
Safe Metaclass Programming

Noury M. N. Bouraqadi-Saidani Thomas Ledoux”
Noury.Bouraqadi@emn.fr Thomas.LedouxOemn.fr

ficole des Mines de Nantes Ikole des Mines de Nantes
BP 20722 BP 20722

44307 Nantes - FRANCE 44307 Nantes - FRANCE

Fred Rivard’
FredRivard@oti.com

I?kole des Mines & OTI Inc. Nantes
BP 20722

44307 Nantes - FRANCE

Abstract

In a system where classes are treated as first class
objects, classes are defined as instances of other
classes called metaclasses. An important benefit of
using metaclasses is the ability to assign properties
to classes (e.g. being abstract, being final, trac-
ing particular messages, supporting multiple in-
heritance), independently from the base-level code.
However, when both inheritance and instantiation
are explicitly and simultaneously involved, commu-
nication between classes and their instances raises
the metaclass compatibility issue. Some languages
(such as SMALLTALK) address this issue but do not
easily allow the assignment of specific properties
to classes. In contrast, other languages (such as
CLOS) allow the assignment of specific properties
to classes but do not tackle the compatibility issue
well.

In this paper, we describe a new model of meta-
level organization, called the compatibility model,
which overcomes this difficulty. It allows safe
metaclass programming since it makes it possible to
assign specific properties to classes while ensuring
metaclass compatibility. Therefore, we can take
advantage of the expressive power of metaclasses
to build reliable software. We extend this com-
patibility model in order to enable safe reuse and
composition of class specific properties. This ex-
tension is implemented in NEO~LASSTALK, a fully
reflective SMALLTALK.

Keywords: Metaclasses, compatibility, class
specific properties, class property propagation.

Permission to make dlgital or hard copes of all or pan of thes work for
personal or classroom use IS granted wthout fee prowded that
copes are not made or dtstrfbuted for profrt or commercial advan-
tage and that copes bear this no,,ce and the full c,tat,on on the first page.
70 copy otherwse. to republish. to post on servers or to
redastrlbute to lets. requwes prior specific perm~s~on and/or a fee.
OOPSLA ‘98 lo/98 Vancouver. 9.C
@ 1999 ACM l-581 13.005.9/99/0010...$5.00

1 Introduction

It has been shown that programming with
metaclasses is of great benefit [KAJ+93][Zim96]
[BGL98]. An interesting use of metaclasses is the
assignment of specific properties to classes. For ex-
ample, a class can be abstract, have a unique in-
stance, trace messages received by its instances,
define pre-post conditions on its methods, forbid
redefinition of some particular methods.. . These
properties can be implemented using metaclasses,
allowing thereby the customization of the classes
behavior [LC96].

From an architectural point of view, using meta-
classes organizes applications into abstraction lev-
els. Each level describes and controls the level
immediately below to which it is causally con-
nected [Mae87]. Reified classes communicate with
other objects including their own instances. Thus,
classes can send messages to their instances and
instances can send messages to their classes. Such
message sending is named inter-level communica-
tion [MMC95].

However, careless inheritance at one level may
break inter-level communication resulting in an is-
sue called the compatibility issue [BSLR96]. We
have identified two symmetrical kinds of compati-
bility issues. The first one is the upward compatibil-
ity issue, which was named metaclass compatibility
by Nicolas Graube [Gra89], and the second one is
the downward compatibility issue. Both kinds of
compatibility issues are important impediments to
metaclass programming that one should always be
aware of.

*Funded by IBM Global Services - FRANCE
*Since the lJL July 1998: Object Technology Internatmnal Inc.

2670 Queensview Drive, Ottawa, Ontario, CANADA K2B 8Kl

84

Currently, none of the existing languages deal-
ing with metaclasses allow the assignment of spe-
cific properties to classes while ensuring compat-
ibility. CLOS [KdRBSl] allows one to assign any
property to classes, but it does not ensure compati-
bility. On the other hand, both SOM [SOM93] and
SMALLTALK [GR83] add ress the compatibility is-
sue but they introduce a class property propagation
problem. Indeed, a property assigned to a class is
automatically propagated to its subclasses. There-
fore, in SOM and SMALLTALK, a class cannot have
a specific property. For example, when assigning
the abstractness property to a given SMALLTALK
class, subclasses become abstract too [BC89]. It
follows that users face a dilemma: using a language
that allows the assignment of specific class proper-
ties without ensuring compatibility, or using a lan-
guage that ensures compatibility but suffers from
the class property propagation problem.

In this paper, we present a model - the com-
patibility model - which allows safe metaclass pro-
gramming, i.e. it makes it possible to assign spe-
cific properties to classes without compromising
compatibility. In addition to ensuring compatibil-
ity, the compatibility model avoids class property
propagation: a class can be assigned specific prop-
erties without any side-effect on its subclasses.

We implemented the compatibility model in
NEOCLASSTALK, a SMALLTALK extension which
introduces many features including explicit meta-
classes [Riv96]. Our experiments [Led98][Riv97]
showed that the compatibility model allows pro-
grammers to fully take advantage of the expressive
power of metaclasses. This effort has resulted (i) in
a tool that permits a programmer unfamiliar with
metaclasses to transparently deal with class spe-
cific properties, and (ii) in an approach allowing
reuse and composition of class properties.

