: extracting its car, dispatching on its car,
passing it as an argument, extracting its cdr, embedding its
cdr in a procedure object. But, then the procedure object
with ezp in its body is applied as interpreter code, and exp
is run as interpreter code by the language processor running
Texit. In contrast, 7 always treats user expressions as data
and never allows user expressions to be run as interpreter
code.

The reader may be wondering why we couldn’t just de-
fine evaluate-exit as follows, and avoid the whole issue of
towers.

(set! evaluate-exit
(lambda (e r k)
(evaluate (2nd e) r (lambda (x) x))))

This definition does not satisfy our requirement that the
argument to exit run at the same level as interpreter code.
Indeed, with this definition, the argument to exit is always
treated as data by the interpreter. The following transcript,
when compared with the previous transcript, illustrates a
behavioral difference between this definition and our derived
definition.

0> (openloop "1> " "1: ')
1> (exit (exit 17))

0: 17

0>

5 A Reflective Interpreter

We now turn our attention to defining a reflective interpreter
based on a finite, literal tower. First, we extend the defini-
tion of Z in order to solve a couple of technical problems
with literal towers. Then, we make some extensions and a
minor modification so that the interpreter can handle reify-
ing procedures. We refer to the resulting interpreter as Zg.
A complete definition of Zg, including all utility functions,
can be found in the appendix.

5.1 A Self-interpreting Interpreter

The method of building towers in the previous sections has
two drawbacks. The first drawback is that the global envi-
ronment is not structurally shared among the different levels
of a tower. The global environment at each level of a tower

is initialized with the same definitions, but the global envi-
ronment of each level is entirely constructed using new pairs.
Hence, assignments at one level are not observable at other
levels. This is illustrated by the following transcript.

> (load "simple.ss'")

> (initialize-global-env)
> (loadfile "simple.ss")
> (openloop "0> " "0: ")

0> (set! level-0O-var 0)
0:

0> level-0O-var

0: 0

0> (initialize-global-env)
0:

0> (openloop "1> " "1: ')
1> (set! level-1-var 1)
1:

1> level-1-var

1: 1

1> level-0-var

Error: symbol not bound: level-O-var
0:

0> level-1-var

Error: symbol not bound: level-1-var
>

Our solution to this inconvenience is to simply share the
global environment among all levels. The second drawback
is that the file containing the interpreter definition must be
loaded each time a new level is created. Since every level
results in an order of magnitude slowdown, the time that it
takes to create levels quickly becomes unbearably long, and
having to wait inhibits experimentation. Sharing the global
environment between levels makes it unnecessary to load the
interpreter definition each time a new level is created.

Let’s look more closely at the environment structure in
a tower. Consider the previous transcript. The first line

> (load "simple.ss'")

loads the procedure definitions for the interpreter into the
Scheme environment. Then, the global environment of the
interpreter is initialized to have bindings for the primitive
procedures.

> (initialize-global-env)

In order to run a level-1 openloop, the level-0 interpreter’s
global environment must also include the definitions for the
interpreter. This is accomplished by reloading the same file
into the interpreter’s global environment.

> (loadfile "simple.ss")
Then we start the interpreter’s read-eval-print loop.

> (openloop "0> " "0: ")
0>

Although we could now open another level, it would fail
because its global environment global-env is not bound in
the level-0 interpreter’s environment.

0> (openloop "1> " "1: ')

1> (+12)
Error: symbol not bound: global-env
>

52

The level-0 interpreter was attempting to run level-1 inter-
preter code that contained a reference to global-env. It was
the level-0 interpreter that determined that global-env had
not been bound, and thus exited to Scheme.

We can share the global environment of the interpreter
among levels by including a binding for global-env in the
level-0 interpreter’s global environment. This binding must
reference the interpreter’s global environment so that all
modifications are shared among all levels. Thus the global
environment of the interpreter becomes a self-referential, cir-
cular structure. The following procedure initializes the in-
terpreter’s global environment so that it is shared among all
levels, and starts a read-eval-print loop.

