
Software Engineering of Self-Adaptive Systems:

An Organised Tour and Future Challenges

Danny Weyns

Abstract

Modern software systems are expected to operate under uncertain
conditions, without interruption. Possible causes of uncertainties include
changes in the operational environment, dynamics in the availability of
resources, and variations of user goals. The aim of self-adaptation is to
let the system collect additional data about the uncertainties during op-
eration. The system uses the additional data to resolve uncertainties, to
reason about itself, and based on its goals to reconfigure or adjust itself
to satisfy the changing conditions, or if necessary to degrade gracefully.
In this chapter, we provide a particular perspective on the evolution of
the field of self-adaptation in six waves. These waves put complementary
aspects of engineering self-adaptive systems in focus that synergistically
have contributed to the current knowledge in the field. From the pre-
sented perspective on the field, we outline a number of challenges for
future research in self-adaptation, both in a short and long term.

1 Introduction

Back in 1968, at the NATO Software Engineering Conference in Brussels, the
term “software crisis” was coined, referring to the manageability problems
of software projects and software that was not delivering its objectives [42].
One of the key identified causes at that time was the growing gap between
the rapidly increasing power of computing systems and the ability of pro-
grammers to effectively exploit the capabilities of these systems. This cri-
sis triggered the development of novel programming paradigms, methods and
processes to assure software quality. While today large and complex soft-
ware projects remain vulnerable to unanticipated problems, the causes that
underlaid this first software crisis are now relatively well under control of
project managers and software engineers.

Thirty five years later, in 2003, IBM released a manifesto that referred to
another “looming software complexity crisis” this time caused by the increasing
complexity of installing, configuring, tuning, and maintaining computing sys-
tems [18]. New emerging computing systems at that time went beyond company
boundaries into the Internet, introducing new levels of complexity that could
hardly be managed, even by the most skilled system administrators. The com-

1

plexity resulted from various internal and external factors, causing uncertainties
that are difficult to anticipate before deployment. Examples are the scale of the
system, inherent distribution of the software system that may span administra-
tive domains, dynamics in the availability of resources and services, system faults
that may be difficult to predict, and changes in user goals during operation. In
a seminal paper, Kephart and Chess put forward self-management as the only
viable option to tackle the problems that underlie this complexity crisis [36].
Self-management refers to computing systems that can adapt autonomously to
achieve their goals based on high-level objectives. Such computing systems are
usually called self-adaptive systems.

As already stated by Kephart and Chess, realising the full potential of self-
adaptive system will take “a concerted, longterm, and worldwide effort by re-
searchers in a diversity of fields.” Over the past two decades, researchers and
engineers from different fields have put extensive efforts in the realisation of
self-adaptive systems. In this chapter, we provide a particular perspective on
the engineering of self-adaptive systems in six waves. Rather than providing a
set of distinct approaches for engineering self-adaptive systems that have been
developed over time, the waves put complementary aspects of engineering self-
adaptive systems in focus that synergistically have contributed to the current
body of knowledge in the field. Each wave highlights a trend of interest in the
research community. Some of the (earlier) waves have stabilised now and re-
sulted in common knowledge in the community. Other (more recent) waves are
still very active and subject of debate; the knowledge of these waves has not
been consolidated yet.

The first wave, Automating Tasks, stresses the role of self-management as a
means to free system administrators and other stakeholders from the details of
installing, configuring, tuning, and maintaining computing systems that have
to run autonomously 24/7. The second wave, Architecture-Based Adaptation
emphasises the central role of architecture in engineering self-adaptive systems,
in particular the role architecture plays in separating the concerns of the regular
functionality of the system from the concerns that are subject of the adaptation.
The first two waves put the focus on the primary drivers for self-adaptation and
the fundamental principles to engineer self-adaptive systems.

The third wave, Runtime Models stresses the importance of adaptation
mechanisms that leverage software models at runtime to reason about the sys-
tem and its goals. In particular, the idea is to extend the applicability of mod-
els produced in traditional model-driven engineering approaches to the runtime
context. The fourth wave, Goal Driven Adaptation put the emphasis on the re-
quirements that need to be solved by the managing system and how they drive
the design of a self-adaptive system and can be exploited at runtime to drive
the self-adaptation process. These two waves put the focus on key elements for
the concrete realisation of self-adaptive systems.

The fifth wave, Guarantees Under Uncertainties stress the fundamental role
of uncertainties as first-class concerns of self-adaptive systems, i.e., the lack of
complete knowledge of the system and its executing conditions before deploy-
ment, and how these uncertainties can be resolved at runtime. Finally, the sixth

2

wave, Control-Based Approaches, emphasizes the solid mathematical foundation
of control theory as a basis to design self-adaptive systems that have to oper-
ate under a wide range of disturbances. The last two waves put the focus on
uncertainties as key drivers of self-adaptive systems and how to tame them.

The remainder of this chapter is structured as follows. In Section 2, we
explain the basic principles and concepts of self-adaptation. Section 3 presents
the six waves in detail. Finally, we discuss a number of future challenges for
self-adaptation in Section 4, both in a short and long term.

2 Concepts and Principles

In this section, we explain what is a self-adaptive system. To that end,
we define two basic principles that determine the notion of self-adaptation.
These principles allow us to determine the scope of this chapter. From the two
principles we derive a conceptual model of a self-adaptive system that defines
the basic elements of such a system. The principles and the conceptual model
provide the basis for the perspective on the engineering of self-adaptive systems
in six waves that we present in the next section.

2.1 Basic Principles of Self-Adaptation

The term self-adaptation is not precisely defined in the literature. Cheng
et al. refer to a self-adaptive system as a system that “is able to adjust its
behaviour in response to their perception of the environment and the system
itself” [15]. Brun et al. add to that: “the self prefix indicates that the sys-
tem decides autonomously (i.e., without or with minimal interference) how to
adapt or organise to accommodate changes in its context and environment” [10].
Esfahani et al. emphasise uncertainty in the environment or domain in which
the software is deployed as a prevalent aspect of self-adaptive systems [26].
These interpretations take the stance of the external observer and look at a self-
adaptive system as one that can handle changing external conditions, resources,
workloads, demands, and failures.

Garlan et al. contrast traditional mechanisms that support self-adaptation,
such as exceptions in programming languages and fault-tolerant protocols, with
mechanisms that are realised by means of a closed feedback loop to achieve
various goals by monitoring and adapting system behaviour at runtime [29].
Andersson et al. refer in this context to “disciplined split” as a basic principle
of a self-adaptive system, referring to an explicit separation between a part of the
system that deals with the domain concerns and a part that deals the adaptation
concerns [2]. Domain concerns relate to the goals for which the system is built;
adaptation concerns relate to the system itself, i.e., the way the system realises
its goals under changing conditions. These interpretations take the stance of

3

the engineer of the system and look at self-adaptation from the point of view
how the system is conceived.

Hence, we introduce two basic principles that complement one another and
determine what is a self-adaptive system:

1. External principle: A self-adaptive system is a system that can handle
changes and uncertainties in its environment, the system itself and its
goals autonomously (i.e., without or with minimal human interference).

2. Internal principle: A self-adaptive system comprises two distinct parts:
the first part interacts with the environment and is responsible for the
domain concerns (i.e., concerns for which the system is built); the second
part interacts with the first part (and monitors its environment) and is
responsible for the adaptation concerns (i.e., concerns about the domain
concerns).

In contrast to self-adaptive systems that comprise of two distinct parts com-
pliant with the internal principle, adaptation can also be realised in other ways.
In self-organising systems, components apply local rules to adapt their interac-
tions in response to changing conditions and cooperatively realise adaptation.
This approach often involves emergent behaviour [22]. Another related approach
is context-awareness [3], where the emphasis is on handling relevant elements
in the physical environment as a first-class citizen in system design and man-
agement. Context-aware systems typically have a layered architecture, where
a context manager or a dedicated middleware is responsible for sensing and
dealing with context changes. While self-organisation or context-awareness can
be applied independently or can be combined with self-adaptation, the primary
scope of this chapter is on self-adaptation as a property of a computing system
that is compliant with the two basic principles of self-adaptation.

Furthermore, self-adaptation can be applied to different levels of the tech-
nology stack of computing systems, from the underlying hardware to low-level
computing infrastructure, from middleware services to the application software.
The challenges of self-adaptation at these different levels are different. For ex-
ample, the design space for the adaptation of higher-level software entities is
often multi-dimensional and software qualities and adaption objectives usually
have a complex interplay [1, 10, 28]. These characteristics are less applicable
to the adaptation of lower-level resources and hardware entities. The scope of
this chapter is primarily on self-adaptation used to manage higher-level software
elements of computing systems.

Prominent communities that have actively been involved in the research on
self-adaptive systems and the waves presented in this article are the communities
of Software Engineering of Adaptive and Self-Managing Systems (SEAMS)1,
Autonomic Computing (ICAC)2, and Self-Adaptive and Self-Organising Sys-
tems (SASO)3. Research results on self-adaptation are regularly presented at

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/seams/
2http://nsfcac.rutgers.edu/conferences/ac2004/index.html
3http://www.saso-conference.org/

4

the top software engineering conferences, including the International Confer-
ence on Software Engineering(ICSE)4 and the International Symposium on the
Foundations of Software Engineering (FSE).5

2.2 Conceptual Model of a Self-Adaptive System

We now describe a conceptual model of a self-adaptive system. The model
describes a set of concepts and the relationship between them. The concepts that
correspond to the basic elements of a self-adaptive system are kept abstract and
general, but they comply with the two basic principles of self-adaptation. The
conceptual model introduces a basic vocabulary for the field of self-adaptation
and serves as a guidance for organising and focusing the knowledge of the field.
Figure 1 shows the conceptual model of a self-adaptive system.

Environment

Adaptation
Goals Managing

System

Managed System

effect

adapt

sense

sense

read

Self-Adaptive System

Figure 1: Conceptual model of a self-adaptive system

The conceptual model comprises four basic elements: environment, managed
system, adaptation goals, and managing system.

Environment. The environment refers to the part of the external world
with which the self-adaptive system interacts and in which the effects of the
system will be observed and evaluated [35]. The environment can include both
physical and virtual entities. For example, the environment of a robotic system

4http://2016.icse.cs.txstate.edu/
5https://www.cs.ucdavis.edu/fse2016/

5

includes physical entities like obstacles on the robot’s path and other robots,
as well as external cameras and corresponding software drivers. The distinction
between the environment and the self-adaptive system is made based on the
extent of control. For instance, in the robotic system, the self-adaptive system
may interface with the mountable camera sensor, but since it does not manage
(adapt) its functionality, the camera is considered to be part of the environment.
The environment can be sensed and effected through sensors and effectors re-
spectively. However, as the environment is not under the control of the software
engineer of the system, there may be uncertainty in terms of what is sensed by
the sensors or what the outcomes will be of effecting the effectors.

Managed System. The managed system comprises the application code
that realises the system’s domain functionality. Hence, the concerns of the man-
aged system are concerns over the domain, i.e. the environment. For instance,
in the case of robots, navigation of a robot and transporting loads is performed
by the managed system. To realise its functionality, the managed system senses
and effects the environment. To support adaptations, the managed system has
to be equipped with sensors to enable monitoring and actuators to execute adap-
tations. Safely executing adaptations requires that the adaptation actions do
not interfere with the regular system activity for which the system has to be in
a quiescent state [38]. Different terms are used in the literature for the concept
of managed system in the context of self-adaptation. For example, Kephart
and Chess refer to it as the managed element [36], the Rainbow framework [29]
calls it the system layer, Salehie and Tahvildari use core function [49], in the
FORMS reference model, the managed system corresponds to the base-level
subsystem [60], and Filieri et al. refer to it as controllable plant [27].

