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Abstract 

In a system where classes are treated as first class 
objects, classes are defined as instances of other 
classes called metaclasses. An important benefit of 
using metaclasses is the ability to assign properties 
to classes (e.g. being abstract, being final, trac- 
ing particular messages, supporting multiple in- 
heritance), independently from the base-level code. 
However, when both inheritance and instantiation 
are explicitly and simultaneously involved, commu- 
nication between classes and their instances raises 
the metaclass compatibility issue. Some languages 
(such as SMALLTALK) address this issue but do not 
easily allow the assignment of specific properties 
to classes. In contrast, other languages (such as 
CLOS) allow the assignment of specific properties 
to classes but do not tackle the compatibility issue 
well. 

In this paper, we describe a new model of meta- 
level organization, called the compatibility model, 
which overcomes this difficulty. It allows safe 
metaclass programming since it makes it possible to 
assign specific properties to classes while ensuring 
metaclass compatibility. Therefore, we can take 
advantage of the expressive power of metaclasses 
to build reliable software. We extend this com- 
patibility model in order to enable safe reuse and 
composition of class specific properties. This ex- 
tension is implemented in NEO~LASSTALK, a fully 
reflective SMALLTALK. 

Keywords: Metaclasses, compatibility, class 
specific properties, class property propagation. 
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1 Introduction 

It has been shown that programming with 
metaclasses is of great benefit [KAJ+93][Zim96] 
[BGL98]. An interesting use of metaclasses is the 
assignment of specific properties to classes. For ex- 
ample, a class can be abstract, have a unique in- 
stance, trace messages received by its instances, 
define pre-post conditions on its methods, forbid 
redefinition of some particular methods.. . These 
properties can be implemented using metaclasses, 
allowing thereby the customization of the classes 
behavior [LC96]. 

From an architectural point of view, using meta- 
classes organizes applications into abstraction lev- 
els. Each level describes and controls the level 
immediately below to which it is causally con- 
nected [Mae87]. Reified classes communicate with 
other objects including their own instances. Thus, 
classes can send messages to their instances and 
instances can send messages to their classes. Such 
message sending is named inter-level communica- 
tion [MMC95]. 

However, careless inheritance at one level may 
break inter-level communication resulting in an is- 
sue called the compatibility issue [BSLR96]. We 
have identified two symmetrical kinds of compati- 
bility issues. The first one is the upward compatibil- 
ity issue, which was named metaclass compatibility 
by Nicolas Graube [Gra89], and the second one is 
the downward compatibility issue. Both kinds of 
compatibility issues are important impediments to 
metaclass programming that one should always be 
aware of. 
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Currently, none of the existing languages deal- 
ing with metaclasses allow the assignment of spe- 
cific properties to classes while ensuring compat- 
ibility. CLOS [KdRBSl] allows one to assign any 
property to classes, but it does not ensure compati- 
bility. On the other hand, both SOM [SOM93] and 
SMALLTALK [GR83] add ress the compatibility is- 
sue but they introduce a class property propagation 
problem. Indeed, a property assigned to a class is 
automatically propagated to its subclasses. There- 
fore, in SOM and SMALLTALK, a class cannot have 
a specific property. For example, when assigning 
the abstractness property to a given SMALLTALK 
class, subclasses become abstract too [BC89]. It 
follows that users face a dilemma: using a language 
that allows the assignment of specific class proper- 
ties without ensuring compatibility, or using a lan- 
guage that ensures compatibility but suffers from 
the class property propagation problem. 

In this paper, we present a model - the com- 
patibility model - which allows safe metaclass pro- 
gramming, i.e. it makes it possible to assign spe- 
cific properties to classes without compromising 
compatibility. In addition to ensuring compatibil- 
ity, the compatibility model avoids class property 
propagation: a class can be assigned specific prop- 
erties without any side-effect on its subclasses. 

We implemented the compatibility model in 
NEOCLASSTALK, a SMALLTALK extension which 
introduces many features including explicit meta- 
classes [Riv96]. Our experiments [Led98][Riv97] 
showed that the compatibility model allows pro- 
grammers to fully take advantage of the expressive 
power of metaclasses. This effort has resulted (i) in 
a tool that permits a programmer unfamiliar with 
metaclasses to transparently deal with class spe- 
cific properties, and (ii) in an approach allowing 
reuse and composition of class properties. 