(set! boot-tower
(lambda ()

(initialize-global-env)

(loadfile this-file-name)

(set-cdr! global-env

(cons (cons ’global-env global-env)

(cdr global-env)))

(openloop "0> " "0: '")))

With an initialized, self-referential, global environment,
it is no longer necessary to run initialize-global-envand
loadfile each time a new level is created. The following
transcript creates a tower with three levels.

> (load "simple.ss'")

> (boot-tower)

0> (openloop "1> " "1: ')
1> (openloop "2> " "2: ")
2>

Each successive openloop still results in an order of mag-
nitude slowdown, but simply starting a new level is much
faster than the method of previous sections.

We also have the capability to call evaluate or any other
implementation procedure:

2> (evaluate ’(+ 1 x) ’((x . 3))
(lambda (v) (* v 11)))

2: 44

2>

5.2 Reifying Procedures

We now consider adding reifying procedures to the inter-
preter. Reifying procedures are the mechanism that 3-LISP,
Brown, and Blond provide to enable user code to run at
the level of the interpreter with access to the interpreter’s
current expression, environment, and continuation.

5.2.1 Overview

In Z g, reifying procedures are created by applying the proce-
dure compound-to-reifier to a three-argument compound
procedure. The result is a three-argument reifying proce-
dure. When the operator of a combination evaluates to
a reifying procedure, the body of the reifying procedure
is run as if it were code of the interpreter evaluating the
combination; the body is run in an extension of the reify-
ing procedure’s lexical environment where the first formal
parameter is bound to the list of unevaluated operands of
the combination, the second formal parameter is bound to
the environment argument of the interpreter evaluating the

combination, and the third formal parameter is bound to
the continuation argument of the interpreter evaluating the
combination. To illustrate, a transcript follows showing the
definition and use of a reifying procedure that aborts the
current level, returning its unevaluated first argument.

2> (set! quit
(compound-to-reifier
(lambda (e r k) (1st e))))

2:

2> (quit foo)

1: foo

1> (quit bar)

0: bar

0>

Interesting reifying procedures typically call evaluate
in their bodies. Following is the definition of a special form
(when test exp) that evaluates exp if and only if test eval-
uates to true.

2> (set! when
(compound-to-reifier
(lambda (e r k)
(evaluate (1st e) r
(lambda (v)
(if v
(evaluate (2nd e) r k)
(k (void))))))))
2:
2> (when (= 1 2) "Shouldn’t happen")
2:
2>
It is useful to define a special form alpha for abstracting
reifiers. With alpha, quit could be defined by

(set! quit (alpha (e r k) (1st e)))

The body of an alphais closed in the environment of its def-
inition. The definition of alpha uses make-reifier, which,
like make-compound, takes a list of formal parameters, a pro-
cedure body, and an environment, and directly creates the
associated reifying procedure. We define alpha as follows:

(set! alpha
(compound-to-reifier
(lambda (e r k)
(k (make-reifier (1st e) (cdr e) r)))))

5.2.2

Reifying procedures are represented like compound proce-
dures, except that the tagis *reifierinstead of ’compound.
Converting between reifying procedures and compound pro-
cedures is then simply a matter of changing tags. Following
are the operations on reifying procedures.

Implementation

(set! make-reifier
(lambda (formals body r)
(list ’reifier formals body r)))

(set! reifier-to-compound
(lambda (reifier)
(cons ’compound (cdr reifier))))

(set! compound-to-reifier
(lambda (compound)
(cons ’reifier (cdr compound))))

53

All that remains is to handle the evaluation of combi-
nations where the operator evaluates to a reifying proce-
dure. Suppose that we have a combination (expo exp: ...)
where expg evaluates to a reifying procedure bound to proc.
Let ext be the extension of the lexical environment of proc
where the formal parameters of proc are bound to the list
of unevaluated operands of the combination, the environ-
ment of the interpreter evaluating the combination, and the
continuation of the interpreter evaluating the combination,
respectively. We want to run the body of proc at the level
of interpreter code in the environment ext. This is the same
as running the body of the value of

(reifier-to-compound proc)

at the level of interpreter code in the environment ext. By
the basic observation, this is the same as running

((reifier-to-compound proc) (operands-part e) r k)

at the level of interpreter code. Thus, the following modifi-
cation to evaluate-combination, indicated by semicolons,
runs the body of a reifier at the proper level.