This paper is organized as follows. Section 2
presents the compatibility issue. We give some ex-
amples to show its significance. Section 3 shows
how existing programming languages address the
compatibility issue, and how they deal with the
property propagation problem. Section 4 describes
our solut,ion and illustrates it with an example. In
section 5, we deal with reuse and composition of
class specific properties within the compatibility
model. Then, we sketch out the use of the com-

patibility model for both base-level and meta-level
programmers. The last section contains a conclud-
ing summary.

2 Inter-level communication and compati-
bility

We define inter-level communication as any mes-
sage sending between classes and their instances
(see Figure 1). Indeed, class objects can interact,
with other objects by sending and receiving mes-
sages. In particular, an instance can send a mes-
sage to its class and a class can send a message to
some of its instances. We use SMALLTALK as an
example to illustrate this issue’.

Class level

Instance level

------) MessageSending

Figure 1: Inter-level communication

Two methods allow inter-level communication
in SMALLTALK: new and class. When one of them
is used, the involved objects belong to different lev-
els of abstraction2:

l An object receiving the class message returns
its class. Then, the class method makes it pos-
sible to go one level up. The following two
instance methods - excerpted from Visual
Works SMALLTALK -- include message send-
ing to the receiver’s class.

* message name is sent to the class:
Object>>printOn: aStream

GI:‘f=! self class 3.

* message dayslnyear: is sent to the class:
Date>dayslnYear

“Answer the number of days in the year
represented by the receiver.”
t self class dayslnyear: self year

‘We use the SMALLTALK syntax and terminology throughout this
paper.

‘St&x measures we made over a Visual Works SMALLTALK image
show that inter-level communication is very frequent. 25% of classes
include instance methods referencing the class and 24% of metaclasses
define methods referencing an instance.

85

l A class receiving the new message returns a
new instance. Therefore, the new method
makes it possible to go one level down. The
following two class methods include message
sending to the newly created instances.

* message at:put: is sent to a new instance:
ArrayedCollection class>>with: anobject

1 newCollection 1
newCollection := self new: 1.
newCollection at: 1 put: anobject.
tnewCollection

* message on: is sent to a new instance:
Browser class>openOn: anorganizer

self openOn: (self new on: anorganizer) with-
TextState: nil

Thus, inter-level communication in SMALLTALK

is materialized by sending the messages new and
class. Other languages where classes are reified
(such as CLOS and SOM) also allow similar mes-
sage sending.

Since these inter-level communication messages
are embedded in methods, they are inherited when-
ever methods are inherited. Ensuring compatibiEity
means making sure that these methods will not in-
duce any failure in subclasses, i.e. all sent messages
will always be understood. We have identified two
kinds of compatibility: upward compatibilit$ and
downward compatibility.

MetaA 0 MetaB 1

Figure 2: Compatibility need to be ensured at a higher level

2.1 Upward compatibility

Suppose A implements a method i-foo that sends
the c-bar message to the class of the receiver (see
Figure 2). B is a subclass of A. When i-foo is sent
to an instance of B, the B class receives the c-bar

message. In order to avoid any failure, B should
understand the c-bar message (i.e. MetaB should
implement or inherit a method c-bar).

3Nicolas Graube named this issue metaclass compatib~laty[Gra89].

Definition of upward compatibility:
Let B be a subclass of the class A, MetaB the

metaclass of B, and MetaA the metaclass of A.
Upward compatibility is ensured for MetaB and

MetaA if: every possible message that does not
lead to an error for any instance of A, will not
lead to an error for any instance of B.

2.2 Downward compatibility

Suppose MetaA implements a method c-foo that
sends the i-bar message to a newly created instance
(see Figure 3). MetaB is created as a subclass of
MetaA. When c-foo is sent to B (an instance of
MetaB), B 11 wi create an instance which will receive
the i-bar message. In order to avoid any failure,
instances of B should understand the i-bar mes-
sage (i.e. B should implement or inherit the i-bar

method).

Met;$ too7 MetaB
MetaA>>c-foo

+ self new i-bar

t- t
+ inheritance - instantiation A 7 B

<i-bar> l
-I

Figure 3: Compatibility need to be ensured at a lower level

Definition of downward compatibility:
Let MetaB be a subclass of the metaclass MetaA.
Downward compatibility is ensured for two

classes B instance of MetaB and A instance of
MetaA i@: every possible message that does not
lead to an error for A, will not lead to an error

for B.

3 Existing models

We will now show why none of the known mod-
els allow the assignment of specific properties to
classes while ensuring compatibility.

3.1 CLOS

When (re)defining a class in CLOS, the validate-

superclass generic function is called, before the di-
rect superclasses are stored [KdRBSl]. As a de-
fault, validate-superclass returns true if the meta-

86

class of the new class is the same as the metaclass
of the superclass4, i.e. classes and their subclasses
must have the same metaclass. Therefore, incom-
patibilities are avoided but metaclass programming
is very constrained.