This paper is organized as follows. Section 2 
presents the compatibility issue. We give some ex- 
amples to show its significance. Section 3 shows 
how existing programming languages address the 
compatibility issue, and how they deal with the 
property propagation problem. Section 4 describes 
our solut,ion and illustrates it with an example. In 
section 5, we deal with reuse and composition of 
class specific properties within the compatibility 
model. Then, we sketch out the use of the com- 

patibility model for both base-level and meta-level 
programmers. The last section contains a conclud- 
ing summary. 

2 Inter-level communication and compati- 
bility 

We define inter-level communication as any mes- 
sage sending between classes and their instances 
(see Figure 1). Indeed, class objects can interact, 
with other objects by sending and receiving mes- 
sages. In particular, an instance can send a mes- 
sage to its class and a class can send a message to 
some of its instances. We use SMALLTALK as an 
example to illustrate this issue’. 

Class level 

Instance level 

------) MessageSending 

Figure 1: Inter-level communication 

Two methods allow inter-level communication 
in SMALLTALK: new and class. When one of them 
is used, the involved objects belong to different lev- 
els of abstraction2: 

l An object receiving the class message returns 
its class. Then, the class method makes it pos- 
sible to go one level up. The following two 
instance methods - excerpted from Visual 
Works SMALLTALK -- include message send- 
ing to the receiver’s class. 

* message name is sent to the class: 
Object>>printOn: aStream 

GI:‘f=! self class 3. 

* message dayslnyear: is sent to the class: 
Date>dayslnYear 

“Answer the number of days in the year 
represented by the receiver.” 
t self class dayslnyear: self year 

‘We use the SMALLTALK syntax and terminology throughout this 
paper. 

‘St&x measures we made over a Visual Works SMALLTALK image 
show that inter-level communication is very frequent. 25% of classes 
include instance methods referencing the class and 24% of metaclasses 
define methods referencing an instance. 
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l A class receiving the new message returns a 
new instance. Therefore, the new method 
makes it possible to go one level down. The 
following two class methods include message 
sending to the newly created instances. 

* message at:put: is sent to a new instance: 
ArrayedCollection class>>with: anobject 

1 newCollection 1 
newCollection := self new: 1. 
newCollection at: 1 put: anobject. 
tnewCollection 

* message on: is sent to a new instance: 
Browser class>openOn: anorganizer 

self openOn: (self new on: anorganizer) with- 
TextState: nil 

Thus, inter-level communication in SMALLTALK 

is materialized by sending the messages new and 
class. Other languages where classes are reified 
(such as CLOS and SOM) also allow similar mes- 
sage sending. 

Since these inter-level communication messages 
are embedded in methods, they are inherited when- 
ever methods are inherited. Ensuring compatibiEity 
means making sure that these methods will not in- 
duce any failure in subclasses, i.e. all sent messages 
will always be understood. We have identified two 
kinds of compatibility: upward compatibilit$ and 
downward compatibility. 

MetaA 0 MetaB 1 

Figure 2: Compatibility need to be ensured at a higher level 

2.1 Upward compatibility 

Suppose A implements a method i-foo that sends 
the c-bar message to the class of the receiver (see 
Figure 2). B is a subclass of A. When i-foo is sent 
to an instance of B, the B class receives the c-bar 

message. In order to avoid any failure, B should 
understand the c-bar message (i.e. MetaB should 
implement or inherit a method c-bar). 

3Nicolas Graube named this issue metaclass compatib~laty[Gra89]. 

Definition of upward compatibility: 
Let B be a subclass of the class A, MetaB the 

metaclass of B, and MetaA the metaclass of A. 
Upward compatibility is ensured for MetaB and 

MetaA if: every possible message that does not 
lead to an error for any instance of A, will not 
lead to an error for any instance of B. 

2.2 Downward compatibility 

Suppose MetaA implements a method c-foo that 
sends the i-bar message to a newly created instance 
(see Figure 3). MetaB is created as a subclass of 
MetaA. When c-foo is sent to B (an instance of 
MetaB), B 11 wi create an instance which will receive 
the i-bar message. In order to avoid any failure, 
instances of B should understand the i-bar mes- 
sage (i.e. B should implement or inherit the i-bar 

method). 