(set! evaluate-combination
(lambda (e r k)
(evaluate (operator-part e) r
(lambda (proc)
(if (reifier? proc) ;
((reifier-to-compound proc) ;
(operands-part e) r k) ;
(evaluate-operands (operands-part e) r

(lambda (args)

(apply-procedure proc args k))))))))

This completes the description of the changes made to Z in
order to obtain Zr. The full definition of Zr appears in the
appendix.

The expression

((reifier-to-compound proc) (operands-part e) r k)

is the essence of our reflective tower model. It is essentially
identical to the corresponding expression

(] (de-reflect proc!) args env cont)

in the meta-circular definition of 3-Lisp [10]. The 3-Lisp
procedure de-reflect performs the same function as the Zn
procedure reifier-to-compound: it converts the closure for
a reifier into a closure for a compound procedure. The only
significant difference between the two expressions is the use
of the meta-structural operator | in the 3-Lisp expression
so that the operator of the combination is a program (des-
ignating a function) rather than a structure (designating a
closure).

5.3 Observations

The reflective interpreter Zr was obtained by making a few
simple modifications to Z. The first modification created a
self-referential global environment so that the interpreters
in a tower could share the global environment. Then a
datatype for reifying procedures was defined and a case was
added to evaluate-combination so that it could handle ap-
plications of reifiers.

An error from the underlying Scheme system usually re-
sults if code run by level-0 attempts to apply a reifier:

0> ((compound-to-reifier
(lambda (e r k) "Wow!")))
Error: attempt to apply non-procedure
(compound (e r k) ("Wow!") ().
>

The error is due to running the expression
((reifier-to-compound proc) (operands-part e) r k)

as level-0 Zg interpreter code. The level-0 Tr is run by the
underlying Scheme system, which does not understand the
representation of Zr procedures.

The following illustrates how it is possible to climb out
of the finite tower and into Scheme, resulting in an error:

0> (openloop "1> " "1: ')
1> (openloop "2> " "2: ")
2> (set! climb
(compound-to-reifier
(lambda (e r k)
(evaluate (1st e) r
(lambda (v)

(if (= v 0)

(k v)

(climb (- v 1))
2:
2> (climb 0)
2: 0
2> (climb 1)
1: 0

1> (openloop "2> " "2: ")

2> (climb 2)

Error: attempt to apply non-procedure
(compound (e r k) ((evaluate ...)) ().

>

Due to the meta-circularity of Zr, user programs have
full access to the implementation and structures of Zr. This
is illustrated in the following transcript.

0> (openloop "1> " "1: ')
1> (openloop "2> " "2: ")
2> ((compound-to-reifier
(lambda (e r k)
(list e r K)))

(* 35))
1: (((* 3 5))
O

(compound (v)
((display write-prompt)
(if (eq? v (void))
"Nothing will be displayed"
(write v))
(newline)
(openloop read-prompt write-prompt))
((write-prompt . "2: ")
(read-prompt . "2> "))))
1> evaluate-abstraction
1: (compound (e r k)
((k (make-compound
(formals-part e)
(body-part e)
r)))
o)
1>

54

6 Comparison with Related Work

3-Lisp, Brown, Blond, and Zx are all closely related. All
are interpreters based on the reflective tower architecture
described in section 2. Zr models a finite reflective tower,
whereas the others model an infinite reflective tower. All
four languages are lexically scoped, higher order, applica-
tive order dialects of Lisp. We do mnot include Stepper[1]
because its reflective architecture differs substantially from
that considered here.