MetaA

Figure 4: By default in CLOS, subclasses must share the
same metaclass as their superclass

Figure 4 shows a hierarchy of two classes that
illustrates the CLOS default compatibility manage-
ment policy. Since class B inherits from A, B and
A must have the same metaclass.

In order to allow the definition of classes with
different behaviors, programmers usually redefine
the validate-superclass method to make it always
return true. Thus, CLOS programmers can have
total freedom to use a specific metaclass for each
class. So, they can assign specific properties to
classes, but the trade-off is that they need to be
always aware of the compatibility issue.

3.2 SOM

SOM is an IBM CORBA compliant prod-
uct which is based on a metaclass architecture
[DF94b]. The SOM kernel follows the OBJVLISP

model [Coi87]. SOM metaclasses are explicit and
can have many instances. Therefore, users have
complete freedom to organize their metaclass hier-
archies.

3.2.1 Compatibility issue in SOM

SOM encourages the definition and the use of ex-
plicit metaclasses by introducing a unique con-
cept named derived metaclasses which deals with
the upward compatibility issue [DF94ai At
compile-time, SOM automat;-;liy determines an

41n fact I+ Aso returns true if the superclass is the class named t,
or if the metaclass of one argument is standard-class and the metaclass
of the other IS funcallable-standard-class.

appropriate metaclass that ensures upward com-
patibility. If needed, SOM automatically creates a
new metaclass named a derived metaclass to ensure
upward compatibility.

A>>i-foe

t self m c-bar

class: B;

MetaB -

Me’ah-c

Derived

I t
parent2 A;

metaclass: UetaB;
___-

d inheritance - instantiation

Figure 5: SOM ensures upward compatibility using derived
metaclasses

Suppose that we want to create a class B, in-
stance of MetaB and subclass of A. SOM will de-
tect an upward compatibility problem, since MetaB

does not inherit from the metaclass of A (MetaA).

Therefore, SOM automatically creates a derived
metaclass (Derived), using multiple inheritance in
order to support all necessary class methods and
variables5. Figure 5 shows the resulting construc-
tion. When an instance of B receives i-foo, it goes
one level higher and sends c-bar to the B class. B

understands the c-bar message since its metaclass
(i.e. Derived) is a derived metaclass which inherits
from both MetaB and MetaA.

L

Figure 6: SOM downward compatibility failure example

SOM does not provide any policy or mechanism
to handle downward compatibility. Suppose that
MetaB is created as a subclass of MetaA (see Fig-
ure 6). The c-foo method which is inherit,04 ?,j
MetaB sends the i-bar message I,O a new instance.
When the B class receives the c-foo message, a run-
time error will occur because its instances do not
understand the i-bar message.

‘The semantics of derived metaclasses guarantees that the declared
met&ass takes precedence in the resolution of multiple inheritance
ambiguities (i.e. MetaB before MetaA). Besides, it ensures the instance
variables of the class are correctly imtialized by the use of a complex
mechanism.

87

3.2.2 Class property propagation in SOM

SOM does not allow the assignment of a property
to a given class, without making its subclasses be
assigned the same property. We name this defect
the class property propagation problem. In the fol-
lowing example, we illustrate how derived meta-
classes implicitly cause undesirable propagation of
class properties.

class: B:
SoleInstance hDcrived

parent: A; Released e
metaclass: SoleInstance;

p-!sF] t t
A-B

Figure 7: Class property propagation in SOM

Suppose that the A class of Figure 7 is a released
class, i.e. it should not be modified any more.
This property is useful in multi-programmer de-
velopment environments for versionning purposes.
In order to avoid any change, A is an instance of
the Released metaclass. Let B a class that has a
unique instance: f3 is an instance of the Soleln-

stance metaclass. But as B is a subclass of A, SOM
creates B as instance of an automatically created
derived metaclass which inherits from both Soleln-

stance and Released. Thus, as soon as B is created,
it is automatically “locked” and acts like a released
class. So, we cannot define any new method on it!

3.3 Smalltalk-

In SMALLTALK, metaclasses are partially hidden
and automatically created by the system. Each
metaclass is non-sharable and strongly coupled
with its sole instance. So, the metaclass hierarchy
is parallel to the class hierarchy and is implicitly
generated when classes are created.

Using parallel inheritance hierarchies, the SMALL-

TALK model ensures both upward and downward
compatibility. Indeed, any code dealing with new
or class methods, is inherited and works properly.

3.3.1 Compatibility issue in Smalltalk- In Figure 9, the A class is abstract since its sub-
classes must implement some methods to complete
the instance behavior. B is a concrete class as it im-
plements the whole set of these methods. Suppose

‘The name of a SMALLTALK metaclass is the name of Its unique
Instance postfixed by the word ‘class’.