Met;$ too7 MetaB 
MetaA>>c-foo 

+ self new i-bar 

t- t 
+ inheritance - instantiation A 7 B 

<i-bar> l 
-I 

Figure 3: Compatibility need to be ensured at a lower level 

Definition of downward compatibility: 
Let MetaB be a subclass of the metaclass MetaA. 
Downward compatibility is ensured for two 

classes B instance of MetaB and A instance of 
MetaA i@: every possible message that does not 
lead to an error for A, will not lead to an error 

for B. 

3 Existing models 

We will now show why none of the known mod- 
els allow the assignment of specific properties to 
classes while ensuring compatibility. 

3.1 CLOS 

When (re)defining a class in CLOS, the validate- 

superclass generic function is called, before the di- 
rect superclasses are stored [KdRBSl]. As a de- 
fault, validate-superclass returns true if the meta- 
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class of the new class is the same as the metaclass 
of the superclass4, i.e. classes and their subclasses 
must have the same metaclass. Therefore, incom- 
patibilities are avoided but metaclass programming 
is very constrained. 

MetaA 

Figure 4: By default in CLOS, subclasses must share the 
same metaclass as their superclass 

Figure 4 shows a hierarchy of two classes that 
illustrates the CLOS default compatibility manage- 
ment policy. Since class B inherits from A, B and 
A must have the same metaclass. 

In order to allow the definition of classes with 
different behaviors, programmers usually redefine 
the validate-superclass method to make it always 
return true. Thus, CLOS programmers can have 
total freedom to use a specific metaclass for each 
class. So, they can assign specific properties to 
classes, but the trade-off is that they need to be 
always aware of the compatibility issue. 

3.2 SOM 

SOM is an IBM CORBA compliant prod- 
uct which is based on a metaclass architecture 
[DF94b]. The SOM kernel follows the OBJVLISP 

model [Coi87]. SOM metaclasses are explicit and 
can have many instances. Therefore, users have 
complete freedom to organize their metaclass hier- 
archies. 

3.2.1 Compatibility issue in SOM 

SOM encourages the definition and the use of ex- 
plicit metaclasses by introducing a unique con- 
cept named derived metaclasses which deals with 
the upward compatibility issue [DF94ai At 
compile-time, SOM automat;-;liy determines an 

41n fact I+ Aso returns true if the superclass is the class named t, 
or if the metaclass of one argument is standard-class and the metaclass 
of the other IS funcallable-standard-class. 

appropriate metaclass that ensures upward com- 
patibility. If needed, SOM automatically creates a 
new metaclass named a derived metaclass to ensure 
upward compatibility. 

A>>i-foe 

t self m c-bar 

class: B; 

MetaB - 

Me’ah-c 

Derived 

I t 
parent2 A; 

metaclass: UetaB; 
___- 

d inheritance - instantiation 

Figure 5: SOM ensures upward compatibility using derived 
metaclasses 

Suppose that we want to create a class B, in- 
stance of MetaB and subclass of A. SOM will de- 
tect an upward compatibility problem, since MetaB 

does not inherit from the metaclass of A (MetaA). 

Therefore, SOM automatically creates a derived 
metaclass (Derived), using multiple inheritance in 
order to support all necessary class methods and 
variables5. Figure 5 shows the resulting construc- 
tion. When an instance of B receives i-foo, it goes 
one level higher and sends c-bar to the B class. B 

understands the c-bar message since its metaclass 
(i.e. Derived) is a derived metaclass which inherits 
from both MetaB and MetaA. 

L 

Figure 6: SOM downward compatibility failure example 

SOM does not provide any policy or mechanism 
to handle downward compatibility. Suppose that 
MetaB is created as a subclass of MetaA (see Fig- 
ure 6). The c-foo method which is inherit,04 ?,j 
MetaB sends the i-bar message I,O a new instance. 
When the B class receives the c-foo message, a run- 
time error will occur because its instances do not 
understand the i-bar message. 