3-Lisp differs in significant ways from other Lisp dialects.
Before reflection is introduced, a semantically rationalized
Lisp is defined. New internal structures are introduced in
order to uniquely represent semantic concepts (e.g., combi-
nations are not represented by list structure) and syntax is
assigned to uniquely represent each type of internal struc-
ture. This results in an alignment of syntactic, structural,
and semantic concepts. Quotation is a structural primitive
in 3-Lisp that is used to designate internal structures. Lev-
els of designation can only be removed or added explicitly
via up and down. Evaluation is replaced by normalization,
which takes an expression into a co-designating structure in
normal form (e.g., ’>2 normalizes to ’2, not 2). The result is
that semantical levels may only be crossed with the explicit
use of up and down. Reflection in 3-Lisp is then described as
in section 2.

Meta-circular definitions of 3-Lisp are given in [9, 10, 11].
The meta-circular definition uses 3-Lisp to define 3-Lisp and
hence is not well-founded. The definition of Zgr is similar
to the meta-circular definition of 3-Lisp. Level shifting and
meta-circular access are implicit in both definitions, and the
code for applying reifiers is essentially identical. The defini-
tion of Zr differs in the following respects:

e It models a finite tower, rather than an infinite tower.

e It is well-founded and can be run in Scheme. The
meta-circular definition of 3-Lisp can only be run by a
3-Lisp implementation.

o [t does not require an understanding of 3-Lisp’s recon-
struction of evaluation and quotation.

The non-reflective implementations [9, 4] of 3-Lisp are
extremely operational. In order to operate efficiently, level
shifting in the tower is explicitly modeled with a stack of
continuations corresponding to the active levels of the tower.
Full access to the interpreter, implied by meta-circularity, is
explicitly simulated.

Brown and Blond are reflective dialects of Scheme, both
of which are implemented in Scheme. Both are essentially
executable denotational definitions of the non-meta-circular
aspects of the reflective tower architecture. Level shifting
in the tower is explicitly modeled by adding a new context
argument, called the meta-continuation, to the semantic val-
uation functions.

As Tr demonstrates, meta-circularity implies that user
programs have the same access privileges as the interpreter
itself. Thus, the procedures that implement a meta-circular
interpreter may be used, inspected, and modified by a user
program. Environments and continuations can be similarly
accessed by a user program. Zr user programs have the
same access privileges as Zp itself. The implementation of
3-Lisp faithfully simulates its corresponding meta-circular
definition, but protects itself by not allowing modification

of the standard 3-Lisp system. Nevertheless, 3-Lisp user
programs have full inspection privileges.

In Blond and Brown, the internal structure of the in-
terpreter is largely hidden from user programs. Brown and
Blond make no attempt to model the meta-circular prop-
erties of the reflective tower, but rather focus on the deno-
tational semantics of shifting between levels of the tower.
Both Brown and Blond rely upon Scheme closures to rep-
resent user-defined procedures, interpreter procedures and
interpreter continuations. Brown also represents the envi-
ronment as a closure. The only sanctioned operation that
either the Blond or Brown interpreters or their user pro-
grams can perform on Scheme closures is application.

In 3-Lisp, Brown, and Zg, reifiers close in the environ-
ment of their definition. In Blond, reifiers close in either
the environment of the level above their definition or in the
environment above their level of application. Reifiers of the
first kind are defined via gamma abstractions, and those of
the second kind are defined via delta abstractions.

In 3-Lisp, Brown, and Zg, if the application of a reified
continuation (i.e., interpreter continuation) returns, then
execution is resumed at the point following the applica-
tion. This procedure-like behavior of reified continuations
has been termed “pushy” [5]. In Zg this pushy behavior is
a natural consequence of actually running a literal tower of
interpreters. Brown and 3-Lisp simulate the pushy behavior
that is a consequence of the reflective tower architecture.
The designers of Blond argue for “jumpy” reified continua-
tions, which behave more like a goto when they are applied.
The jumpy behavior is obtained by forgetting the continua-
tion in effect when a reified continuation is applied.

Blond has a separate environment on each level and a
global environment that is common to all levels. Brown and
Zr have only a global environment that is common to all
levels. Both approaches have been used in different 3-Lisp
implementations.