A ClaSs>>C-foe A class<-B class
tself -i-bar <c-too>

<c-bar>

A>>i-foe

fself clas&c-bar t t

[q inheritance A<lt%7= B -t instantiation -
<I-bar>

Figure 8: SMALLTALK ensures both upward and downward
compatibilities

When one creates the B class, a subclass of A

(see Figure 8), SMALLTALK automatically gener-
ates the metaclass of B (“B clasC6), as a subclass
of “A class”, the metaclass of A. Suppose A imple-
ments a method i-foo that sends c-bar to the class
of the receiver. If i-foo is sent to an instance of
B, the B class receives the c-bar message. Thanks
to the parallel hierarchies, the B class understands
the c-bar message, and upward compatibility is en-
sured. In a similar manner, downward compatibil-
ity is ensured thanks to the parallel hierarchy.

3.3.2 Class property propagation in Small-
talk-80

Since metaclasses are automatically and implicitly
managed by the system, SMALLTALK drastically
reduces the opportunity to change class behaviors,
making metaclass programming “anecdotal”. As
with SOM, SMALLTALK does not allow the assign-

ment of a property to a class without propagating
it to its subclasses.

A class v B class
A class>>new

t

<new>

self error: ‘1 am Abstract ‘ t

[+ In en ante -t instantiation h ‘t
I I
A-B

Figure 9: Class property propagation in SMALLTALK

J

88

that we want to enforce the property of abstract-
ness of A. In order to forbid instantiating A, we de-
fine the class method A class>>new which raises an
error. Unfortunately, “B class” inherits the method
new from “A class”. As a result, attempting to cre-
ate an instance of B raises an error7!

4 The compatibility model

Among the previous models, only the SMALLTALK
one with its parallel hierarchies ensures full com-
patibility. However, it does not allow the assign-
ment of specific properties to classes. On the
other hand, only the CLOS model allows the as-
signment of specific properties to classes. Unfor-
tunately, it does not ensure compatibility. We be-
lieve that these two goals can both be achieved by a
new model which makes a clear separation between
compatibility and class specific properties.

Abstract + A cla8s>>new

A class G-B class

% 4
Abstract + A class

i <new>

Figure 10: Avoiding the propagation of abstractness

We illustrate this idea of separation of concerns
by refactoring the example of Figure 9. We create
a new metaclass named “Abstract + A class” as a

subclass of “A class” (see Figure 10). The A class is
redefined as an instance of this new metaclass. As
“Abstract + A class” redefines the new method to
raise an error, A cannot have any instance. How-
ever, since “B class” is not a subclass of “Abstract

+ A class”, the B class remains concrete. The gen-
eralization of this scheme is our solution, named
the compatibility model.

In the remainder of this paper, names of meta-
classes defining some class property are denoted
with the concatenation of the property name, the
+ symbol and the superclass name. For exam-
ple, “Abstract + A class” is a subclass of “A class”

‘This example is deliberately simple, and one could avoid this
problem by redefining new in “B class”. But, this solution is a kind of
inheritance anomaly [MY931 that increases maintenance costs.

that defines the property of abstractness named
Abstract.

4.1 Description of the compatibility model

The compatibility model extends the SMALLTALK

model by separating two concerns: compatibility
and specific class properties. A metaclass hierar-
chy parallel to the class hierarchy ensures both up-
ward and downward compatibility like in SMALL-

TALK. An extra metaclass “layer” is introduced
in order to locally assign any property to classes.
Classes are instances of metaclasses belonging to
this layer. So, the compatibility model is based on
two “layers” of metaclasses, each one addressing a
unique concern:

Compatibility concern: This issue is addressed
by the metaclasses organized in a hierarchy
parallel to the class hierarchy. We name such
metaclasses: compatibility metaclasses. They
define all the behavior that must be propa-
gated to all (sub)classes. All class methods
which send messages to instances should be
defined in these metaclasses. Besides, all mes-
sages sent to classes by their instances should
be defined in these metaclasses too.

Specific class properties concern: This issue
is addressed by metaclasses that define the
class specific properties. We name such meta-
classes: property metaclasses. A class with
a specific property is instance of a prop-
erty metaclass which inherits from the corre-
sponding compatibility metaclass. The prop-
erty metaclass is not joined to other property
metaclasses, since it defines a property specific
to the class.

Figure 11 shows’ the compatibility model ap-
plied to a hierarchy consisting of two classes: A and
B. They are respectively instances of the “AProp-

erty + AClass” and “BProperty + BClass” meta-
classes. “AProperty + AClass” defines properties
specific to class A, while “BProperty + BClass” de-

fines properties specific to class B. As “AProperty +

AClass” and “BProperty + BClass” are not ,joined
‘Compatibility metaclasses are surrounded with a dashed line and

property metaclasses are drawn inside a grey shape.

89

AClass>>c-foe
+sslf PUL i-bar

Figure 11: The compatibility model

by any link, class property propagation does not
occur. Thus, A and B can have distinct properties.

Since “AProperty + AClass” and “BProperty +

BClass” are subclasses of the AClass and BClass

metaclasses, both upward and downward compat-
ibility are guaranteed. Suppose that A defines two
instance methods i-foo and i-bar. The i-foo method
sends the c-bar message to the class of the receiver.
The i-bar method is sent to a new instance by the c-
foo method. Because the AClass and BClass meta-
class hierarchy is parallel to the A and B class hier-
archy, inter-level communication failure is avoided.