‘The semantics of derived metaclasses guarantees that the declared 
met&ass takes precedence in the resolution of multiple inheritance 
ambiguities (i.e. MetaB before MetaA). Besides, it ensures the instance 
variables of the class are correctly imtialized by the use of a complex 
mechanism. 
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3.2.2 Class property propagation in SOM 

SOM does not allow the assignment of a property 
to a given class, without making its subclasses be 
assigned the same property. We name this defect 
the class property propagation problem. In the fol- 
lowing example, we illustrate how derived meta- 
classes implicitly cause undesirable propagation of 
class properties. 

class: B: 
SoleInstance hDcrived 

parent: A; Released e 
metaclass: SoleInstance; 

p-!sF] t t 
A-B 

Figure 7: Class property propagation in SOM 

Suppose that the A class of Figure 7 is a released 
class, i.e. it should not be modified any more. 
This property is useful in multi-programmer de- 
velopment environments for versionning purposes. 
In order to avoid any change, A is an instance of 
the Released metaclass. Let B a class that has a 
unique instance: f3 is an instance of the Soleln- 

stance metaclass. But as B is a subclass of A, SOM 
creates B as instance of an automatically created 
derived metaclass which inherits from both Soleln- 

stance and Released. Thus, as soon as B is created, 
it is automatically “locked” and acts like a released 
class. So, we cannot define any new method on it! 

3.3 Smalltalk- 

In SMALLTALK, metaclasses are partially hidden 
and automatically created by the system. Each 
metaclass is non-sharable and strongly coupled 
with its sole instance. So, the metaclass hierarchy 
is parallel to the class hierarchy and is implicitly 
generated when classes are created. 

Using parallel inheritance hierarchies, the SMALL- 

TALK model ensures both upward and downward 
compatibility. Indeed, any code dealing with new 
or class methods, is inherited and works properly. 

3.3.1 Compatibility issue in Smalltalk- In Figure 9, the A class is abstract since its sub- 
classes must implement some methods to complete 
the instance behavior. B is a concrete class as it im- 
plements the whole set of these methods. Suppose 

‘The name of a SMALLTALK metaclass is the name of Its unique 
Instance postfixed by the word ‘class’. 

A ClaSs>>C-foe A class<-B class 
tself -i-bar <c-too> 

<c-bar> 

A>>i-foe 

fself clas&c-bar t t 

[q inheritance A<lt%7= B -t instantiation - 
<I-bar> 

Figure 8: SMALLTALK ensures both upward and downward 
compatibilities 

When one creates the B class, a subclass of A 

(see Figure 8), SMALLTALK automatically gener- 
ates the metaclass of B (“B clasC6), as a subclass 
of “A class”, the metaclass of A. Suppose A imple- 
ments a method i-foo that sends c-bar to the class 
of the receiver. If i-foo is sent to an instance of 
B, the B class receives the c-bar message. Thanks 
to the parallel hierarchies, the B class understands 
the c-bar message, and upward compatibility is en- 
sured. In a similar manner, downward compatibil- 
ity is ensured thanks to the parallel hierarchy. 

3.3.2 Class property propagation in Small- 
talk-80 

Since metaclasses are automatically and implicitly 
managed by the system, SMALLTALK drastically 
reduces the opportunity to change class behaviors, 
making metaclass programming “anecdotal”. As 
with SOM, SMALLTALK does not allow the assign- 

ment of a property to a class without propagating 
it to its subclasses. 

A class v B class 
A class>>new 

t 

<new> 

self error: ‘1 am Abstract ‘ t 

[+ In en ante -t instantiation h ‘t 
I I 
A-B 

Figure 9: Class property propagation in SMALLTALK 

J 
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that we want to enforce the property of abstract- 
ness of A. In order to forbid instantiating A, we de- 
fine the class method A class>>new which raises an 
error. Unfortunately, “B class” inherits the method 
new from “A class”. As a result, attempting to cre- 
ate an instance of B raises an error7! 

4 The compatibility model 

Among the previous models, only the SMALLTALK 
one with its parallel hierarchies ensures full com- 
patibility. However, it does not allow the assign- 
ment of specific properties to classes. On the 
other hand, only the CLOS model allows the as- 
signment of specific properties to classes. Unfor- 
tunately, it does not ensure compatibility. We be- 
lieve that these two goals can both be achieved by a 
new model which makes a clear separation between 
compatibility and class specific properties. 

Abstract + A cla8s>>new 

A class G-B class 

% 4 
Abstract + A class 

i <new> 

Figure 10: Avoiding the propagation of abstractness 

We illustrate this idea of separation of concerns 
by refactoring the example of Figure 9. We create 
a new metaclass named “Abstract + A class” as a 

subclass of “A class” (see Figure 10). The A class is 
redefined as an instance of this new metaclass. As 
“Abstract + A class” redefines the new method to 
raise an error, A cannot have any instance. How- 
ever, since “B class” is not a subclass of “Abstract 

+ A class”, the B class remains concrete. The gen- 
eralization of this scheme is our solution, named 
the compatibility model. 