Adaptation Goals. The adaptation goals are concerns of the managing
system over the managed system; they usually relate to the software quali-
ties of the managed system [56]. Four principle types of high-level adaptation
goals can be distinguished: self-configuration (i.e., systems that configure them-
selves automatically), self-optimisation (systems that continually seek ways to
improve their performance or cost), self-healing (systems that detect, diagnose,
and repair problems resulting from bugs or failures), and self-protection (sys-
tems that defend themselves from malicious attacks or cascading failures) [36].
As an example, a self-optimisation goal of a robot may be to ensure that a
particular number of tasks are achieved within a certain time window under
changing operation conditions, e.g., dynamic task loads or reduced bandwidth
for communication. Adaptation goals are often expressed in terms of the un-
certainty they have to deal with. Example approaches are the specification of
quality of service goals using probabilistic temporal logics [13], the specification
of fuzzy goals, whose satisfaction is represented through fuzzy constraints [5],
and adding flexibility to the specification of goals by specifying the goals declar-
atively, rather than by enumeration [16]. Adaptation goals can be subject of
change themselves (which is not shown in Figure 1). Adding new goals or re-
moving goals during operation will require updates of the managing system as
well and may also require updates of probes and effectors.

Managing System: The managing system manages the managed system.

6

To that end, the managing system comprises the adaptation logic that deals
with one or more adaption goals. For instance, a robot may be equipped with a
managing system that allows the robot to adapt its navigation strategy to en-
sure that a certain number of tasks are performed within a given time window
under changing operation conditions. To realise the adaptation goals, the man-
aging system monitors the environment and the managed system and adapts
the latter when necessary. Conceptually, the managing system may consist
of multiple levels where higher-level adaptation subsystems manage underlying
subsystems. For instance, consider a robot that not only has the ability to
adapt its navigation strategy, but also adapt the way such adaptation decisions
are made, e.g., based on the energy level of the battery. Different terms are
used in the literature for the concept of managing system. Examples are: au-
tonomic manager [36], architecture layer [29], adaptation engine [49], reflective
subsystem [60], and controller [27].

It is important to note that the conceptual model for self-adaptive systems
abstracts away from distribution, i.e., the deployment of the software to hard-
ware. Whereas a distributed self-adaptive system consists of multiple software
components that are deployed on multiple nodes connected via some network,
from a conceptual point of view such system can be represented as a man-
aged system (that deals with the domain concerns) and a managing system
(that deals with concerns of the managed system represented by the adaptation
goals). The conceptual model also abstracts away from how adaptation decisions
in a self-adaptive system are made and potentially coordinated among different
components. Such coordination may potentially involve human interventions,
such as in socio-technical and cyber-physical systems. The conceptual model
is invariant to self-adaptive systems where the adaptation functions are made
by a single centralised entity or by multiple coordinating entities. Obviously,
the distribution of the components of a self-adaptive system to hardware and
the degree of decentralisation of decision making of adaptation will have a deep
impact on how concrete self-adaptive systems are engineered.

3 An Organised Tour in Six Waves

In the previous section, the focus was on what is a self-adaptive system. We
have explained the basic principles of self-adaptation and outlined a conceptual
model that describes the basic elements of self-adaptive systems compliant with
the basic principles. We direct our focus now on how self-adaptive systems
are engineered. Specifically, we provide a concise but in-depth introduction
to the engineering of self-adaptive systems. Instead of presenting distinct and
comprehensive approaches for engineering self-adaptive systems that have been
studied and applied over time, we take a different stance on the field and put
different aspects of engineering self-adaptive systems in focus. These aspects
are structured in six waves that emerged over time, often triggered by insights
derived from other waves as indicated by the arrows in Figure 2.

7

1. Automating
Tasks

2. Architecture-Based
Adaptation

4. Goal-Driven
Adaptation

3. Runtime
Models

5. Guarantees Under
Uncertainties

6. Control-Based
Adaptation

systematic engineering
perspective

complexity of
concrete design theoretical

framework for
self-adaptation

guarantees under
uncertainty

explicit requirements
for feedback loops

adaptation goals as
first-class citizens

uncertainty as
first-class

citizen

link goal models to
feedback loop designs

complexity to
provide assurances

Figure 2: Six waves of research in self-adaptive systems; arrows indicate how
waves have triggered new waves

The waves have contributed complementary layers of knowledge on en-
gineering self-adaptive systems that synergistically have shaped the state of
the art in the field. Waves highlight trends of interest in the research
community. The knowledge consolidated in each wave is important for un-
derstanding the concept of self-adaptation and the principles that under-
lie the engineering of self-adaptive systems. Some waves are stabilised now
and have produced knowledge that is generally acknowledged in the com-
munity, while other waves are still very active and the knowledge produced
in these waves has not been consolidated yet.

Figure 2 gives a schematic overview of the six waves. The first wave Automat-
ing Tasks is concerned with delegating complex and error-prone management
tasks from human operators to the machine. The second wave Architecture-
based Adaptation that is triggered by the need for a systematic engineering
approach (from the first wave) is concerned with applying the principles of ab-
straction and separation of concerns to identify the foundations of engineering
self-adaptive systems.

The third wave, Runtime Models that is triggered by the problem of manag-
ing the complexity of concrete designs of self-adaptive systems (from the second
wave) is concerned with exploiting first-class runtime representations of the key

8

elements of a self-adaptive system to support decision making at runtime. The
fourth wave, Goal-Driven Adaptation is triggered by the need to consider re-
quirements of self-adaptive systems as first-class citizens (from waves one and
two) and link the goal models to feedback loop designs (from wave three). The
fourth wave puts the emphasis on the requirements that need to be solved by
the managing system and how they drive its design.

The fifth wave, Guarantees under Uncertainty is triggered by the need to
deal with uncertainty as first-class citizen in engineering self-adaptive systems
(from wave four) and how to mitigate the uncertainty (from wave three). The
fifth wave is concerned with providing trustworthiness for self-adaptive systems
that need to operate under uncertainty. Finally, the sixth wave Control-Based
Adaptation is triggered by the complexity to provide assurances (from wave five)
and the need for a theoretical framework for self-adaptation (from wave two).
The sixth wave is concerned with exploiting the mathematical basis of control
theory for analysing and guaranteeing key properties of self-adaptive systems.

Table 1 provides a short summary with the state-of-the-art before each wave
and a motivation, the topics that are studied in the different waves, and the
contributions that are enabled by each of the waves. We discuss the waves now
in detail based on a selection of highly relevant work.

3.1 Wave I. Automating Tasks

The first wave focusses on the automation of management tasks, from human
administrators to machines. In the seminal paper [36], Kephart and Chess elab-
orate on the problem that the computing industry experienced from the early
2000s and that underlies the need for self-adaptation: the difficulty of manag-
ing the complexity of interconnected computing systems. Management problems
include installing, configuring, operating, optimising, and maintaining heteroge-
neous computing systems that typically span multiple administrative domains.

To deal with this difficult problem, the authors outline a new vision on
engineering complex computing system that they coin as autonomic computing.
The principle idea of autonomic computing is to free administrators from system
operation and maintenance by letting computing systems manage themselves
given high-level objectives from the administrators. This idea is inspired by
the autonomic nervous system that seamlessly governs our body temperature,
hearth beat, breathing, etc. Four essential types of self-management problems
can be distinguished as shown in Table 2.

An autonomic computing system supports a continuous process, i.e., the
system continuously monitors itself and based on a set of high-level goals adapts
itself to realise the goals. The primary building block of an autonomic system
is an autonomic manager, which corresponds to the managing system in the
conceptual model of a self-adaptive system. Figure 3 shows the basic elements
of an autonomic manager. The four elements: Monitor, Analyse, Plan, and
Execute realise the basic functions of any self-adaptive system. These elements
share common Knowledge, hence the model of an autonomic manager is often
referred to as the MAPE-K model.

9

Table 1: Summary of state-of-the-art before each wave with motivation, topic
of the wave, and contributions enabled by each of the waves

Wave SOTA before wave Topic of wave (To be) enabled by wave

W1 System management done
by human operators is a
complex and error prone
process

Automation of
management tasks

System manages itself au-
tonomously based on high-
level objectives

W2 Motivation for self-
adaptation acknowledged,
need for a principled
engineering perspective

Architecture per-
spective on self-
adaptation

Separation between change
management (deal with
change) and goal manage-
ment (adaptation objec-
tives)

W3 Architecture principles of
self-adaptive systems un-
derstood, concrete realisa-
tion is complex

Model-driven ap-
proach to realise
self-adaptive sys-
tems

Runtime models as key el-
ements to engineer self-
adaptive systems

W4 Design of feedback loops
well understood, but re-
quirements problem they
intent to solve is implicit

Requirements for
feedback loops

Languages and formalisms
to specify requirements for
self-adaptive systems

W5 Mature solutions for
engineering self-adaptive
systems, but uncertainty
handled in ad-hoc manner

The role of un-
certainty in self-
adaptive systems
and how to tame it

Formal techniques to guar-
antee adaptation goals under
uncertainty

W6 Engineering of MAPE-
based self-adaption well
understood, but solutions
are often complex

Applying principles
from control-theory
to realise self-
adaptation

Theoretical framework for
(particular types of) self-
adaptive systems

Managed Element

Autonomic Manager

Monitor

Analyse

Knowledge

Plan

ExecuteKnowledge

Figure 3: Structure of autonomic manager (based on [36])

The Monitor element acquires data from the managed element and its en-
vironment, and processes this data to update the content of the Knowledge
element accordingly. The Analyse element uses the up-to-date knowledge to

10

Table 2: Types of self-management

Type Example Problem Example Solution

Self-configuration New elements need to be in-
tegrated in a large Internet-of-
Things application. Installing,
configuring, and integrating
heterogeneous elements is time
consuming and error prone.

Automated integration and
configuration of new elements
following high-level policies.
The rest of the network adapts
automatically and seamlessly.

Self-optimisation A web service infrastructure
wants to provide customers a
particular quality of service,
but the owner wants to reduce
costs by minimising the num-
ber of active servers.

The infrastructure continually
seeks opportunities to improve
quality of service and reduce
costs by (de-)activating ser-
vices and change the allocation
of tasks to servers dynamically.

Self-healing A large-scale e-health system
provides various remote ser-
vices to elderly people. Deter-
mining problems in such het-
erogeneous system is complex.

The system automatically de-
tects anomalies, diagnoses the
problem, and repairs local
faults or adapts the configura-
tion to solve the problem.

Self-protection A web e-commerce applica-
tion is vulnerable to attacks,
such as illegal communications.
Manually detecting and recov-
ering from such attacks is hard.

The system automatically an-
ticipates and defends against
attacks, anticipating cascading
system failures.

determine whether there is a need for adaptation of the managed element. To
that end, the analyse element uses representations of the adaptation goals that
are available in the knowledge element. If adaptation is required, the Plan el-
ement puts together a plan that consists of one or more adaptation actions.
The adaptation plan is then executed by the Execute element that adapts the
managed element as needed. MAPE-K provides a reference model for a manag-
ing system. MAPE-K’s power is its intuitive structure of the different functions
that are involved in realising the feedback control loop in a self-adaptive system.

While the distinct functions of a managing system are intuitive, the concrete
realisation of these functions offers significant scientific and engineering chal-
lenges. We illustrate some of these challenges with a Web-based client-server
system, borrowed from the paper that introduces the Rainbow framework [29].6

Figure 4 shows the setup.
The system consists of a set of Web clients that make stateless requests of

content to server groups. Each server group consists of one or more servers.
Clients connected to a server group send requests to the group’s shared re-
quest queue, and servers that belong to the group take requests from the
queue. The adaptation goal is to keep the perceived response time of each

6Besides contributing a concrete and reusable realisation of the MAPE functions, the Rain-
bow framework also contributed a pioneering approach to systematically engineer self-adaptive
systems, which the key focus of the second wave.