4.2 Example: Refactoring the Smalltalk-
80 Boolean hierarchy

The Boolean hierarchy of SMALLTALK~ is de-
picted in Figure 12. Boolean is an abstract class
which defines a protocol shared by True and
False. True and False are concrete classes that
cannot have more than one instance. These prop-
erties (i.e. abstractness and having a sole instance)
are implicit in SMALLTALK. Using the compati-
bility model, we refactor the Boolean hierarchy to
emphasize them.

We first create “Boolean class”, which is a com-
patibility metaclass. The second step consists
of creating the property metaclass “Abstract +

i300lean class”, which enforces the Boolean class to
be abstract. Finally, we build the Boolean class by
instantiating the “Abstract + Boolean class” meta-
class.

To refactor the False class, we first create the
“False class” metaclass, as a subclass of “Boolean

‘We prefer this academic example to emphasize our ideas rather
than a more complex example which should require a more detailed
presentation.

<L True class
Boolean classL

t

False class

t !

Figure 12: The Boolean hierarchy of SMALLTALK

class” to ensure the compatibility. The second step
consists of creating the property metaclass “Soleln-

stance + False class”, which enforces the False class
to have at most one instance. At last, we create
the False class by instantiating the “Solelnstance +

False class” metaclass. The True class is refactored
in the same way. The result of rebuilding the whole
hierarchy of Boolean is shown in Figure 13.

Figure 13: The Boolean hierarchy aft,er refact,oring

5 Reuse and composition within the com-
patibility model

We have experimented the compatibility model
in NEOCLASSTALK'~ [Riv97], a fully reflective
SMALLTALK. We quickly faced the need of class
property reuse and composition. Indeed, unrelated
classes belonging to different hierarchies ca.n have
the same properties, and a given class can have
many properties

In the previous section, both the True class and
the False class have the same property: having a
unique instance. Besides, we assigned only one
property to each class of the Boolean hierarchy

“NEOCLASSTALK and all related papers cm be downloaded from
http //www.emn.fr/cs/object/tools/neoclasstalk/neoclasst~k.~~tml

90

But, a class need to be assigned many properties.
For example, the False class must not only have
a unique instance, but it also should not be sub-
classed (such a class is final in JAVA terminology).
So, we have to reuse and compose these class prop-
erties with respect to our compatibility model.

In this section, we propose an extension of our
compatibility model that deals with reuse and com-
position of class properties. Any language where
classes are treated as regular objects may integrate
our extended compatibility model. NEOCLASS-

TALK has been used as a first experimentation plat-
form.

5.1 Reuse of class properties

In SMALLTALK, since metaclasses behave in a dif-
ferent way than classes, they are defined as in-
stances of a particular class, a meta-metaclass,
called Metaclass. Metaclass defines the behavior of
all metaclasses in SMALLTALK. For example, the
name of a metaclass is the name of its sole instance
postfixed by the word ‘class’.

Metaclass>>name
fthisclass name, ’ class’

We take advantage of this concept of meta-
metaclasses to reuse class properties. Since meta-
classes implementing different properties have dif-
ferent behaviors, we need one meta-metaclass for
each class property. Property metaclasses defining
the same class property are instances of the same
meta-metaclass.

When a property metaclass is created, the meta-
metaclass initializes it with the definition of the
corresponding class property. Thus, the code
(instance variables, methods, . . .) correspond-
ing to the definition of the class property, is
automatically generated. Reuse is achieved by cre-
ating property metaclasses defining the same class
property as instances of the same meta-metaclass,
i.e. they are initialized with the same class prop-
erty definition (an example of such an initialization
is given in section 5.4.2).

The root of the meta-metaclass hierarchy named
PropertyMetaclass describes the default structure
and behavior of property metaclasses. For exam-
ple, the name of a property metaclass is built from
the property name and the superclass name:

PropertyMetaclass>name
tself class name, ‘+‘, self superclass name

In the refactored Boolean hierarchy of section
4.2, both “Solelnstance + False class” and “Soleln-

stance + True class” define the property of having
a unique instance. Reuse is achieved by defining
both “Solelnstance + False class” and “Solelnstance

+ True class” as instances of Solelnstance, a, sub-
class of PropertyMetaclass (see Figure 14).

Figure 14: Reuse properties in the Boolean hierarchy

5.2 Composition of class properties

Since a given class can have many properties, the
model must support the composition of class prop-
erties. We chose to use many property metaclasses
organized in a single inheritance hierarchy, where
each metaclass implements one specific class prop-
erty.

,~__“__“__________~~~.~.~~~~..“~~~...~~~~
i Boolean classy False class ._____ K _______._ * _--- K ----- ;

Boolean<- F&e

* inheritance -+ instantiation

Figure 15: Assigning two properties to False

91

To illustrate this idea, we modify the in-
stantiation link for the False class (see Fig-
ure 15). We define two property metaclasses,
one for each property. The first property meta-
class is “Solelnstance + False class”, which inher-
its from the compatibility metaclass “False class”.