7 Conclusion

An executable reflective interpreter has been defined by mak-
ing a few minor modifications to an ordinary interpreter for a
dialect of Scheme. The reflective interpreter literally models
a finite reflective tower. This makes it too slow for practical
use, but its simplicity makes it ideal for understanding and
experimenting. Once the literal model of a finite reflective
tower is understood, the behavior of an infinite reflective
tower is easily understood as the limiting behavior of a fi-
nite reflective tower as its height approaches infinity.

Our reflective interpreter illustrates how switching levels
in the tower involves treating data as code and vice-versa.
For those who are uncomfortable with this sort of semantical
level crossing, it serves as additional motivation for under-
standing the reconstruction of evaluation and quotation in
3-Lisp. [9, 10].

Acknowledgements

We are grateful to John Simmons for using the system and
providing much helpful feedback. We would like to thank
Jim des Rivieres, Steve Greenbaum, Evan Kirshenbaum,
Daniel Kuokka, and Julia Lawall for their comments on
earlier drafts of this paper. The first author is grateful to
Hewlett-Packard Laboratories for their support and the use
of their facilities in completing this paper.

55

References

[1] Bawden, A., Reification without evaluation, Confer-
ence Record of the 1988 ACM Symposium on LISP and
Functional Programming, Snowbird, Utah, July 1988,
342-351.

Danvy, O., and Malmkjer, K., Intensions and Exten-
sions in a Reflective Tower, Conference Record of the
1988 ACM Symposium on LISP and Functional Pro-
gramming, Snowbird, Utah, July 1988, 327-341.

Danvy, O., and Malmkjeer, K., A Blond Primer, DIKU
Rapport, DIKU, Computer Science Dept., University of
Copenhagen, Copenhagen, Denmark, September 1988.

des Riviéres, J., and Smith, B.C., The Implementation
of Procedurally Reflective Languages, Proc. 1984 ACM
Symposium on Lisp and Functional Programming, Au-
gust 1984, 331-347.

des Rivieres, J., Control-Related Meta-Level Facilities
in LISP (Extended Abstract), Meta-Level Architectures
and Reflection, Patti Maes and Daniele Nardi (eds.),
North-Holland, 1988, 101-110.

Friedman, D.P., and Wand, M., Reification: Reflection
without Metaphysics, Proc. 1984 ACM Symposium on
Lisp and Functional Programming, August 1984, 348-
355.

Maes, P., and Nardi, D. (eds.), Meta-Level Architec-
tures and Reflection, North-Holland, 1988.

Rees, J., and Clinger, W., eds. Revised® Report on
the Algorithmic Language Scheme, SIGPLAN Notices
21,12 (December, 1986), 37-79.

Smith, B.C., Reflection and Semantics in a Procedu-
ral Language, MIT-L.CS-TR-272, Mass. Inst. of Tech.,
Cambridge, MA, January, 1982.

[10] Smith, B.C., Reflection and Semantics in Lisp, Conjf.
Rec. 11th ACM Symp. on Principles of Programming

Languages, 1984, 23-35.
Smith, B.C., and des Rivieres, J., Interim 3-LISP Ref-

erence Manual, Intelligent Systems Laboratory, Xerox

PARC, Palo Alto, California, 1984.

[11]

[12] Wand, M., and Friedman, D.P., The Mystery of the
Tower Revealed: a non-Reflective Description of the
Reflective Tower, Lisp and Symbolic Computation, vol.

1, no. 1, June 1988, 11-38.

Appendix: The Complete Reflective Interpreter

Following is a listing of a Scheme source file, which we have
named simple.ss, that defines the interpreter presented in
section 5. After loading the file, the interpreter is started
by typing (boot-tower).