11

Client-Server System

Architecture Layer

Plan
Execute

Adaptation
Engine

Adaptation
Executor

Constraint
Evaluator

Model
Manager

Strategy

Operators Properties

Rules

Client1 Client2 Client3 Client4 Client5

ServerGrp1 ServerGrp2

Effectors Probes

Figure 4: Web-based client-server system (based on [29])

client (self.responseTime) below a predefined maximum (maxResponseTime).
The managing system (Architecture Layer) connects to the managing sys-

tem (Client-Server System) through probes and effectors. The Model Man-
ager (Monitor) uses probes to maintain an up-to-date architectural model of
the executing system, i.e., a graph of interacting components with properties
(i.e., clients and servers). Server load (ServerT.load) and available bandwidth
(ServerT.bandwidth) are two properties that affect the response time (response-
Time). The Constraint Evaluator (Analyse) checks the model periodically and
triggers the Adaptation Engine (Plan) if the maximum response time is violated.
If the adaptation goal is violated, the managing system executes an adaptation
strategy (responseTimeStrategy). This strategy works in two steps: if the load
of the current server group exceeds a predefined threshold, it adds a server
to the group decreasing the response time; if the available bandwidth between
the client and the current server group drops too low, the client is moved to a
group with higher available bandwidth lowering the response time. Finally, the
Adaptation Executor (Execute) uses the operator ServerGroupT.addServer()
to add a ServerT to a ServerGroupT to increase the capacity, and the operator
ClientT.move(from, toGroup) reconnects ClientT to another group (toGroup).

In the Rainbow paper [29], Garlan and his colleagues state that external
control mechanisms that from a closed control loop provide a more effective
engineering solution than internal mechanisms. The statement is based on the
observation that external mechanisms localise the concerns of problem detection
and resolution in separate modules that can be analysed, modified, extended,

12

and reused across different systems. However, it took 10 years before the first
empirical evidence was produced that supports the statement [59].

Table 3 summarises the key insights derived from Wave I.

Table 3: Key insights of Wave I: Automating Tasks

• Automating tasks is a key driver for self-adaptation. This driver originates from
the difficulty of managing the complexity of interconnected computing systems.

• The four essential types of self-management problems are self-configuration, self-
optimisation, self-healing, and self-protection.

• Monitor, Analyse, Plan, Execute + Knowledge, MAPE-K in short, provides a
reference model for an managing system.

• The MAPE-K functions are intuitive, however, their concrete realisation offers
significant scientific and engineering challenges.

3.2 Wave II. Architecture-Based Adaptation

The second wave directs the focus from the basic motivation for self-adaption
to the foundational principles to engineer self-adaptive systems. The pioneering
approaches described in the first wave specify solutions at a higher level of ab-
straction, for example, the MAPE-K model. However, these approaches do not
provide an integrated perspective on how to engineer self-adaptive systems. In
the second wave, researchers apply basic design principles, in particular abstrac-
tion and separation of concerns, to identify the key concerns of self-adaptation.
Understanding these concerns is essential for designers to manage the complex-
ity of engineering self-adaptive systems and consolidate knowledge that can be
applied to future designs.

Already in 1998, Oreizy et al. [44] stressed the need for a systematic, princi-
pled approach to support runtime change. These authors argued that software
architecture can provide a foundation to deal with runtime change in a system-
atic way. Software architecture in this context has a twofold meaning. On the
one hand, it refers to the high-level layered structure of a self-adaptive software
system that separates domain concerns from adaptation concerns. On the other
hand, software architecture refers to an explicit up-to-date architecture model
of the managed system that is used at runtime by a feedback control mechanism
to reason about adaptation.

In their FOSE’07 paper [37], Kramer and Magee argue for an architecture-
based approach to engineer self-adaptive software systems. Such an approach
offers various benefits, including: generality of concepts and principles that
apply to a wide range of domains, an appropriate level of abstraction to describe
dynamic change of a system, the potential for scalability as architecture supports
composition and hiding techniques, leverage on existing work of languages and
notations that provide a rigorous basis to support reasoning at runtime, and
the potential for an integrated approach as specifications at the architecture
level typically support configuration, deployment and reconfiguration. Inspired

13

by the flexibility and responsiveness of sense-plan-act types of architectures
used in robotics, Kramer and Magee propose a simple yet powerful three-layer
architecture model for self-adaptation, as shown in Figure 5.

Goal
Management

Plan request

G

G’ G’’
Change plans

Change
Management

Component
Control

Change actions

C1 C2

C3

P1 P2

Status

Figure 5: Three-layer architecture model for self-adapation (based on [37])

The bottom layer, Component Control, consists of the interconnected com-
ponents that provide the functionalities of the system. Hence, this layer cor-
responds to the managed system as described in the conceptual model of a
self-adaptive system (see Figure1). This layer may contain internal mechanisms
to adjust the system behaviour. However, to realise self-adaptation, component
control needs to be instrumented with mechanisms to report the current sta-
tus of the system to higher layers as well as mechanisms to support runtime
modification, such as component addition, deletion, and reconnection.

The middle layer, Change Management, consist of a set of pre-specified plans.
The middle layer reacts to status changes of bottom layer by executing plans
with change actions that adapt the component configuration of the bottom
layer. The middle layer is also responsible for effecting changes to the underlying
managed system in response to new objectives introduced from the layer above.
Change management can adjust operation parameters of components, remove
failed components, add new components, and change interconnections between
components. If a condition is reported that cannot be handled by the available
plans, the middle layer invokes the services of the top layer.

The top layer, Goal Management, comprises a specification of high-level
goals. This layer produces change management plans in response to requests
for plans from the layer beneath. Such a request will trigger goal management
to identify alternative goals based on the current status of the system and gen-
erate plans to achieve these alternative goals. The new plans are then delegated
to the change management layer. Goal management can also be triggered by
stakeholders that introduce new goals. Representing high-level goals and auto-

14

matically synthesising change management plans is a complex and often time
consuming task.

The pioneering models shown in Figures 3, 4 and 5 capture foundational
facets of self-adaptation. However, these models lack precision to reason about
key architectural characteristics of self-adaptive systems, such as the responsi-
bilities allocated to different parts of a self-adaptive system, the processes that
realise adaptation together with the models they operate on, and the coordi-
nation between feedback loops in a distributed setting. A precise vocabulary
for such characteristics is essential to compare and evaluate design alternatives.
Furthermore, these models take a particular stance but lack an encompassing
perspective of the different concerns on self-adaption. FORMS (FOrmal Refer-
ence Model for Self-adaptation) provides a reference model that targets these
issues [60]. FORMS defines the essential primitives that enable software engi-
neers to rigorously describe and reason about the architectural characteristics
of distributed self-adaptive systems. The reference model builds on established
principles of self-adaptation. In particular, FORMS unifies three perspectives
that represent three common but different aspects of self-adaptive systems: re-
flective computation, distributed coordination, and MAPE-K.

Figure 6 shows the reflection perspective in UML notation. For the formal
representation of the three perspectives in Z notation we refer to [60]. To illus-
trate the FORMS model, we use a robotics application [25] shown in Figure 7.
This application comprises a base station and a robot follower that follows a
leader. Self-adaption in this system is used to deal with failures and to support
dynamic updates.

Computation

Base-Level
Computation

Reflective
Computation

Model

Reflection
Model

Domain
Model

Environment

Self-Adaptive
System

Subsystem

Reflective
Subsystem

Base-Level
Subsystem

triggers >

1..*

1..*

1..*

reasons about
and acts upon >1..* 1..*

1..**
*

1 < is situated in

perceives and
effects v

perceives v

monitors and
adapts >

*

 *

1..*

1..*

0..1

*

0..1

Representation

1

1..*

0..1

KEY

Generalization
Association
Containment

FORMS Element

Figure 6: FORMS primitives for the reflection perspective [60]

15

IR Cliff
Sensor

Status
Collector

Failure
Collector

Version
Collector

Status
Analyzer

Failure
Analyzer

Version
Analyzer

Robot
Admin

Updater

Line
Follower

Motor
Actuator

Camera
Driver

Object
Follower

Motor
Actuator

Robot Leader Robot FollowerBase Station

Robot BehaviorRobot Behavior

Failure Manager
Failure Manager

Version Manager

Version Manager

Host InteractsKEY Subsystem Component

Figure 7: Robotics architecture presented [25]

As shown in Figure 6, a self-adaptive system is situated in an environment
and comprises one or more base-level and reflective subsystems. The environ-
ment in the robotic application includes the area where the robots can move with
lines that mark the paths the robots have to follow, the location of obstacles,
and external sensors and cameras with the corresponding software drivers.

A base-level subsystem (i.e., managed system) provides the system’s do-
main functionality; it comprises a set of domain models and a set of base-level
computations, inline with principles of computational reflection.

A domain model represents a domain of interest for the application logic
(i.e., system’s main functionality). A base-level computation perceives the en-
vironment, reasons about and acts upon a domain model, and effects the envi-
ronment.

The base-level subsystem of the robots consists of two parts corresponding
to the behaviours that realise the mission of the robots. The domain models
incorporate a variety of information: a map of the terrain, locations of obsta-
cles and the other robot, etc. The base-level computation of the robot leader
decides how to move the vehicle along a line, avoiding obstacles. The base-level
subsystem of the follower moves the vehicle by tracking and following the leader.

A reflective subsystem (i.e., a managing system) manages another subsys-
tem, which can be either a base-level or a reflective subsystem. A reflective
subsystem consists of reflection models and reflective computations. Reflec-
tion models represent the relevant elements that are needed for reasoning about
adaptation, such as subsystems, connections, environment attributes, and goals.
The reflection models are typically architectural models. A reflective computa-
tion reasons about and acts upon reflection models. A reflective computation

16

also monitors the environment to determine when/if adaptations are necessary.
However, unlike the base-level computation, a reflective computation does not
have the ability to effect changes on the environment directly. The rationale is
separation of concerns: reflective computations are concerned with a base-level
subsystem, base-level computations are concerned with a domain.

The robot application comprises a reflective subsystem to deal with failures
of the robot follower. This subsystem consists of failure managers deployed on
the two robots that, based on the collected data, detect and resolve failures
of the robotic behaviour of the follower. Reflection models include a runtime
system architecture of the robot behaviour, adaptation policies, and plans (the
models are not shown in Figure 7). Examples of reflective computations are the
failure collector that monitors the camera driver and reports failures to failure
analyzer that in turn determines the best replacement component for the camera
based on adaptation policies. The failure manager layer is subject to additional
version manager layer, which replaces the failure collector components on robot
follower nodes whenever new versions are available.

For the integration of the distributed coordination and MAPE-K perspective
with the reflection perspective, and several examples that show how FORMS
supports reasoning on the architecture of self-adaptive systems, we refer the
interested reader to [60].

Table 4 summarises the key insights derived from Wave II.

Table 4: Key insights of Wave II: Architecture-Based Adaptation

• Architecture provides a foundation to support systematic runtime change and man-
age the complexity of engineering self-adaptive systems.

• An architecture perspective on self-adaptation provides: generality of concepts and
principles, an appropriate level of abstraction, scalability, leverage on existing work,
and an integrated approach.

• Two fundamental architectural concerns of self-adaptive systems are change man-
agement (i.e., manage adaptation using plans) and goal management (generate plans
based on high-level goals).