The second one is “Final + Solelnstance + False

class” , which is the class of False. It is defined as
a subclass of “Solelnstance + False class”. The re-
sulting scheme respects the compatibility model: it
allows the assignment of two specific properties to
the False class and still ensures compa,tibility.

5.2.1 Conflict management

The solution of the property metaclasses compo-
sition issue is not trivial. Indeed, it is necessary
to deal with conflicts that arise when composing
different property metaclasses. When using inher-
itance to compose property metaclasses, two kinds
of conflicts can arise: name confhts and value con-
flicts [DHH+95].

Name conflicts happen when orthogonal prop-
erty metaclasses define instance variables or meth-
ods which have the same name. Two property
metaclasses are orthogonal when they define un-
related class properties. Name conflicts for both
instance variables and methods are avoided by
adapting the definition of a new property meta-
class according to its superclasses. For exam-
ple, although the two property metaclasses “Sole-

Instance + False class” and “Solelnstance + True

class” define the same property for their respective
instances (classes False and True), they may use dif-
ferent instance variable names or method names.

Value conflicts happen when non-orthogonal
property metaclasses define methods which have
the same name. Most of these conflicts are avoided
by making the property metaclass hierarchy act as
a cooperation chain, i.e. a property metaclass ex-
plicitly refer to the overridden methods defined in
its superclasses . l1 Therefore, each property meta-
class acts like a mixin [BC90].

“In NEOCLASSTALK, as in SMALLTALK, this is achwved usmg the
pseudo-variable super.

5.2.2 Example of cooperation between
property metaclasses

Suppose that we want to assign two specific prop-
erties to the False class of Figure 16: (i) tracing
all messages (Trace) and (ii) having breakpoints
on particular methods (Breakpoint). These two
properties deal with the message handling which
is based in NEOCLASSTALK on the technique of
the “method wrappers” described in [Duc98] and
[BFJR98]. Th e executeMethod:receiver:arguments:

method is the entry point to handle mes-
sages in NEO~LASSTALK, i.e. customizing exe-
cuteMethod:receiver:arguments: allows a specializa-
tion of the message sending12. Thus, when the ob-
ject false receives a message, the class False receives
the message executeMethod:receiver:arguments:.

PropertyMetaclass

Figure 16: Composition of non-orthogonal properties

According to the inheritance hierarchy, (1) the
trace is first done, then (2), by the use of super, the
breakpoint is performed, and (3) a regular method
application is finally executed (again cadled using
super).

l (3) StandardClass>executeMethod: method receiver:
ret arguments: args

l (2) Breakpoint-i-False class>>executeMethod: method
receiver: ret arguments: args

method selector == stopSelector
iffrue: [self halt: ‘Breakpoint for ‘, stopSelector].

tsuper executeMethod: method receiver: ret argu-
ments: args

“A default executeMethod:receiver:argumentr: method is prowded by
StandardClass (the root of all metaclasses in NEOCLASSTALK) which just
applies the method on the receiver with the arguments.

92

Figure 17: The Extended Compatibility Model

l (1) Trace+BreakPoint+False class>>executeMethod:
method receiver: ret arguments: args

self transcript show: method selector; cr.
fsuper executeMethod: method receiver: ret argu-

ments: args

5.3 The extended compatibility model

Generalizing previous examples allows us to define
the extended compatibility model (see Figure 17)
which enables reusing and composing class prop-
erties. Each property metaclass defines the in-
stance variables and methods involved in a unique
property. Property metaclasses specific to a given
class are organized in a single hierarchy. The root
of this hierarchy is a subclass of a compatibility
metaclass13. Each property metaclass is an in-
stance of a meta-metaclass which describes a spe-
cific class property, allowing its reuse.

Metaclass creation, composition and deletion
are managed automatically with respect to the ex-
tended compatibility model. Each time a new class
is created, a new compatibility metaclass is auto-
matically created. This can be done in the same
wa.y that SMALLTALK builds its parallel metaclass
hierarchy. The assignment of a property to this
class results in the insertion of a new metaclass
into its property metaclass hierarchy. This inser-

ISThis single hierarchy may be compared to an explicit lineariza-
tion of property metaclasses composed using mu%&?inheritance
[DHHM94].

tion is made in two steps14:

1. first, the new property metaclass becomes a
subclass of the last metaclass of the property
metaclass hierarchy;

2. then, the class becomes instance of this new
property metaclass.

NEOCLASSTALK provides protocols for dynami-
cally changing the class of an object (changeclass:)

and the superclass of a class (superclass:) [Riv97].
Thus, the implementation of these two steps is im-
mediate in NEO~LASSTALK, and is provided by the
composeWithPropertiesOf: method.

PropertyMetaclass>>composeWithPropertiesOf: aClass
self superclass: aClass class.
aClass changeclass: self.

5.4 Programming within the extended
compatibility model

We distinguish two kinds of programmers:
(i) “base level programmers” who implement appli-
cations using the language and development tools,
and (ii) “meta level programmers” for whom the
language itself is the application.