In the remainder of this paper, names of meta- 
classes defining some class property are denoted 
with the concatenation of the property name, the 
+ symbol and the superclass name. For exam- 
ple, “Abstract + A class” is a subclass of “A class” 

‘This example is deliberately simple, and one could avoid this 
problem by redefining new in “B class”. But, this solution is a kind of 
inheritance anomaly [MY931 that increases maintenance costs. 

that defines the property of abstractness named 
Abstract. 

4.1 Description of the compatibility model 

The compatibility model extends the SMALLTALK 

model by separating two concerns: compatibility 
and specific class properties. A metaclass hierar- 
chy parallel to the class hierarchy ensures both up- 
ward and downward compatibility like in SMALL- 

TALK. An extra metaclass “layer” is introduced 
in order to locally assign any property to classes. 
Classes are instances of metaclasses belonging to 
this layer. So, the compatibility model is based on 
two “layers” of metaclasses, each one addressing a 
unique concern: 

Compatibility concern: This issue is addressed 
by the metaclasses organized in a hierarchy 
parallel to the class hierarchy. We name such 
metaclasses: compatibility metaclasses. They 
define all the behavior that must be propa- 
gated to all (sub)classes. All class methods 
which send messages to instances should be 
defined in these metaclasses. Besides, all mes- 
sages sent to classes by their instances should 
be defined in these metaclasses too. 

Specific class properties concern: This issue 
is addressed by metaclasses that define the 
class specific properties. We name such meta- 
classes: property metaclasses. A class with 
a specific property is instance of a prop- 
erty metaclass which inherits from the corre- 
sponding compatibility metaclass. The prop- 
erty metaclass is not joined to other property 
metaclasses, since it defines a property specific 
to the class. 

Figure 11 shows’ the compatibility model ap- 
plied to a hierarchy consisting of two classes: A and 
B. They are respectively instances of the “AProp- 

erty + AClass” and “BProperty + BClass” meta- 
classes. “AProperty + AClass” defines properties 
specific to class A, while “BProperty + BClass” de- 

fines properties specific to class B. As “AProperty + 

AClass” and “BProperty + BClass” are not ,joined 
‘Compatibility metaclasses are surrounded with a dashed line and 

property metaclasses are drawn inside a grey shape. 
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AClass>>c-foe 
+sslf PUL i-bar 

Figure 11: The compatibility model 

by any link, class property propagation does not 
occur. Thus, A and B can have distinct properties. 

Since “AProperty + AClass” and “BProperty + 

BClass” are subclasses of the AClass and BClass 

metaclasses, both upward and downward compat- 
ibility are guaranteed. Suppose that A defines two 
instance methods i-foo and i-bar. The i-foo method 
sends the c-bar message to the class of the receiver. 
The i-bar method is sent to a new instance by the c- 
foo method. Because the AClass and BClass meta- 
class hierarchy is parallel to the A and B class hier- 
archy, inter-level communication failure is avoided. 

4.2 Example: Refactoring the Smalltalk- 
80 Boolean hierarchy 

The Boolean hierarchy of SMALLTALK~ is de- 
picted in Figure 12. Boolean is an abstract class 
which defines a protocol shared by True and 
False. True and False are concrete classes that 
cannot have more than one instance. These prop- 
erties (i.e. abstractness and having a sole instance) 
are implicit in SMALLTALK. Using the compati- 
bility model, we refactor the Boolean hierarchy to 
emphasize them. 

We first create “Boolean class”, which is a com- 
patibility metaclass. The second step consists 
of creating the property metaclass “Abstract + 

i300lean class”, which enforces the Boolean class to 
be abstract. Finally, we build the Boolean class by 
instantiating the “Abstract + Boolean class” meta- 
class. 

To refactor the False class, we first create the 
“False class” metaclass, as a subclass of “Boolean 

‘We prefer this academic example to emphasize our ideas rather 
than a more complex example which should require a more detailed 
presentation. 

<L True class 
Boolean classL 

t 

False class 

t ! 