• Three primary but interrelated aspects of self-adaptive systems are: reflective com-
putation, MAPE-K, and distributed coordination.

3.3 Wave III. Models at Runtime

The second wave clarified the architecture principles that underlie self-adaptive
systems. However, the concrete realisation of self-adaptation is complex. The
third wave puts the concrete realisation of runtime adaptation mechanisms in
focus. In an influential article, Blair et al. elaborate on the role of software
models at runtime as an extension of model driven engineering techniques to
the runtime context [7]. A model at runtime is defined as “a causally connected
self-representation of the associated system that emphasises the structure, be-
haviour, or goals of the system from a problem space perspective.”

17

The basic underlying motivation for runtime models is the need for managing
the complexity that arises from the large amounts of information that can be
associated with runtime phenomena. Compared to traditional computational
reflection, runtime models of adaptive systems are typically at a higher level
of abstraction and the models are causally connected to the problem space
(in contrast to the computation space in reflection). The causal connection
is bidirectional: (1) runtime models provide up-to-date information about the
system to drive adaptations (sensing part), and (2) adaptations can be made
at the model level rather than at the system level (effecting part). Runtime
models provide abstractions of the system and its goals serving as a driver and
enabler for automatic reasoning about system adaptations during operation.

Models at runtime can be classified along four key dimensions as shown in
Table 5.

Table 5: Dimensions of models at runtime (based on [7])

Type Example Problem

Structural versus behavioural Structural models represent how the system or parts
of it are organised, composed, or arranged together;
behaviour models represent facets of the execution of
the system, or observable activities of the system such
as the response to internal or external stimuli.

Procedural versus declarative Procedural models emphasis the how, i.e., they reflect
the actual organisation or execution of the system;
declarative models emphasis the what, i.e., they re-
flect the purpose of adaptation, e.g., in the form or
explicitly represented requirements or goals.

Functional versus non-functional Functional models reflect functions of the underlying
system; non-functional models reflect quality proper-
ties of the system related to some functionality; e.g.,
a model keeps track of the reliability of a service.

Formal versus non-formal Formal models specify the system or parts of it using
a mathematical language, supporting automated rea-
soning; informal models reflect the system using e.g.,
a programming or domain modelling language.

Building upon the notion of models at runtime, Morin et al. define a self-
adaptive system as a set of configurations that are determined by a space of
variation points [41]. Depending on changing conditions (changes in the context,
errors, etc.), the system dynamically chooses suitable variants to realise the
variation points, changing it from one configuration to another.

Consider as an example a dynamic customer relationship management sys-
tem that provides accurate client-related information depending on the context.
When a user is working in his or her office, the system can notify him or her
by e-mail via a rich Web-based client. When the user is driving a car to visit a
client, messages received by a mobile or smart phone should notify only client-
related or critical issues. If the user is using a mobile phone, he or she can be

18

notified via the short message service or audio/voice. In the case the user uses
a smart phone the system can use a lightweight Web client.

As these examples illustrate, the variants may provide better quality of ser-
vice, offer new services that were not relevant under previous conditions, or
discard services that are no longer useful. It is essential that transitions be-
tween configurations follow a safe migration path. Figure 8 shows the primary
elements of a model-oriented architecture that realises this perspective.

Business Application

Online Model Space

Goal-Based
Reasoner

Event
Processor

Model
Weaver

Configuration
Manager

feature
model

Sensors Factories

feature
model

context
model

architecture
model

runtime events factory services

architecture
model

Configuration
Checker

Causal Connection

Configuration
Checker

reasoning
model

Figure 8: Model-oriented architecture for self-adaptive systems (based on [41])

The model-oriented architecture that corresponds with the managing system
of the conceptual model of a self-adaptive systems consists of three layers. The
top layer Online Model Space is a platform-independent layer that only manipu-
lates models. The middle layer Causal Connection is platform-specific and links
the model space to the runtime space. Finally, the bottom layer Business Ap-
plication contains the application logic and is equipped with sensors that track
runtime events from the application and its environment, and factories that can
instantiate new component instances.

The five components of the model-oriented architecture interact by exchang-
ing four types of runtime models. The feature model describes the variability
of the system, including mandatory, optional, and alternative, and constraints
among features (requires, excludes). Features refer to architectural fragments
that realise the features using a particular naming convention. The context

19

model specifies relevant variables of the environment in which the system exe-
cutes. Context variables are kept up to date at runtime based on sensor data.
The reasoning model associates sets of features with particular context. One
possible instantiation of a reasoning model is a set of event-condition-action
rules. An event specifies a signal that triggers the invocation of a rule, e.g. a
particular service fails. The condition part provides a logical expression to test
whether the rule applies or not, e.g. the functionality of the failed service is
required in the current context. The action part consists of update actions
that are invoked if the rule applies, e.g. unbind the failed service and bind a
new alternative service. Finally, the architecture model specifies the component
composition of the application. The architecture model refines each leaf feature
of the feature model into a concrete architectural fragment.

The Event Processor observes runtime events from the system and its context
to update a context model of the system. Complex event processing entities can
be used to aggregate data, remove noise, etc. When the Goal-Based Reasoner
receives an updated context model, it uses the feature model and reasoning
model to derive a specific feature model with mandatory features and selected
optional features aligned with the current context. The Model Weaver uses
the specific feature model to compose an updated architecture model of the
system configuration. The Configuration Checker checks the consistency of
the configuration at runtime, which includes checking generic and user-defined
application-specific invariants. If the configuration is valid, the model weaver
sends it to the Configuration Manager that will reconfigure the architecture of
the business application accordingly. Such a configuration includes deducing a
safe sequence of reconfiguration actions such as removing, adding and binding
components.

The model-oriented architecture for self-adaptive systems emphasises the
central role of runtime models in the realisation of a self-adaptive systems. The
modularity provided by the models at runtime allows to manage potentially
large design spaces in an efficient manner.

Table 6 summarises the key insights derived from Wave III.

Table 6: Key insights of Wave III: Models at Runtime

• A model at runtime is a causally connected self-representation of the structure,
behaviour, or goals of the associated system.

• Runtime models enable managing the complexity that arises from the large amounts
of information that can be associated with runtime phenomena.

• Making goals first class citizens at runtime enables analysis of the behaviour of the
system during operation, supporting the decision making for self-adaptation.

• Four key dimensions of runtime models are; structural versus behavioural, procedu-
ral versus declarative, functional versus non-functional, and formal versus non-formal.

• From a runtime model viewpoint, a self-adaptive system can be defined as a set
of configurations that are determined by a space of variation points. Self-adaptation
then boils down to choosing suitable variants to realise the variation points, providing
better quality of service for the changing context.

20

3.4 Wave IV. Goal Driven Adaptation

The fourth wave turns the focus of research from the design of the managing
system to the requirements for self-adaptive systems. When designing feedback
loops, it is essential to understand to requirements problem they intent to solve.
A pioneering approach for the specification of requirements for self-adaptive sys-
tems is RELAX [62]. RELAX is a language that includes explicit constructs for
specifying and dealing with uncertainties. In particular, the RELAX vocabulary
includes operators that define constraints on how a requirement may be relaxed
at runtime. The grammar provides clauses such as “AS CLOSE AS POSSIBLE
TO” and “AS FEW AS POSSIBLE.” As an example, the requirement “The
system SHALL ensure a minimum of liquid intake” can be relaxed to “The
system SHALL ensure AS CLOSE AS POSSIBLE TO a minimum of liquid in-
take; the system SHALL ensure minimum liquid intake EVENTUALLY.” The
relaxed requirement tolerates the system temporarily not to monitor a person’s
intake of liquid, but makes sure that it is eventually satisfied not to jeopar-
dise the person’s health. A related approach is FLAGS [4] that is based on
KAOS [54], a goal-oriented approach for modelling requirements. FLAGS dis-
tinguishes between crisp goals, whose satisfaction is boolean, and fuzzy goals,
whose satisfaction is represented through fuzzy constraints.

Cheng et al. unite the RELAX language with goal-based modelling, explicitly
targeting environmental uncertainty factors that may impact the requirements
of a self-adaptive system [16]. Figure 9 shows excerpts that illustrates two
mechanisms to mitigate uncertainties.

Refinement

Agent

Goal Obstacle
… affects

KEY

Maintain
[Health]

Maintain
[Is	
 Hydrated]

Maintain
[LiquidIntake	
 AS	
 CLOSE	

AS	
 POSSIBLE	
 TO	
 ideal]

Fridge
Mary

Become	

unhealthy

Become	

dehydrated

Inadequate	

liquid	
 intake

Forgets	

to	
 drink

Achieve
[LiquidDrunk]

Maintain
[SupplyOf

FreshWater]

Requirement
Responsible for

Assigned to

(1)

Achieve
[ReminderTo
DrinkIssued]mitigates

Maintain
[Health]

Maintain
[Is	
 Hydrated]

Maintain
[Adequate

LiquidIntake]

FridgeMary

Become	

unhealthy

Become	

dehydrated

Inadequate	

liquid	
 intake

Forgets	

to	
 drink

Achieve
[LiquidDrunk]

Maintain
[SupplyOf

FreshWater]

(2)

Achieve
[Prompted
ToDrink]

mitigates

AAL

Figure 9: Left: original goal model. Right: goal model with two types of un-
certainty mitigations: (1) relaxing a goal; (2); adding a subgoal (based on [16])

21

The first mechanism to mitigate uncertainty is relaxing a goal. For example,
if the goal Maintain[AdequateLiquidIntake] cannot be guaranteed in all circum-
stances, e.g. based on uncertainties of Mary’s behaviour, this uncertainty may
be tolerated. To that end, RELAX is applied to the original goal resulting in
Maintain[LiquidIntake AS CLOSE AS POSSIBLE TO ideal]. The arc pointing
to the obstacle “Inadequate liquid intake” indicates a partial mitigation.

The second mechanism to mitigate uncertainty factors is adding a subgoal.
The uncertainty whether Mary will drink enough is mitigated by adding the new
sub-goal Achieve[ReminderToDrinkIssued]. This new goal is combined with the
expectation that Mary drinks and that the fridge supplies fresh water. The re-
minders to drink are realised by an AAL system that is responsible for prompting
Mary to drink based, i.e. requirement Achieve[PromptedToDrink].

Another mechanism to mitigate uncertainties is adding a new high-level goal
for the target system. The interested reader is referred to [16] for a detailed
discussion of this mitigation mechanism.

The main contributions of approaches such as RELAX and FLAGS are nota-
tions to specify the goals for self-adaptive systems. Other researchers approach
the problem of requirements for self-adaptive systems from a different angle and
look at requirements as drivers for the design of the managing system. Souza
et al. phrase it as “if feedback loops constitute an (architectural) solution for
self-adaption, what is the requirements problem this solution is intended to
solve?” [52]. The conclusion is that requirements to be addressed with feed-
back loops (i.e. the concerns of the managing system) are requirements about
the runtime success/failure/quality-of-service of other requirements (i.e. the re-
quirements of the managed system). These requirements are called awareness
requirements. Table 7 shows different types of awareness requirements. The
illustrative examples are from an ambulance dispatching system.

Table 7: Types of awareness requirements (based on [52])

Type Illustrative example

Regular AR1: Input emergency information should never fail.

Aggregate AR2: Search call database should have a 95% success rate over one
week periods.

Trend AR3: The success rate of the number of unnecessary extra ambulances
for a month should not decrease, compared to the previous month, two
times consecutively.

Delta AR4: Update arrival at site should be successfully executed within
10 minutes of the successful execution of Inform driver, for the same
emergency call.

Meta AR5: AR2 should have 75% success rate over one month periods.