14The removal of a property metaclass is done in a symmetrical
way.

93

5.4.1 Base Level Programming

To make our model easy to use for a “base-level
programmer”, the NEOCLASSTALK programming
environment includes a tool that allows one to as-
sign different properties to a given class using a
SMALLTALK-like browser (see Figure 18). These
properties can be added and removed at run-time.
The metaclass level is automatically built accord-
ing to the selection of the “base-level programmer”.

Figure 18: Specific properties assigned to a class using a
browser

5.4.2 Meta Level

In order to introduce

Programming

new class properties, “meta-
level programmers” must create a subclass of the
PropertyMetaclass meta-metaclass. This new meta-
metaclass stores the instance variables and the
methods that should be defined by its instances
(property metaclasses). When this new meta-
metaclass is instantiated, the previous instance
variables are added to the resulting property meta-
class and the methods are compiled15 at initializa-
tion timer6.

For example, the evaluation of the following ex-
pression creates a property metaclass - instance of

15A faster solution consists of doing the compilation only once,
resulting in proto-methods [Riv97]. Thus, when the property meta-
class gets initialized, proto-methods are “copied” into the method
dictionary of the property metaclass, allowing a fast instantiation of
meta-metaclasses.

“This assumes that mitialization is part of the creation pro-
cess, which is true in almost every language This is traditmnnally
achieved in SMALLTALK by the redefimtion of new into super new initialize
[SKT96].

94

the meta-metaclass Trace - that assigns the trace
property to the True class.

Trace new composeWithPropertiesOf: True

In order to achieve the trace, messages must
be captured and then logged in a text col-
lector. Therefore, property metaclasses in-
stances of Trace must define an instance vari-
able (named transcript) corresponding to a text
collector and a method that handles messages.
Message handling is achieved using the ex-
ecuteMethod:receiver:arguments: method which
source code was already presented in 5.2.2. These
definitions are generated when the property meta-
classes are initialized, i.e. using the initialize

method of the Trace meta-metaclass:
Trace>>initialize

super initialize.
self instanceVariableNames:’ transcript ‘.
self generateExecuteMethodReceiverArguments.

6 Conclusion

Considering classes as first class objects organizes
applications in different abstraction levels, which
inevitably raises upward and downward compat-
ibility issues. Existing solutions addressing the
compatibility issues (such as SMALLTALK) do not
allow the assignment of specific properties to a
given class without propagating them to its sub-
classes.

The compatibility model proposed in this paper
addresses the compatibility issue and allows the as-
signment of specific properties to classes without
propagating them to subclasses. This is achieved
thanks to the separation of the two involved con-
cerns: compatibility and class properties. Upward
and downward compatibilities are ensured using
the compatibility metaclass hierarchy that is par-
allel to the class hierarchy. The property meta-
classes, allowing the assignment of specific proper-
ties to classes, are subclasses of these compatibil-
ity metaclasses. Therefore, we can take advantage
of the expressive power of metaclasses to define,
reuse and compose class properties in a environ-
ment which supports safe metaclass programming.

Class properties improve readability, reusabil-
ity and quality of code by increasing separation of
concerns [HL95] [Lie961 [KLM+97]. Indeed, they

allow a better organization of class libraries and
frameworks for designing reliable software. We are
strongly convinced that our compatibility model
enables separation of concerns based on the meta-
class paradigm. Therefore, it promotes building
reliable software which is easy to reuse and main-
tain.

Acknowledgments

The authors are grateful to Mathias Braux, Pierre
Cointe, Stephane Ducasse, Nick Edgar, Philippe
Mulet, Jacques Noye, Nicolas Revault, and Mario
Siidholt for their valuable comments and sugges-
tions. Special thanks to the anonymous referees
who provided detailed and thought-provoking com-
ments.

References

[BC89]

[BC90]

[BFJR98]

[BGL98]

[BSLR96]

Jean-Pierre Briot and Pierre Cointe.
Programming with Explicit Meta-
classes in Smalltalk. In Proceedings of
OOPSLA’89, pages 419-431, New Or-
leans, Louisiana, USA, October 1989.
ACM.

Gilad Bracha and William Cook.
Mixin-based Inheritance. In Proceed-
ings of ECCOP/OOPSLA’90, Ottawa,
Canada, pages 303-311, October 1990.

John Brant, Brian Foote, Ralph E.
Johnson, and Donald Roberts. Wrap-
pers to the Rescue. In Proceedings of
ECOOP’98, July 1998.

Jean-Pierre Briot, Rachid Guerraoui,
and Klaus-Peter Liihr. Concurrency
and Distribution in Object Oriented
Programming. ACA4 Computer Sur-
Ileys, 1998. to appear.

Noury Bouraqadi-Saadani, Thomas
Ledoux, and Fred Rivard. Metaclass
Composability. In ECOOP’96 work-
shop : NComposability Issues in Object
Orientation”, Linz, Austria, July 1996.

[Coi87]

[DF94a]

[DF94b]

[DHH+95]

[DHHM94]

[Duc98]

[GR83]

[Gra89]

[HL95]

Pierre Cointe. Metaclasses are First
Class: the ObjVlisp Model. In Pro-
ceedings of OOPSLA ‘87, pages 156--
167, Orlando, Florida, USA, October
1987. ACM.