Figure 12: The Boolean hierarchy of SMALLTALK 

class” to ensure the compatibility. The second step 
consists of creating the property metaclass “Soleln- 

stance + False class”, which enforces the False class 
to have at most one instance. At last, we create 
the False class by instantiating the “Solelnstance + 

False class” metaclass. The True class is refactored 
in the same way. The result of rebuilding the whole 
hierarchy of Boolean is shown in Figure 13. 

Figure 13: The Boolean hierarchy aft,er refact,oring 

5 Reuse and composition within the com- 
patibility model 

We have experimented the compatibility model 
in NEOCLASSTALK'~ [Riv97], a fully reflective 
SMALLTALK. We quickly faced the need of class 
property reuse and composition. Indeed, unrelated 
classes belonging to different hierarchies ca.n have 
the same properties, and a given class can have 
many properties 

In the previous section, both the True class and 
the False class have the same property: having a 
unique instance. Besides, we assigned only one 
property to each class of the Boolean hierarchy 

“NEOCLASSTALK and all related papers cm be downloaded from 
http //www.emn.fr/cs/object/tools/neoclasstalk/neoclasst~k.~~tml 
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But, a class need to be assigned many properties. 
For example, the False class must not only have 
a unique instance, but it also should not be sub- 
classed (such a class is final in JAVA terminology). 
So, we have to reuse and compose these class prop- 
erties with respect to our compatibility model. 

In this section, we propose an extension of our 
compatibility model that deals with reuse and com- 
position of class properties. Any language where 
classes are treated as regular objects may integrate 
our extended compatibility model. NEOCLASS- 

TALK has been used as a first experimentation plat- 
form. 

5.1 Reuse of class properties 

In SMALLTALK, since metaclasses behave in a dif- 
ferent way than classes, they are defined as in- 
stances of a particular class, a meta-metaclass, 
called Metaclass. Metaclass defines the behavior of 
all metaclasses in SMALLTALK. For example, the 
name of a metaclass is the name of its sole instance 
postfixed by the word ‘class’. 

Metaclass>>name 
fthisclass name, ’ class’ 

We take advantage of this concept of meta- 
metaclasses to reuse class properties. Since meta- 
classes implementing different properties have dif- 
ferent behaviors, we need one meta-metaclass for 
each class property. Property metaclasses defining 
the same class property are instances of the same 
meta-metaclass. 

When a property metaclass is created, the meta- 
metaclass initializes it with the definition of the 
corresponding class property. Thus, the code 
(instance variables, methods, . . . ) correspond- 
ing to the definition of the class property, is 
automatically generated. Reuse is achieved by cre- 
ating property metaclasses defining the same class 
property as instances of the same meta-metaclass, 
i.e. they are initialized with the same class prop- 
erty definition (an example of such an initialization 
is given in section 5.4.2). 

The root of the meta-metaclass hierarchy named 
PropertyMetaclass describes the default structure 
and behavior of property metaclasses. For exam- 
ple, the name of a property metaclass is built from 
the property name and the superclass name: 

PropertyMetaclass>name 
tself class name, ‘+‘, self superclass name 

In the refactored Boolean hierarchy of section 
4.2, both “Solelnstance + False class” and “Soleln- 

stance + True class” define the property of having 
a unique instance. Reuse is achieved by defining 
both “Solelnstance + False class” and “Solelnstance 

+ True class” as instances of Solelnstance, a, sub- 
class of PropertyMetaclass (see Figure 14). 

Figure 14: Reuse properties in the Boolean hierarchy 

5.2 Composition of class properties 

Since a given class can have many properties, the 
model must support the composition of class prop- 
erties. We chose to use many property metaclasses 
organized in a single inheritance hierarchy, where 
each metaclass implements one specific class prop- 
erty. 

,~__“__“__________~~~.~.~~~~..“~~~...~~~~ 
i Boolean classy False class ._____ K _______._ * _--- K ----- ; 

Boolean<- F&e 

* inheritance -+ instantiation 

Figure 15: Assigning two properties to False 
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To illustrate this idea, we modify the in- 
stantiation link for the False class (see Fig- 
ure 15). We define two property metaclasses, 
one for each property. The first property meta- 
class is “Solelnstance + False class”, which inher- 
its from the compatibility metaclass “False class”. 

The second one is “Final + Solelnstance + False 

class” , which is the class of False. It is defined as 
a subclass of “Solelnstance + False class”. The re- 
sulting scheme respects the compatibility model: it 
allows the assignment of two specific properties to 
the False class and still ensures compa,tibility. 