A regular awareness requirement refers to another requirement that should
never fail. An aggregate awareness requirement refers to another requirement
and imposes constraints on their success/failure rate. AR3 is a trend aware-
ness requirement that compares the success rates over a number of periods. A

22

delta awareness requirement specifies acceptable thresholds for the fulfilment
of requirements, such as achievement time. Finally, meta awareness require-
ments make statements about other awareness requirements. The constraints
awareness requirements place are on instances of other requirements.

Awareness requirements can be graphically represented as illustrated in Fig-
ure 10. The figures shows an excerpt of a goal model for an ambulance dis-
patching system with awareness requirements AR1, AR2, and AR5.

Communication
networks working

Mark as
duplicate of
recent call

Display
similar calls

Mark as
unique or
duplicate

Send to
dispatchers

Input
emergency
information

Search call
database

Determine
uniqueness

of call

and

or

SuccessRate (95%, 7d)

SuccessRate (75%, 30d)

NeverFail

Awareness requirement

TaskGoal

Constraint

KEY

Figure 10: Graphical representation of awareness requirements (based on [52])

In order to reason about awareness requirements they need to be rigorously
specified and become first class citizens that can be referred to. The following
excerpt shows how example requirement AR2 in Table 7 can be specified in the
Object Constraint Language (OCL7) extended with temporal operators and
other constructs such as scopes and timeouts:

context Goal-SearchCallDataBase

def: all : Goal-SearchCallDataBase.allInstances()

def: week: all -> select(...)

def: success : week -> select(...)

inv AR2: always(success -> size() / week -> size() >= 0.95)

The first line states that for AR2, all instances of the goal Goal-
SearchCallDataBase are collected in a set. The next two lines use the select()
operator to separate the subset of instances per week and the subset of these
instances that succeeded. Finally, the sizes of these two sets are compared to
assert that 95% of the instances are successful at all times (always).

7ISO/IEC 19507:2012(en): Information Technology – Object Management Group Object
Constraint Language (OCL) – https://www.iso.org/obp/ui

23

Souza et al. [52] demonstrate how awareness requirements can be moni-
tored at runtime using a monitoring framework. Monitoring of awareness re-
quirements enables analysis of the behaviour of the system during operation,
supporting the decision making for adaptation at runtime. In complementary
work [53], the authors introduce the notion of evolution requirements that are
modeled as condition-action rules, where the actions involve changing (strength-
ening, weakening, abandoning, ...) other requirements.

Table 8 summarises the key insights derived from Wave IV.

Table 8: Key insights of Wave IV: Goal Driven Adaptation

• Goal driven adaptation has two sides: (i) how to specify the requirements of a
system that is exposed to uncertainties, and (2) if feedback loops constitute a solution
for adaptation, what are the requirements this solution is intended to solve?

• Specifying goals of self-adaptive systems requires taking into account the uncer-
tainties to which the system is exposed to.

• Defining constraints on how requirements may be relaxed at runtime enables han-
dling uncertainties.

• Requirements to be addressed by feedback loops (i.e. the concerns of the managing
system) are requirements about the runtime success/failure/quality-of-service of other
requirements (i.e. the requirements of the managed system).

3.5 Wave V. Guarantees Under Uncertainties

In the fourth wave, uncertainty emerged as an important concern that self-
adaptive systems need to deal with. The fifth wave puts the emphasis on taming
uncertainty, i.e., providing guarantees for the compliance of the adaption goals
of self-adaptive systems that operate under uncertainty. As such, the fifth wave
introduces a shift in the motivation for self-adaptation: uncertainty becomes
the central driver for self-adaptation.

Researchers and engineers observe that modern software systems are increas-
ingly embedded in an open world that is constantly evolving, because of changes
in the surrounding environment, the behaviour of users, and the requirements.
As these changes are difficult to anticipate at development time, the applications
themselves need to change during operation [4]. Consequently, in self-adaptive
systems, change activities are shifted from development time to runtime, and
the responsibility for these activities is shifted from software engineers or system
administrators to the system itself. Multiple researchers have pointed out that
the primary underlying cause for this shift stems from uncertainty [26, 47, 57].

Different sources of uncertainty in self-adaptive systems have been identi-
fied [40], as shown in Table 9. This table classifies the sources of uncertainty in
four groups: uncertainty related to the system itself, uncertainty related to the
system goals, uncertainty in the execution context, and uncertainty related to
human aspects.

Exposing self-adaptive systems – in particular systems with strict goals – to
uncertainty introduces a paradoxical challenge: how can one provide guarantees

24

Table 9: Sources of uncertainty (based on [40])

Group Source of uncertainty Explanation

System

Simplifying assumptions Refers to modelling abstractions that intro-
duce some degree of uncertainty.

Model drift Misalignment between elements of the sys-
tem and their representations.

Incompleteness Some parts of the system or its model are
missing that may be added at runtime.

Future parameters value Uncertainty of values in the future that are
relevant for decision making.

Automatic learning Learning with imperfect and limited data, or
randomness in the model and analysis.

Adaptation functions Imperfect monitoring, decision making, and
executing functions for realising adaption.

Decentralisation Lack of accurate knowledge of the entire sys-
tem state by distributed parts of it.

Goals

Requirements elicitation Elicitation of requirements is known to be
problematic in practice.

Specification of goals Difficulty to accurately specify the prefer-
ences of stakeholders.

Future goal changes Changes in goals due to new customers
needs, new regulations or new market rules.

Context

Execution context Context model based on monitoring mecha-
nisms that might not be able to accurately
determine the context and its evolution.

Noise in sensing Sensors/probes are not ideal devices and they
can provide (slightly) inaccurate data.

Different sources of information Inaccuracy due composing and integrating
data originating from different sources.

Humans

Human in the loop Human behaviour is intrinsically uncertain;
it can diverge from the expected behaviour.

Multiple ownership The exact nature and behaviour of parts of
the system provided by different stakeholders
may be partly unknown when composed.

for the goals of a system that is exposed to continuous uncertainty?
A pioneering approach that deals with this challenge is Runtime Quanti-

tative Verification (RQV). Quantitative verification is a mathematically based
technique that can be used for analysing quality properties (such as performance
and reliability) of systems that exhibit stochastic behaviour. RQV applies quan-
titative verification at runtime. Calinescu et al. apply RQV in the context of
managing the quality of service in service-based systems [13].

Figure 11 shows the architecture of the approach that is called QoSMOS
(Quality of Service Management and Optimisation of Service-based systems).
The service based system offers clients remote access to a composition of Web-
services through a workflow engine. To that end, the workflow engine executes
services in a workflow. The functionality of each service may be provided by
multiple service instances but with different qualities, e.g. reliability, response

25

time, cost, etc. The aim of the system is to provide users the functionality of
the composite service with particular qualities. The tele-assistance application
is available as an artifact for experimentation [58].

ExecutorPlannerAnalyzerMonitor

 Operational
 Model

 QoS
Requirements

 Abstract
 Workflow

Resource
Allocation

 Concrete
 Workflow

Model
Checker

sensors

effectors

Workflow
Engine

Resources

Service-Based System

Internet

Autonomic Manager

Users

Figure 11: QoSMOS architecture (based on [13])

The adaptation problem is to select concrete services that compose a QoS-
MOS service and allocate resources to concrete services such that the required
qualities are guaranteed. Given that the system is subject to several uncertain-
ties, such as fluctuations in the availability of concrete services, changes in the
quality properties of services, etc., the requirements are necessarily expressed
with probabilities. An example is R0 :“the probability that an alarm failure
ever occurs during the lifetime of the system is less than P = 0.13.”

The core of the QoSMOS architecture is an Autonomic Manager that in-
teracts with the service-based system through sensors and effectors. The auto-
nomic manager comprises of a classic MAPE loop that exploits a set of runtime
models to make adaptation decisions.

The Monitor tracks: (1) quality properties, such as the performance (e.g. re-
sponse time) and reliability (e.g. failure rate) of the services, and (2) the re-
sources allocated to the individual services (CPU, memory, etc.) together with
their workload. This information is used to update the operational model. The
types of operational models supported by QoSMOS are different types of Marko-
vian models. Figure 12 shows an excerpt of a Discrete Time Markov Chain
(DTMC) model for a tele-assistance application. In particular, the model shows
a part the workflow of actions with probabilities assigned to branches. The
initial estimates of these probability values are based on input from domain
experts. The monitor updates the values at runtime, based on observations of
the real behaviour. Failure probabilities to service invocations (e.g., c in the

26

model) are modelled as variables because these values depend on the concrete
service selected by the MAPE loop.

3

vitalParamMsg

7

analyseData 11

results

14failedAnalysis

alarm

6

0.3 1

1-c

c changeDrug

9

changeDose

0.12

0.450.43

6

Figure 12: Excerpt of DTMC model for Tele-assistance system (based on [13])

The Analyzer component employs the parameterised operational model to
identify the service configurations that satisfy the quality of service require-
ments. To that end, the analyser employs a model checker.8 The model checker
requires that the stakeholder requirements are translated from a format in high-
level natural language to a formal expression in the language supported by
the model checker (QoS requirements). For example, for a DTMC model as
shown in Figure 12, requirements can be expressed in Probabilistic Computa-
tion Tree Logic (PCTL). The example requirement given above would translate
to: R0 : P≤0.13[♦“failedAlarm”]. PRISM [39] is a model checker that sup-
ports the analysis of DTMC models for goals expressed in PCTL expressions.
The analyser automatically carries out the analysis of a range of possible con-
figurations of the service based system by instantiating the parameters of the
operational model. The result of the analysis is a ranking of the configurations
based on the required QoS requirements.

The Planner uses the analysis results to build a plan for adapting the con-
figuration of the service-based system. The plan consists of adaptation actions
that can be a mapping of one (or multiple) concrete services with suitable qual-
ity properties to an abstract service. Finally, the Executor replaces the concrete
workflow used by the workflow engine with the new concrete workflow realising
the functionality of the QoSMOS service with the required quality of service.

The focus of runtime quantitative verification as applied in [13] is on pro-
viding guarantees for the adaptation goals (see Figure 1). Guaranteeing that
the managing system realises its objectives also requires functional correctness
of the adaptation components themselves, i.e., the components that realise the
MAPE functions. For example, important properties of a self-healing system
may be: does the analysis component correctly identify errors based on the

8Model checking refers to the following problem: Given a model of a system, exhaus-
tively and automatically check whether this model meets a given specification, see e.g.,
https://en.wikipedia.org/wiki/Model checking

27

monitored data, or does the execute component execute the actions to repair
the managed system in the correct order? Lack of such guarantees may ruin
the adaptation capabilities. Such guarantees are typically provided by means
of design-time modelling and verification of the managing system, before it is
implemented. ActivFORMS [34] (Active FORmal Models for Self-adaptation)
is an alternative approach to provide functional correctness of the managing
system that is based on executable formal models. Figure 13 shows the basic
architecture of ActivFORMS.

 Model
 Checker

ExecutorPlannerAnalyzerMonitor

Probes

Knowledge Repository

Effectors

Managed System

Change Management

Goal Management

Managing System

Virtual Machine

Figure 13: ActivFORMS architecture (based on [34])

The architecture conforms to the three-layer model of Kramer and
Magee [37]. A virtual machine enables direct execution of the verified MAPE
loop models to realise adaptation at runtime. The approach relies on formally
specified templates that can be used to design and verify executable formal mod-
els of MAPE loops [30]. ActivFORMS eliminates the need to generate controller
code and provides additional assurances for it. Furthermore, the approach sup-
ports on-the-fly changes of the running models using the Goal Management
interface, which is crucial to support dynamic changes of adaptation goals.

Table 10 summarises the key insights derived from Wave V.