Scott Danforth and Ira R. Forman. De-
rived Metaclasses in SOM. In Proceed-
ings of TOOLS EUROPE’94, pages
63-73, Versailles, France, 1994.

Scott Danforth and Ira R. Forman. Re-
flections on Metaclass Programming in
SOM. In Proceedings of OOPSLA ‘94,
pages 440-452, October 1994.

Roland Ducournau, Michel Habib,
Marianne Huchard, Marie-Laure Mug-
nier, and Amedeo Napoli. Le point
sur l’heritage multiple. Techniques et
Sciences Informatique, 14(3):309-345,
1995. (In french).

Roland Ducournau, Michel Habib,
Marianne Huchard, and Ma,rie-Laure
Mugnier. Proposal for a Mono-
tonic Multiple Inheritance Lineariza-
tion. In Proceedings of OOPSLA’94,
pages 164-175, Portland, Oregon, Oc-
tober 1994.

Stephane Ducasse. Evaluating Mes-
sage Passing Control Techniques in
Smalltalk. Journal of Object-Oriented
Programming, 1998. to appear.

A. Goldberg and D. Robson. Smalltalk-
SO, The language and its implementa-
tion. Addison Wesley, Readings, Mas-
sachusetts, 1983.

Nicolas Graube. Metaclass Compati-
bility. In Proceedings of OOPSLA ‘89,
pages 305-315, New Orleans, Lou-
siana, October 1989.

Walter L. Hiirsch and Cristina Videira
Lopes. Separation of Concerns. Tech-
nical Report NU-CCS-95-03, College of
Computer Science, Northeastern Uni-
versity, Boston, MA, February 1995.

95

[KAJ+93]

[KdRBSl]

[KLM+971

[LC96]

[Led981

[Lie961

[Mae871

Gregor Kiczales, J. Michael Ash-
ley, Luis H. Rodriguez Jr., Amin
Vahdat , and Daniel G. Bobrow.
“Object-Oriented Programming: The
CLOS Perspective” edited by Andreas
Papeke, chapter Metaobject Proto-
cols: Why We Want Them and What
Else They Can Do, pages 101-118.
The MIT Press, Cambridge, Mas-
sachusetts, 1993.

Gregor Kiczales, Jim des Rivikres, and
Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

Gregor Kiczales, John
Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-
Oriented Programming. In Mehmet
Akgit and Satoshi Matsuoka, editors,
ECOOP’97, number 1241 in LNCS,
pages 220-242. Springer-Verlag, June
1997.

Thomas Ledoux and Pierre Cointe.
Explicit Metaclasses As a Tool for Im-
proving the Design of Class Libraries.
In Proceedings of ISOTAS’96, LNCS
1049, pages 38-55, Kanazawa, Japan,
March 1996. Springer-Verlag.

Thomas Ledoux. Reflection and Dis-
tributed Systems : an Experiment with
CORBA and Smalltalk. PhD the-
sis, Universite de Nantes, March 1998.
(In french. Reflexion dans les systemes
repartis : application 8 CORBA et
Smalltalk).

Karl J. Lieberherr. Adaptive Object-
Oriented Software: The Demeter
Method with Propagation Patterns.
PWS Publishing Company, Boston,
1996. ISBN 0-534-94602-X.

Pattie Maes. Concepts and Ex-
periments in Computational Reflec-
tion. In Proceedings of OOPSLA ‘87,
pages 147-155, Orlando, Florida, 1987.
ACM.

[MMC95]

[MY 931

[Riv96]

[Riv97]

[SKT96]

[SOM93]

[Zim96]

Philippe Mulet, Jacques Malenfant,
and Pierre Cointe. Towards a Method-
ology for Explicit Composition of
MetaObjects. In Proceedings of OOP-
SLA ‘95, pages 316-330, Austin, Texas,
October 1995.

Satoshi Matsuoka and Aki-
nori Yonezawa. Research Directions in
Concurrent Object-Oriented Program-
ming, chapter Analysis of inheritance
anomaly in object-oriented concurrent
programming languages. MIT Press,
1993.

Fred Rivard. A New Smalltalk Ker-
nel Allowing Both Explicit and Im-
plicit Metalclass Programming. OOP-
SLA’96, Workshop : Extending the
Smalltalk Language, October 1996.

Fred Rivard. Object Behavioral Evo-
lution Within Class Based Reflective
Languages. PhD thesis, Universite de
Nantes, June 1997. (In french. Evo-
lution du Comportement des Objets
dans les Langages 8. Classes Rkflexifs).

Suzanne Skublicks, Edward J. Klimas,
and David A. Thomas. Smalltalk with
Style. Prentice Hall, 1996.

IBM. SOMobjects Developer Toolkit
Users Guide release 2.0, second edi-
tion, June 1993.

Chris Zimmermann, editor. Advances
in Object-Oriented Metalevel Architec-
tures and Reflection. CRC Press, 1996.

96