; A Simple Reflective Interpreter

I

In some Scheme systems it may be necessary to
; first load a separate file that initializes

; every global variable in this file to some

; arbitrary value using DEFINE. It may also be
; necessary to include the following definition
;33 in that file:

(define void
(let ((g (cons ’* ’#%)))
(lambda O g)))

(set! evaluate
(lambda (e r k)
((if (constant? e)
evaluate-constant
(if (variable? e)
evaluate-variable
(if (if? e)
evaluate-if
(if (assignment? e)
evaluate-assignment
(if (abstraction? e)
evaluate-abstraction
evaluate-combination)))))
er k)

(set! evaluate-constant
(lambda (e r k)
(k (constant-part e))))

(set! evaluate-variable
(lambda (e r k)
(get-pair e r
(lambda (success-pair)
(k (cdr success-pair)))
(lambda ()
(wrong "symbol not bound: " e)))))

(set! wrong
(lambda (message object)
(display "Error: ")
(display message)
(display object)
(newline)))

(set! evaluate-if
(lambda (e r k)
(evaluate (test-part e) r
(lambda (v)
(if v
(evaluate (then-part e) r k)
(evaluate (else-part e) r k))))))

56

(set! evaluate-assignment
(lambda (e r k)
(evaluate (value-part e) r
(lambda (v)
(get-pair (id-part e) r
(lambda (success-pair)
(set-cdr! success-pair v)
(k (void)))
(lambda ()
(set-cdr! global-env
(cons (cons (id-part e) v)
(cdr global-env)))
(k (void))))))))

(set! evaluate-abstraction
(lambda (e r k)
(k (make-compound
(formals-part e) (body-part e) r))))

(set! evaluate-combination
(lambda (e r k)
(evaluate (operator-part e) r
(lambda (proc)
(if (reifier? proc)
((reifier-to-compound proc)
(operands-part e) r k)
(evaluate-operands (operands-part e) r
(lambda (args)
(apply-procedure proc args k))))))))

(set! evaluate-operands
(lambda (operands r k)
(if (null? operands)
k O)
(evaluate (car operands) r
(lambda (v)
(evaluate-operands (cdr operands) r
(lambda (w)
(k (cons v w)))))))))

(set! evaluate-sequence
(lambda (body r k)
(if (null? (cdr body))
(evaluate (car body) r k)
(evaluate (car body) r
(lambda (v)
(evaluate-sequence (cdr body) r k))))))

(set! apply-procedure
(lambda (proc args k)
(if (compound? proc)
(evaluate-sequence

(procedure-body proc)

(extend
(procedure-environment proc)
(procedure-parameters proc)
args)

k)

(k (apply-primitive
(procedure-name proc) args)))))

(set! apply-primitive
(lambda (name args)

(if name ’car)

(1st args))

name ’cdr)

(cdr (1st args))

(eq? name ’cons)

(cons (1st args) (2nd args))
(eq? name ’set-car!)
(set-car! (1st args) (2nd args))
(eq? name ’set-cdr!)
(set-cdr! (1st args) (2nd args))
(eq? name ’assq)

(assq (1st args) (2nd args))
(eq? name ’memq)

(memq (1st args) (2nd args))
(eq? name ’null?)

(null? (1st args))

(eq? name ’=)

(= (1st args) (2nd args))
(eq? name ’eq?)

(eq? (1st args) (2nd args))
(eq? name ’newline)

(newline)

(eq? name ’write)

(write (1st args))

(eq? name ’display)

(display (l1st args))

(eq? name ’read)

(if (null? args) (read) (read (1st args)))
(eq? name ’+)

(+ (1st args) (2nd args))
(eq? name ’-)

(- (1st args) (2nd args))
(eq? name ’#*)

(* (1st args) (2nd args))
(eq? name ’symbol?)

(symbol? (1st args))

(eq? name ’list)

args

(eq? name ’pair?)

(pair? (1st args))

(eq? name ’eof-object?)
(eof-object? (1st args))

(eq? name ’close-input-port)
(close-input-port (lst args))
(eq? name ’open-input-file)
(open-input-file (1st args))
(eq? name ’void)

(void)

"Shouldn’t Happen!'"))))))))))))))))))))))))))

(eq?
(car
(eq?

(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if
(if

(if

Environments.