3.6 Wave VI. Control-Based Approaches

Engineering self-adaptive systems is often a complex endeavour. In particular,
ensuring compliance with the adaptation goals of systems that operate under

28

Table 10: Key insights of Wave V: Guarantees Under Uncertainties

• Uncertainty is a key driver for self-adaptation.

• Four sources of uncertainties are: uncertainty related to the system itself, the system
goals, the execution context, and uncertainty related to human aspects.

• Guarantees for a managing system includes guarantees for the adaptation goals
(qualities) and the functional correctness of the adaptation components themselves.

• Runtime quantitative verification tackles the paradoxical challenge of providing
guarantees for the goals of a system that is exposed to continuous uncertainty.

• Executable formal models of feedback loops eliminate the need to generate controller
code and to provide assurances for it; this approach supports on-the-fly changes of
the deployed models, which is crucial for changing adaptation goals during operation.

uncertainty is challenging. In the sixth wave, researchers explore the application
of control theory as a principle approach to realise runtime adaptation. Control
theory is a mathematically-founded discipline that provides techniques and tools
to design and formally analyse systems. Pioneering work on the application of
control theory to computing systems is documented in [23, 33]. Figure 14 shows
a typical control-based feedback loop.

Controller

Disturbances

Target
System

Control
Signal

Control
Error

Measured
OutputSetpoint

+
-

Figure 14: A typical control-based feedback loop

A control-based computing system consists of two parts: a target system
(or plant) that is subject to adaptation and a controller that implements a
particular control algorithm or strategy to adapt the target system. The setpoint
is the desired or target value for an adaptation goal; it represents a stakeholder
requirement expressed as a value to be achieved by the adaptive system. The
target system (managed system) produces an output that serves as a source of
feedback for the controller. The controller adapts the target system by applying
a control signal that is based on the difference between the previous system
output and the setpoint. The task of the controller is to ensure that the output of
the system corresponds to the setpoint while reducing the effects of uncertainty
that appear as disturbances, or as noise in variables or imperfections in the
models of the system or environment used to design the controller.

Different types of controllers exist that can be applied for self-adaptation; the
most commonly used type in practice (in general) is the Proportional-Integral-
Derivative (PID) controller. Particularly interesting for controlling computing

29

systems is adaptive control that adds an additional control loop for adjusting the
controller itself, typically to cope with slowly occurring changes of the controlled
system [10]. For example, the main feedback loop, which controls a web server
farm, reacts rapidly to bursts of Internet load to manage quality of service (e.g.,
dynamically upscaling). A second slow-reacting feedback loop may adjust the
controller algorithm to accommodate or take advantage of changes emerging over
time (e.g., increase resource provision to anticipate periods of high activity).

Besides the specific structure of the feedback loop, a key feature of control-
based adaptation is the way the target system is modelled, e.g., with difference
equations (discrete time) or differential equations (continuous time). Such mod-
els allow to mathematically analyse and verify a number of key properties of
computing systems. These properties are illustrated in Figure 15.

Overshoot Steady-state error

Setting time

Setpoint

Controlled variable

TimeTransient state Steady state

Figure 15: Properties of control-based adaptation

Overshoot is the maximum value by which the system output surpasses
the setpoint during the transient phase. Settling time is the time required to
converge the controlled variable to the setpoint. The amplitude of oscillations of
the system output around the setpoint during steady state is called the steady-
state error. In addition, stability refers to the ability of the system to converge
to the setpoint, while robustness refers to the amount of disturbance the system
can withstand while remaining in a stable state. These control properties can
be mapped to software qualities. For example, overshoot or settling time may
influence the performance or availability of the application.

Historically, the application of control to computing systems has primarily
targeted the adaptation of lower level elements of computing systems, such
as the number of CPU cores, network bandwidth, and the number of virtual
machines [46]. The sixth wave manifested itself through an increasing focus on
the application of control theory to design self-adaptive software systems. A
prominent example is the Push-Button Methodology (PBM) [27]. PBM works
in two phases as illustrated in Figure 16.

In the model building phase, a linear model of the software is constructed
automatically. The model is identified by running on-the-fly experiments on the
software. In particular, the system tests a set of sampled values of the control
variable and measures the effects on specified non-functional requirement. The

30

Controlling

Disturbances

Target
System

OutputSetpoint

+
-

Model

Building

Figure 16: Two phases of PBM (based on [27])

result is a mapping of variable settings to measured feedback. For example,
model building measures response time for different number of servers of a
Web-based system. In the controller synthesis phase a PI-controller uses the
synthesised model to adapt the software automatically. For example, in the
Web-based system, the controller selects the number of servers that need to be
allocated to process the load while guaranteeing the response time goal.

To deal with possible errors of the model, the model parameters are updated
at runtime according to the system behaviour. For example, if one of the servers
in the Web-based system starts to slow down the system response due to over-
heating, an additional server will be allocated. In case of radical changes, such
a failure of a number of servers, a rebuilding of the model is triggered.

A major benefit of a control-theoretic approach such as PBM is that it can
provide formal guarantees for system stability, absence of overshoot, settling
time, and robustness. Guarantees for settling time and robustness depend on
the so called controller pole (a parameter of the controller that can be set by
the designer). Higher pole values improve robustness but lead to higher settling
times, while smaller pole values reduce robustness but improve settling time.
In other words, the pole allows trading-off the responsiveness of the system to
change with the ability to withstand disturbances of high amplitude.

PBM is a foundational approach that realises self-adaptation based on prin-
ciples of control theory. However, basic PBM only works for a single setpoint
goal. Examples of follow-up research that can deal with multiple requirements
are AMOCS [28] and SimCA [51]. For a recent survey on control-adaptation of
software systems, we refer the interested reader to [50].

Table 11 summarises the key insights derived from Wave VI.

4 Future Challenges

Now, we peak into the future of the field and propose a number of research
challenges for the next five to ten years to come. But before zooming into these
challenges, we first analyse how the field has matured over time.

31

Table 11: Key insights of Wave V: Control-Based Approaches

• Control theory offers a mathematical foundation to design and formally analyse
self-adaptive systems.

• Adaptive controllers that are able to adjust the controller strategy at runtime are
particularly interesting to control computing systems.

• Control theory allows providing analytical guarantees for stability of self-adaptive
systems, absence of overshoot, settling time, and robustness.

• Linear models combined with online updating mechanisms have demonstrated to
be very useful for a variety of control-based self-adaptive systems.

4.1 Analysis of the Maturity of the Field

According to a study of Redwine and Riddle [48] it typical takes 15 to 20 years
for a technology to mature and get widely used. Six common phases can be
distinguished as shown in Figure 17. In the first phase, basic research, the basic

Basic Research

Concept Formulation

Development/Extension

External Enhancement/Exploration

Popularisation

quiescence, runtime architecture model, MAPE-K, adaptation
strategies and tactics, component models, workshops

Foundations: dynamic architectures, feedback loops, reasoning with uncertainty, control theory

feedback control mechanisms, modeling dimensions,
models at runtime, goal-driven design, community
symposia, dedicated volumes

patterns, engineering processes, control
theoretic solutions, publications in top
conferences and journals, exemplars, books

meta-requirements, runtime probabilistic models, quality
metrics, formal analysis at runtime, special issues

Industry efforts e.g; IBM Autonomic
Toolkit, IBM/Google Large- Scale
Internet Computing initiative

Time1990s…. 2006 2016

Autonomic Computing IBM, N1 Sun,
Adaptive Enterprise HP, Dynamic
Systems Microsoft, etc.

Internal Enhancement/Exploration

Figure 17: Maturation of the field of self-adaptation. Grey shades indicate the
degree the field has reached maturity in that phase (phases based on [48])

ideas and principles of the technology are developed. Research in the ICAC
community9 has made significant contributions to the development of the basic

9http://nsfcac.rutgers.edu/conferences/ac2004/index.html

32

ideas and principles of self-adaptation. Particularly relevant in this develop-
ment were also the two editions of the Workshop on Self-Healing Systems.10 In
the second phase, concept formulation, a community is formed around a set of
compatible concepts ideas and solutions are formulated on specific subproblems.
The SEAMS symposium11 and in particular, the series of Dagstuhl seminars12

on engineering self-adaptive systems have significantly contributed to the matu-
ration in this phase. In the third phase, development and extension, the concepts
and principles are further developed and the technology is applied to various
applications leading to a generalisation of the approach. Phase four, internal en-
hancement and exploration, the technology is applied to concrete real problems,
and training is established. The establishment of exemplars13 is currently play-
ing an important role to the further maturation of the field. Phase five, external
enhancement and exploration, involving a broader community to show evidence
of value and applicability of the technology, is still in its early stage. Various
prominent ICT companies have invested significantly in the study and applica-
tion of self-adaptation [9], example initiatives are IBM’s Autonomic Comput-
ing, Sun?s N1, HP’s Adaptive Enterprise, and Microsoft’s Dynamic Systems. A
number of recent R&D efforts have explored the application of self-adaptation
beyond mere resource and infrastructure management. For example, [14] ap-
plies self-adaptation to an industrial middleware to monitor and manage highly
populated networks of devices, while [19] applies self-adaptive techniques to
role-based access control for business processes. Nevertheless, the effect of self-
adaptation in practice so far remains relatively low [56]. Finally, the last phase,
popularisation, where production-quality technology is developed and commer-
cialised is in a very early stage for self-adaptation. Examples of self-adaption
techniques that have found their way to industrial applications are automated
server management, cloud elasticity, and automated data centre management.
In conclusion, after a relatively slow start, research in the field of self-adaptation
has taken up significantly from 2006 onwards and is now following the regular
path of maturation. The field is currently in the phases of internal and external
enhancement and exploration. The application of self-adaptation to practical
applications will be of critical importance for the field to reach full maturity.

4.2 Challenges

After the brief maturity analysis of the field, we look now at challenges that
may be worth focusing at in the years to come.

Predicting the future is obviously a difficult and risky task. The community
has produced several roadmap papers in the past years, in particular [15], [21],
and [20]. These roadmap papers provide a wealth of research challenges struc-
tured along different aspects of engineering self-adaptive systems. Here we take
a different stance and present open research challenges by speculating how the

10http://dblp2.uni-trier.de/db/conf/woss/
11www.hpi.uni-potsdam.de/giese/public/selfadapt/seams/
12www.hpi.uni-potsdam.de/giese/public/selfadapt/dagstuhl-seminars/
13www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

33

field may evolve in the future based on the six waves the field went through in
the past. We start with a number of short term challenges within current waves.
Then we look at challenges in a long term that go beyond the current waves.

4.2.1 Challenges Within the Current Waves

Adaptation in decentralised settings. A principal insight of the first wave is
that MAPE represents the essential functions of any self-adaptive system. Con-
ceptually, MAPE takes a centralised perspective on realising self-adaptation.
When systems are large and complex, a single centralised MAPE loop may not
be sufficient for managing all adaptation in a system. A number or researchers
have investigated decentralisation of the adaptation functions; recent examples
are [61] where the authors describe a set of patterns in which the functions from
multiple MAPE loops are coordinated in different ways, and [12] that presents
a formal approach where MAPE loops coordinate with one another to provide
guarantees for the adaptation decisions they make. A challenge for future re-
search is to study principled solutions to decentralised self-adaptation. Crucial
aspects to this challenge are coordination mechanisms and interaction protocols
that MAPE loops require to realise different types of adaptation goals.