5.2.1 Conflict management 

The solution of the property metaclasses compo- 
sition issue is not trivial. Indeed, it is necessary 
to deal with conflicts that arise when composing 
different property metaclasses. When using inher- 
itance to compose property metaclasses, two kinds 
of conflicts can arise: name confhts and value con- 
flicts [DHH+95]. 

Name conflicts happen when orthogonal prop- 
erty metaclasses define instance variables or meth- 
ods which have the same name. Two property 
metaclasses are orthogonal when they define un- 
related class properties. Name conflicts for both 
instance variables and methods are avoided by 
adapting the definition of a new property meta- 
class according to its superclasses. For exam- 
ple, although the two property metaclasses “Sole- 

Instance + False class” and “Solelnstance + True 

class” define the same property for their respective 
instances (classes False and True), they may use dif- 
ferent instance variable names or method names. 

Value conflicts happen when non-orthogonal 
property metaclasses define methods which have 
the same name. Most of these conflicts are avoided 
by making the property metaclass hierarchy act as 
a cooperation chain, i.e. a property metaclass ex- 
plicitly refer to the overridden methods defined in 
its superclasses . l1 Therefore, each property meta- 
class acts like a mixin [BC90]. 

“In NEOCLASSTALK, as in SMALLTALK, this is achwved usmg the 
pseudo-variable super. 

5.2.2 Example of cooperation between 
property metaclasses 

Suppose that we want to assign two specific prop- 
erties to the False class of Figure 16: (i) tracing 
all messages (Trace) and (ii) having breakpoints 
on particular methods (Breakpoint). These two 
properties deal with the message handling which 
is based in NEOCLASSTALK on the technique of 
the “method wrappers” described in [Duc98] and 
[BFJR98]. Th e executeMethod:receiver:arguments: 

method is the entry point to handle mes- 
sages in NEO~LASSTALK, i.e. customizing exe- 
cuteMethod:receiver:arguments: allows a specializa- 
tion of the message sending12. Thus, when the ob- 
ject false receives a message, the class False receives 
the message executeMethod:receiver:arguments:. 

PropertyMetaclass 

Figure 16: Composition of non-orthogonal properties 

According to the inheritance hierarchy, (1) the 
trace is first done, then (2), by the use of super, the 
breakpoint is performed, and (3) a regular method 
application is finally executed (again cadled using 
super). 

l (3) StandardClass>executeMethod: method receiver: 
ret arguments: args 

l (2) Breakpoint-i-False class>>executeMethod: method 
receiver: ret arguments: args 

method selector == stopSelector 
iffrue: [self halt: ‘Breakpoint for ‘, stopSelector]. 

tsuper executeMethod: method receiver: ret argu- 
ments: args 

“A default executeMethod:receiver:argumentr: method is prowded by 
StandardClass (the root of all metaclasses in NEOCLASSTALK) which just 
applies the method on the receiver with the arguments. 
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Figure 17: The Extended Compatibility Model 

l (1) Trace+BreakPoint+False class>>executeMethod: 
method receiver: ret arguments: args 

self transcript show: method selector; cr. 
fsuper executeMethod: method receiver: ret argu- 

ments: args 

5.3 The extended compatibility model 

Generalizing previous examples allows us to define 
the extended compatibility model (see Figure 17) 
which enables reusing and composing class prop- 
erties. Each property metaclass defines the in- 
stance variables and methods involved in a unique 
property. Property metaclasses specific to a given 
class are organized in a single hierarchy. The root 
of this hierarchy is a subclass of a compatibility 
metaclass13. Each property metaclass is an in- 
stance of a meta-metaclass which describes a spe- 
cific class property, allowing its reuse. 

Metaclass creation, composition and deletion 
are managed automatically with respect to the ex- 
tended compatibility model. Each time a new class 
is created, a new compatibility metaclass is auto- 
matically created. This can be done in the same 
wa.y that SMALLTALK builds its parallel metaclass 
hierarchy. The assignment of a property to this 
class results in the insertion of a new metaclass 
into its property metaclass hierarchy. This inser- 

ISThis single hierarchy may be compared to an explicit lineariza- 
tion of property metaclasses composed using mu%&?inheritance 
[DHHM94]. 

tion is made in two steps14: 

1. first, the new property metaclass becomes a 
subclass of the last metaclass of the property 
metaclass hierarchy; 

2. then, the class becomes instance of this new 
property metaclass. 