(set! extend
(lambda (r ids vals)

(if (null? ids)
r
(extend
(cons (cons (car ids) (car vals)) r)
(cdr ids)
(cdr vals)))))

57

(set! get-pair
(lambda (id r success failure)
(find-pair id r
success
(lambda ()
(find-pair
id global-env success failure)))))

(set! find-pair
(lambda (elt alist success failure)
((lambda (assq-result)
(if assq-result
(success assq-result)
(failure)))
(assq elt alist))))

(set! empty-env > ())

N
;33 List utilities.

I

(set! 1st (lambda (1) (car 1)))

(set! 2nd (lambda (1) (car (cdr 1))))

(set! 3rd (lambda (1) (car (cdr (cdr 1)))))

(set! 4th (lambda (1) (car (cdr (cdr (cdr 1))))))

(set! test-tag
(lambda (tag)
(lambda (e)

(if (pair? e) (eq? (car e) tag) #f))))

N
;33 Procedures.

I

(set! make-compound
(lambda (formals body r)
(1ist ’compound formals body r)))

(set! compound? (test-tag ’compound))

(set! make-primitive
(lambda (op)
(list ’primitive op)))

(set! primitive? (test-tag ’primitive))

(set! primitive-identifiers
(lambda ()
>(car cdr cons set-car! set-cdr! assq memq
null? = eq? newline write display read
+ - % symbol? list pair? eof-object?
close-input-port open-input-file void)))

(set! make-reifier
(lambda (formals body r)
(list ’reifier formals body r)))

(set! reifier-to-compound
(lambda (reifier)
(cons ’compound (cdr reifier))))

(set! compound-to-reifier
(lambda (compound)
(cons ’reifier (cdr compound))))

(set! reifier? (test-tag ’reifier))

(set! procedure-parameters 2nd)
(set! procedure-body 3rd)
(set! procedure-environment 4th)
(set! procedure-name 2nd)

N
;33 Syntax.

I

(set! variable? symbol?)

(set! if? (test-tag ’if))

(set! assignment? (test-tag ’set!))
(set! abstraction? (test-tag ’lambda))
(set! quote? (test-tag ’quote))

(set! constant?
(lambda (e)
(if (pair? e) (quote? e)
(if (symbol? e) #f #t))))

(set! constant-part
(lambda (e) (if (quote? e) (2nd e) e)))

(set! test-part 2nd)
(set! then-part 3rd)
(set! else-part 4th)

(set! id-part 2nd)
(set! value-part 3rd)

(set! formals-part 2nd)
(set! body-part (lambda (e) (cdr (cdr e))))

(set! operator-part 1st)
(set! operands-part cdr)

;53 Read-Eval-Print Loop and Loadfile

I

(set! openloop
(lambda (read-prompt write-prompt)
(display read-prompt)
(evaluate (read) empty-env
(lambda (v)
(display write-prompt)
(if (eq? v (void))
"Nothing will be displayed"
(write v))
(newline)
(openloop read-prompt write-prompt)))))

58

(set! loadfile
(lambda (file)
((lambda(port)
((lambda (loop)
(set! loop
(lambda (v)
(if (eof-object? v)
(close-input-port port)
(evaluate v empty-env
(lambda (ignore)
(loop (read port)))))))
(loop (read port)))
%))
(open-input-file file))))

B
;33 The booting process

I

(set! mapper
(lambda (f 1)
(if (null? 1)
7O
(cons (£ (car 1)) (mapper £ (cdr 1))))))

(set! initialize-global-env
(lambda ()
(set! global-env
(extend
empty—env
(primitive-identifiers)
(mapper make-primitive
(primitive-identifiers))))))

(set! boot-flat
(lambda ()
(initialize-global-env)
(openloop "0< " "0> '")))

(set! boot-tower
(lambda ()

(initialize-global-env)

(loadfile this-file-name)

(set-cdr! global-env

(cons (cons ’global-env global-env)

(cdr global-env)))

(openloop "0> " "0: '")))

(set! this-file-name "simple.ss'")