Deal with changing goals. One of the key insights of the second wave is
that the two basic aspects of self-adaptive systems are change management
(i.e., manage adaptation) and goal management (manage high-level goals). The
focus of research so far has primarily been on change management. Goal man-
agement is basically limited to runtime representations of goals that support
the decision making of adaptation under uncertainty. A typical example is [6],
where goal realisation strategies are associated with decision alternatives and
reasoning about partial satisfaction of goals is supported using probabilities. A
challenge for future research is to support changing goals at runtime, including
removing and adding goals. Changing goals is particularly challenging. First, a
solution to this challenge requires goal models that provide first class support
for change. Current goal modelling approaches (wave four) take into account
uncertainty, but these approaches are not particularly open for changing goals
dynamically. Second, a solution requires automatic support for synthesising
new plans that comply with the changing goals. An example approach in this
direction is ActivFORMS that supports on-the-fly updates of goals and the cor-
responding MAPE functions [34]. However, this approach requires the engineer
to design and verify the updated models before they are deployed. The full
power of dealing with changing goals would be a solution that enables the sys-
tem itself to synthesize and verify new models.

Domain specific modelling languages. Wave three has made clear that
(runtime) models play a central role in the realisation of self-adaptive systems.
A number of modelling languages have been proposed that support the design
of self-adaptive systems, but often these languages have a specific focus. An ex-
ample is Stitch, a language for representing repair strategies within the context
of architecture-based self-adaptation [17]. However, current research primarily

34

relies on general purpose modelling paradigms. A challenge for future research
is to define domain specific modelling languages that provide first-class support
for engineering self-adaptive systems effectively. Contrary to traditional sys-
tems, where models are primarily design-time artifacts, in self-adaptive systems
models are runtime artifacts. Hence, it will be crucial for modelling languages
that they seamlessly integrate design time modelling (human-driven) with run-
time use of models (machine-driven). An example approach in this direction
is EUREMA that supports the explicit design of feedback loops, with runtime
execution and adaptation [55].

Deal with complex types of uncertainties. Wave five has made clear that
handling uncertainty is one of the “raisons d’être” for self-adaptation. The
focus of research in self-adaptation so far has primarily been on parametric un-
certainties, i.e., the uncertainties related to the values of model elements that
are unknown. A typical example is a Markov model in which uncertainties
are expressed as probabilities of transitions between states (Figure 12 shows
an example). A challenge for future research is to support self-adaptation for
complex types of uncertainties. One example is structural uncertainties, i.e.
uncertainties related to the inability to accurately model real-life phenomena.
Structural uncertainties may manifest themselves as model inadequacy, model
bias, model discrepancy, etc. To tackle this problem, techniques from other
fields may provide a starting point. E.g., in health economics, techniques such
as model averaging and discrepancy modelling have been used to deal with
structural uncertainties [8].

Empirical evidence for the value of self-adaptation. Self-adaptation is
widely considered as one of the key approaches to deal with the challenging
problem of uncertainty. However, as pointed out in a survey of a few years
ago, the validation of research contributions is often limited to simple example
applications [56]. An important challenge that crosscuts the different waves will
be to develop robust approaches and demonstrate their applicability and value
in practice. Essential to that will be the gathering of empirical evidence based
on rigorous methods, in particular controlled experiments and case studies. Ini-
tially, such studies can be set up with advanced master students (one of the few
examples is [59]). However, to demonstrate the true value of self-adaptation, it
will be essential to involve industry practitioners in such validation efforts.

Align with emerging technologies. A variety of new technologies are emerg-
ing that will have a deep impact on the field self-adaptation. Among these are
the Internet of Things, Cyber Physical Systems, 5G and Big Data. On the one
hand, these technologies can serve as enablers for progress in self-adaptation;
e.g., 5G has the promise of offering extremely low latency. On the other hand,
they can serve as new areas of self-adaptation, e.g., adaptation in support of
auto-configuration in large-scale Internet of Things applications. A challenge for
future research is to align self-adaptation with emerging technologies. Such an
alignment will be crucial to demonstrate practical value for future applications.
An initial effort in this direction is [45] where the authors explore the use of run-

35

time variability in feature models to address the problem of dynamic changes
in (families of) sensor networks. [11] outlines an interesting set of challenges for
self-adaption in the domain of Cyber Physical Systems.

4.2.2 Challenges Beyond the Current Waves

To conclude, we speculate on a number of challenges in the long term that may
trigger new waves of research in the field of self-adaptation.

Exploiting artificial intelligence. Artificial intelligence (AI) provides the
ability for systems to learn, improve, and make decisions in order to perform
complex tasks [31]. The field of AI is broad and ranges from expert systems
and decision-support systems, to multi-agent systems, computer vision, natural
language processing, speech recognition, machine learning, neural networks and
deep learning, and cognitive computation, among others. Some areas in which
AI techniques have proved to be useful in software engineering in general are
probabilistic reasoning, learning and prediction, and computational search [32].
A number of AI techniques have been turned into mainstream technology, such
as machine learning and data analytics. Other techniques are still in a develop-
ment phase, examples are natural language processing and online reasoning. The
application of AI techniques to self-adaptation has the potential to disruptively
propelling the capabilities of such systems. AI techniques can play a central
role in virtually every stage of adaptation, from processing large amounts of
data, performing smart analysis and machine-man co-decision making, to coor-
dinating adaptations in large-scale decentralised systems. Realising this vision
poses a variety of challenges, including advancing AI techniques, making the
techniques secure and trustworthy, and providing solutions for controlling or
predicting the behaviour of systems that are subject to continuous change. An
import remark of P. Norvig in this context is that AI programs are different.
One of the key differences is that AI techniques are fundamentally dealing with
uncertainty, while traditional software are essentially hiding uncertainty [43].
This stresses the potential of AI techniques for self-adaptive systems.

Dealing with unanticipated change. Software is (so far) a product of hu-
man efforts. Ultimately, a computing machine will only be able to execute what
humans have designed for and programmed. Nevertheless, recent advances have
demonstrated that machines equipped with software can be incredible capable
of making decisions for complex problems, examples are machines participating
in complex strategic games such as chess and self-driving cars. Such examples
raise the intriguing question to what extent we can develop software that can
handle conditions that were not anticipated at the time when the software was
developed. From the point of view of self-adaptation, an interesting research
problem is how to deal with unanticipated change. One possible perspective on
tackling this problem is to seamlessly integrate adaptation (i.e., the continuous
machine-driven process of self-adaptation to deal with known unknowns) with
evolution (i.e., the continuous human-driven process of updating the system to
deal with unknown unknowns). This idea goes back to the pioneering work of

36

Oreizy et al. on integrating adaptation and evolution [44]. Realising this idea
will require bridging the fields of self-adaptation and software evolution.

Control theory as a scientific foundation for self-adaptation. Although
researchers in the field of self-adaptation have established solid principles, such
as quiescence, MAPE, meta-requirements, and runtime models, there is cur-
rently no comprehensive theory that underpins self-adaptation. An interesting
research challenge is to investigate whether control theory can provide such a
theoretical foundation for self-adaptation. Control theory comes with a solid
mathematical basis and (similarly to self-adaptation) deals with the behaviour
of dynamical systems and how their behaviour is modified through feedback.
Nevertheless, there are various hurdles that need to be tackled to turn con-
trol theory into the foundation of self-adaptation of software systems. One of
the hurdles is the difference in paradigms. Software engineers have systematic
methods for the design, development, implementation, testing and maintenance
of software. Engineering based on control theory on the other hand offers an-
other paradigm where mathematical principles play a central role, principles
that may not be easily accessible to typical software engineers. Another more
concrete hurdle is the discrepancy between the types of adaptation goals that
self-adaptive software systems deal with (i.e., software qualities such as reliabil-
ity and performance), and the types of goals that controllers deal with (i.e., typ-
ically setpoint centred). Another hurdle is the discrepancy between the types
of guarantees that self-adaptive software systems require (i.e., guarantees on
software qualities) and the types of guarantees that controller provide (settling
time, overshoot, stability, etc.). These and other hurdles need to be overcome
to turn control theory into a scientific foundation for self-adaptation.

Multi-disciplinarity. Every day, we observe an increasing integration of com-
puting systems and applications that are shaping a world-wide ecosystem of
software-intensive systems, humans, and things. An example is the progressing
integration of different IoT platforms and applications that surround us, forming
smart cities. Such integrations have the potential to generate dramatic syner-
gies; for a discussion see for example [24]. However, the evolution towards this
world-wide ecosystem comes with enormous challenges. These challenges are of
a technical nature (e.g., how to ensure security in an open world, how to ensure
stability in a decentralised ecosystem that is subject to continuous change), but
also business-oriented (e.g., what are suitable business models for partners that
operate in settings where uncertainty is the rule), social (e.g., what are suit-
able methods for establishing trust) and legal (e.g., what legal frameworks are
needed for systems that continuously change). Clearly, the only way forward to
tackle these challenges is to join forces between disciplines and sectors.

5 Conclusions

In a world where computing systems rapidly converge into large open ecosys-
tems, uncertainty is becoming the de-facto reality of most systems we build

37

today, and it will be a dominating element of any system we will build in the
future. The challenges software engineers face to tame uncertainty are huge.
Self-adaptation has an enormous potential to tackle many of these challenges.
The field has gone a long way and a substantial body of knowledge has been
developed over the past two decades. Building upon established foundations,
addressing key challenges now requires consolidating the knowledge and turn-
ing results into robust and reusable solutions to move the field forward and
propagate the technology throughout a broad community of users in practice.
Tackling these challenges is not without risk as it requires researchers to leave
their comfort zone and expose the research results to the complexity of practical
systems. However, taking this risk will propel research, open new opportunities,
and pave the way towards reaching full maturity as a discipline.

Acknowledgements

I am grateful to Sungdeok Cha, Kenji Tei, Nelly Bencomo, Vitor Souza, Usman
Iftikhar, Stepan Shevtsov, and Dimitri Van Landuyt for the invaluable feedback
they provided on earlier versions of this chapter. I thank the editors of the book
to which this chapter belongs for their support. Finally, I thank Springer.

References

[1] J. Andersson, R. De Lemos, S. Malek, and D. Weyns. Modelling Di-
mensions of Self-adaptive Software Systems. In Software Engineering for
Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science.
Springer, 2009.

[2] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Reflecting on Self-
adaptive Software Systems. In Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’09. IEEE Computer Society, 2009.

[3] M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context-aware
Systems. International Journal on Ad Hoc and Ubiquitous Computing,
2(4):263–277, June 2007.

[4] L. Baresi and C. Ghezzi. The Disappearing Boundary Between
Development-time and Run-time. In Workshop on Future of Software En-
gineering Research, FoSER ’10. ACM, 2010.

[5] L. Baresi, L. Pasquale, and P. Spoletini. Fuzzy Goals for Requirements-
Driven Adaptation. In International Requirements Engineering Conference,
RE ’10. IEEE Computer Society, 2010.

[6] N. Bencomo and A. Belaggoun. Supporting decision-making for self-
adaptive systems: From goal models to dynamic decision networks. In
International Working Conference on Requirements Engineering: Founda-
tion for Software Quality, REFSQ ’13. Springer Berlin Heidelberg, 2013.

38

[7] G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer,
42(10):22–27, 2009.

[8] L. Bojke, K. Claxton, M. Sculpher, and Palmer S. Characterizing Struc-
tural Uncertainty in Decision Analytic Models: A Review and Application
of Methods. Value Health, 12(5):739–749, 2009.

[9] Y. Brun. Improving Impact of Self-adaptation and Self-management Re-
search Through Evaluation Methodology. In Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’10. ACM, 2010.

[10] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw. Software Engineering for Self-Adaptive
Systems. chapter Engineering Self-Adaptive Systems Through Feedback
Loops, pages 48–70. Springer-Verlag, 2009.