NEOCLASSTALK provides protocols for dynami- 
cally changing the class of an object (changeclass:) 

and the superclass of a class (superclass:) [Riv97]. 
Thus, the implementation of these two steps is im- 
mediate in NEO~LASSTALK, and is provided by the 
composeWithPropertiesOf: method. 

PropertyMetaclass>>composeWithPropertiesOf: aClass 
self superclass: aClass class. 
aClass changeclass: self. 

5.4 Programming within the extended 
compatibility model 

We distinguish two kinds of programmers: 
(i) “base level programmers” who implement appli- 
cations using the language and development tools, 
and (ii) “meta level programmers” for whom the 
language itself is the application. 

14The removal of a property metaclass is done in a symmetrical 
way. 
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5.4.1 Base Level Programming 

To make our model easy to use for a “base-level 
programmer”, the NEOCLASSTALK programming 
environment includes a tool that allows one to as- 
sign different properties to a given class using a 
SMALLTALK-like browser (see Figure 18). These 
properties can be added and removed at run-time. 
The metaclass level is automatically built accord- 
ing to the selection of the “base-level programmer”. 

Figure 18: Specific properties assigned to a class using a 
browser 

5.4.2 Meta Level 

In order to introduce 

Programming 

new class properties, “meta- 
level programmers” must create a subclass of the 
PropertyMetaclass meta-metaclass. This new meta- 
metaclass stores the instance variables and the 
methods that should be defined by its instances 
(property metaclasses). When this new meta- 
metaclass is instantiated, the previous instance 
variables are added to the resulting property meta- 
class and the methods are compiled15 at initializa- 
tion timer6. 

For example, the evaluation of the following ex- 
pression creates a property metaclass - instance of 

15A faster solution consists of doing the compilation only once, 
resulting in proto-methods [Riv97]. Thus, when the property meta- 
class gets initialized, proto-methods are “copied” into the method 
dictionary of the property metaclass, allowing a fast instantiation of 
meta-metaclasses. 

“This assumes that mitialization is part of the creation pro- 
cess, which is true in almost every language This is traditmnnally 
achieved in SMALLTALK by the redefimtion of new into super new initialize 
[SKT96]. 
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the meta-metaclass Trace - that assigns the trace 
property to the True class. 

Trace new composeWithPropertiesOf: True 

In order to achieve the trace, messages must 
be captured and then logged in a text col- 
lector. Therefore, property metaclasses in- 
stances of Trace must define an instance vari- 
able (named transcript) corresponding to a text 
collector and a method that handles messages. 
Message handling is achieved using the ex- 
ecuteMethod:receiver:arguments: method which 
source code was already presented in 5.2.2. These 
definitions are generated when the property meta- 
classes are initialized, i.e. using the initialize 

method of the Trace meta-metaclass: 
Trace>>initialize 

super initialize. 
self instanceVariableNames:’ transcript ‘. 
self generateExecuteMethodReceiverArguments. 

6 Conclusion 

Considering classes as first class objects organizes 
applications in different abstraction levels, which 
inevitably raises upward and downward compat- 
ibility issues. Existing solutions addressing the 
compatibility issues (such as SMALLTALK) do not 
allow the assignment of specific properties to a 
given class without propagating them to its sub- 
classes. 

The compatibility model proposed in this paper 
addresses the compatibility issue and allows the as- 
signment of specific properties to classes without 
propagating them to subclasses. This is achieved 
thanks to the separation of the two involved con- 
cerns: compatibility and class properties. Upward 
and downward compatibilities are ensured using 
the compatibility metaclass hierarchy that is par- 
allel to the class hierarchy. The property meta- 
classes, allowing the assignment of specific proper- 
ties to classes, are subclasses of these compatibil- 
ity metaclasses. Therefore, we can take advantage 
of the expressive power of metaclasses to define, 
reuse and compose class properties in a environ- 
ment which supports safe metaclass programming. 

Class properties improve readability, reusabil- 
ity and quality of code by increasing separation of 
concerns [HL95] [Lie961 [KLM+97]. Indeed, they 



allow a better organization of class libraries and 
frameworks for designing reliable software. We are 
strongly convinced that our compatibility model 
enables separation of concerns based on the meta- 
class paradigm. Therefore, it promotes building 
reliable software which is easy to reuse and main- 
tain. 
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