[11] T. Bures, D. Weyns, C. Berger, S. Biffl, M. Daun, T. Gabor, D. Garlan,
I. Gerostathopoulos, C. Julien, F. Krikava, R. Mordinyi, and N. Pronios.
Software Engineering for Smart Cyber-Physical Systems – Towards a Re-
search Agenda. SIGSOFT Software Engineering Notes, 40(6):28–32, 2015.

[12] R. Calinescu, S. Gerasimou, and A. Banks. Self-adaptive software with
decentralised control loops. In International Conference on Fundamental
Approaches to Software Engineering, FASE ’15. Springer, 2015.

[13] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tambur-
relli. Dynamic QoS Management and Optimization in Service-Based Sys-
tems. IEEE Transactions on Software Engineering, 37(3):387–409, 2011.

[14] Javier Cámara, Pedro Correia, Rogério De Lemos, David Garlan, Pedro
Gomes, Bradley Schmerl, and Rafael Ventura. Evolving an adaptive in-
dustrial software system to use architecture-based self-adaptation. In Pro-
ceedings of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’13, pages 13–22, Piscat-
away, NJ, USA, 2013. IEEE Press.

[15] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Müller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Software
Engineering for Self-Adaptive Systems: A Research Roadmap. Springer
Berlin Heidelberg, Lecture Notes in Computer Science vol. 5525, 2009.

[16] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A Goal-Based Mod-
elling Approach to Develop Requirements of an Adaptive System with En-
vironmental Uncertainty. In International Conference on Model Driven
Engineering Languages and Systems, MODELS ’09. Springer-Verlag, 2009.

39

[17] S. Cheng and D. Garlan. Stitch: A language for architecture-based self-
adaptation. Journal of Systems and Software, 85(12):2860–2875, 2012.

[18] IBM Corporation. An Architectural Blueprint for Autonomic Computing.
IBM White Paper, 2003. http://www-03.ibm.com/autonomic/pdfs/AC
Blueprint White Paper V7.pdf (last accessed: 1/2017).

[19] Carlos Eduardo da Silva, José Diego Saraiva da Silva, Colin Paterson, and
Radu Calinescu. Self-adaptive role-based access control for business pro-
cesses. In Proceedings of the 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’17, pages
193–203, Piscataway, NJ, USA, 2017. IEEE Press.

[20] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu,
B. Schmerl, D. Weyns, L. Baresi, N. Bencomo, Y. Brun, J. Camara, R. Ca-
linescu, M. Chohen, A. Gorla, V. Grassi, L. Grunske, P. Inverardi, JM.
Jezequel, S. Malek, R. Mirandola, M. Mori, H. Müller, R. Rouvoy, C. Ru-
bira, E. Rutten, M. Shaw, Tamburrelli, G. Tamura, N. Villegas, T. Vogel,
and F. Zambonelli. Software Engineering for Self-adaptive Systems: Re-
search Challenges in the Provision of Assurances. Springer Berlin Heidel-
berg, Lecture Notes in Computer Science vol. 9640, 2017.

[21] R. de Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. Göschka, A. Gorla, V. Grassi, P. Inverardi, G. Kar-
sai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Miran-
dola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer,
R. Schlichting, D. Smith, J. Sousa, L. Tahvildari, K. Wong, and J. Wut-
tke. Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap. Springer Heidelberg Berlin, Lecture Notes in Computer Science
vol. 7475, 2013.

[22] T. De Wolf and T. Holvoet. Emergence Versus Self-Organisation: Different
Concepts but Promising When Combined. In Engineering Self-Organising
Systems: Methodologies and Applications, pages 1–15. Springer Berlin Hei-
delberg, 2005.

[23] Pedro C. Diniz and Martin C. Rinard. Dynamic Feedback: An Effective
Technique for Adaptive Computing. In Conference on Programming Lan-
guage Design and Implementation, PLDI ’97. ACM, 1997.

[24] S. Dustdar, S. Nastic, and O. Scekic. A novel vision of cyber-human smart
city. In 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pages 42–47, Oct 2016.

[25] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic,
G. Sukhatme, and B. Petrus. Architecture-driven Self-adaptation and Self-
management in Robotics Systems. In Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’09. IEEE, 2009.

40

[26] N. Esfahani and S. Malek. Uncertainty in self-adaptive software systems. In
Software Engineering for Self-Adaptive Systems II, pages 214–238. Springer
Berlin Heidelberg, 2013.

[27] A. Filieri, H. Hoffmann, and M. Maggio. Automated Design of Self-adaptive
Software with Control-theoretical Formal Guarantees. In International
Conference on Software Engineering, ICSE ’14. ACM, 2014.

[28] A. Filieri, H. Hoffmann, and M. Maggio. Automated Multi-objective Con-
trol for Self-adaptive Software Design. In Joint Meeting on Foundations of
Software Engineering, ESEC/FSE ’15. ACM, 2015.

[29] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. Com-
puter, 37(10):46–54, 2004.

[30] D. Gil and D. Weyns. MAPE-K Formal Templates to Rigorously Design
Behaviors for Self-Adaptive Systems. ACM Transactions on Autonomous
and Adaptive Systems, 10(3):15:1–15:31, 2015.

[31] Anne Hakansson. Artificial intelligence in smart sustainable societies.

[32] Mark Harman. The role of artificial intelligence in software engineering.
In Realizing AI Synergies in Software Engineering, RAISE ’12, Piscataway,
NJ, USA, 2012. IEEE Press.

[33] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of
Computing Systems. John Wiley & Sons, 2004.

[34] U. Iftikhar and D. Weyns. ActivFORMS: Active Formal Models for Self-
adaptation. In Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’14. ACM, 2014.

[35] M. Jackson. The Meaning of Requirements. Annals of Software Engineer-
ing, 3:5–21, 1997.

[36] J. Kephart and D. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, 2003.

[37] J. Kramer and J. Magee. Self-Managed Systems: An Architectural Chal-
lenge. In Future of Software Engineering, FOSE ’07. IEEE Computer So-
ciety, 2007.

[38] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dy-
namic Change Management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[39] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with prism: A hybrid approach. In Tools and Algorithms for
the Construction and Analysis of Systems, TACAS ’02. Springer Berlin
Heidelberg, 2002.

41

[40] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. A Classification of Cur-
rent Architecture-based Approaches Tackling Uncertainty in Self-Adaptive
Systems with Multiple Requirements. In Managing Trade-offs in Adaptable
Software Architectures. Elsevier, 2016.

[41] B. Morin, O. Barais, J.M. Jezequel, F. Fleurey, and A. Solberg. Models at
Runtime to Support Dynamic Adaptation. IEEE Computer, 42(10):44–51,
2009.

[42] P. Naur and B. Randell. Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee. Brussels, Scientific Affairs
Division, NATO, 1968.

[43] Peter Norvig. Artificial intelligence in the software engineering workflow.
Google, 2017. See: https://www.youtube.com/watch?v=mJHvE2JLN3Q
and https://www.youtube.com/watch?v=FmHLpraT-XY.

[44] P. Oreizy, N. Medvidovic, and R. Taylor. Architecture-based Runtime
Software Evolution. In International Conference on Software Engineering,
ICSE ’98. IEEE Computer Society, 1998.

[45] Ó. Ortiz, A. B. Garćıa, R. Capilla, J. Bosch, and M. Hinchey. Runtime Vari-
ability for Dynamic Reconfiguration in Wireless Sensor Network Product
Lines. In 16th International Software Product Line Conference - Volume
2. ACM, 2012.

[46] T. Patikirikorala, A. Colman, J. Han, and Liuping W. A Systematic Survey
on the Design of Self-adaptive Software Systems using Control Engineer-
ing Approaches. In Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’12, 2012.

[47] D. Perez-Palacin and R. Mirandola. Uncertainties in the Modelling of Self-
adaptive Systems: A Taxonomy and an Example of Availability Evaluation.
In International Conference on Performance Engineering, ICPE ’14, 2014.

[48] S. Redwine and W. Riddle. Software Technology Maturation. In Inter-
national Conference on Software Engineering, ICSE ’85. IEEE Computer
Society Press, 1985.

[49] M. Salehie and L. Tahvildari. Self-adaptive Software: Landscape and Re-
search Challenges. Transactions on Autonomous and Adaptive Systems,
4:14:1–14:42, 2009.

[50] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio. Control-theoretical
software adaptation: A systematic literature review. IEEE Transactions
on Software Engineering, PP(99):1–1, 2017.

[51] S. Shevtsov and D. Weyns. Keep it SIMPLEX: Satisfying Multiple Goals
with Guarantees in Control-Based Self-Adaptive Systems. In International
Symposium on the Foundations of Software Engineering, FSE ’16, 2016.

42

[52] V. Silva Souza, A. Lapouchnian, W.. Robinson, and J. Mylopoulos. Aware-
ness Requirements for Adaptive Systems. In Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’11. ACM, 2011.

[53] V. Silva Souza, A. Lapouchnian, K. Angelopoulos, and J. Mylopoulos.
Requirements-driven software evolution. Computer Science - Research and
Development, 28(4):311–329, 2013.

[54] A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in
goal-driven requirements engineering. IEEE Transactions on Software En-
gineering, 24(11):908–926, Nov 1998.

[55] T. Vogel and H. Giese. Model-Driven Engineering of Self-Adaptive Software
with EUREMA. ACM Transactions on Autonomous and Adaptive Systems,
8(4):18:1–18:33, 2014.

[56] D. Weyns and T. Ahmad. Claims and Evidence for Architecture-Based
Self-adaptation: A Systematic Literature Review, pages 249–265. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[57] D. Weyns, N. Bencomo, R. Calinescu, J. Cámara, C. Ghezzi, V. Grassi,
L. Grunske, P. Inverardi, J.M. Jezequel, S. Malek, R. Mirandola, M. Mori,
and G. Tamburrelli. Perpetual Assurances in Self-Adaptive Systems. In
Software Engineering for Self-Adaptive Systems, volume 9640 of Lecture
Notes in Computer Science. Springer, 2016.

[58] D. Weyns and R. Calinescu. Tele assistance: A self-adaptive service-based
system examplar. In Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’15, pages 88–92, Piscataway, NJ, USA, 2015. IEEE Press.

[59] D. Weyns, U. Iftikhar, and J. Söderlund. Do External Feedback Loops
Improve the Design of Self-Adaptive Systems? A Controlled Experiment.
In International Symposium on Software Engineering of Self-Managing and
Adaptive Systems, SEAMS ’13, 2013.

[60] D. Weyns, S. Malek, and J. Andersson. FORMS: Unifying Reference Model
for Formal Specification of Distributed Self-adaptive Systems. ACM Trans-
actions on Autonomous and Adaptive Systems, 7(1):8:1–8:61, 2012.

[61] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. Göschka. On patterns for de-
centralized control in self-adaptive systems. In Software Engineering for
Self-Adaptive Systems II, pages 76–107. Springer, 2013.

[62] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.M. Bruel. RELAX: In-
corporating Uncertainty into the Specification of Self-Adaptive Systems. In
IEEE International Requirements Engineering Conference, RE ’09. IEEE
Computer Society, 2009.

43

	Introduction
	Concepts and Principles
	Basic Principles of Self-Adaptation
	Conceptual Model of a Self-Adaptive System

	An Organised Tour in Six Waves
	Wave I. Automating Tasks
	Wave II. Architecture-Based Adaptation
	Wave III. Models at Runtime
	Wave IV. Goal Driven Adaptation
	Wave V. Guarantees Under Uncertainties
	Wave VI. Control-Based Approaches

	Future Challenges
	Analysis of the Maturity of the Field
	Challenges
	Challenges Within the Current Waves
	Challenges Beyond the Current Waves

	Conclusions

