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Abstract. The standard reflection API of Java provides the ability to
introspect a program but not to alter program behavior. This paper pre-
sents an extension to the reflection API for addressing this limitation.
Unlike other extensions enabling behavioral reflection, our extension cal-
led Javassist enables structural reflection in Java. For using a standard
Java virtual machine (JVM) and avoiding a performance problem, Javas-
sist allows structural reflection only before a class is loaded into the JVM.
However, Javassist still covers various applications including a language
extension emulating behavioral reflection. This paper also presents the
design principles of Javassist, which distinguish Javassist from related
work.

1 Introduction

Java is a programming language supporting reflection. The reflective ability of
Java is called the reflection API. However, it is almost restricted to introspection,
which is the ability to introspect data structures used in a program such as a
class. The Java’s ability to alter program behavior is very limited; it only allows
a program to instantiate a class, to get/set a field value, and to invoke a method
through the API.

To address the limitations of the Java reflection API, several extensions have
been proposed. Most of these extensions enable behavioral reflection, which is
the ability to intercept an operation such as method invocation and alter the
behavior of that operation. If an operation is intercepted, the runtime systems of
those extensions call a method on a metaobject for notifying it of that event. The
programmer can define their own version of metaobject so that the metaobject
executes the intercepted operation with customized semantics, which implement
a language extension for a specific application domain such as fault tolerance [9].

However, behavioral reflection only provides the ability to alter the behavior
of operations in a program but not provides the ability to alter data structures
used in the program, which are statically fixed at compile time (or, in languages
like Lisp, when they are first defined). The latter ability called structural reflec-
tion allows a program to change, for example, the definition of a class, a function,
and a record on demand. Some kinds of language extensions require this ability
for implementation and thus they cannot be implemented with a straightforward
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program using behavioral reflection; complex programming tricks are often nee-
ded.

To simply implement these language extensions, this paper presents Javassist,
which is a class library for enabling structural reflection in Java. Since portability
is important in Java, we designed a new architecture for structural reflection,
which can be implemented without modifying an existing runtime system or
compiler. Javassist is a Java implementation of that architecture. An essential
idea of this architecture is that structural reflection is performed by bytecode
transformation at compile-time or load time. Javassist does not allow structural
reflection after a compiled program is loaded into the JVM. Another feature of
our architecture is that it provides source-level abstraction: the users of Javassist
do not have to have a deep understanding of the Java bytecode. Our architecture
can also execute structural reflection faster than the compile-time metaobject
protocol used by OpenC++ [3] and OpenJava [20].

In the rest of this paper, we first overview previous extensions enabling be-
havioral reflection in Java and point out limitations of those extensions. Then
we present the design of Javassist in Section 3 and show typical applications of
Javassist in Section 4. In Section 5, we compare our architecture with related
work. Section 6 is conclusion.

2 Extensions to the Reflection Ability of Java

The Java reflection API dose not provide the full reflective capability. It does
not enable alteration of program behavior but it only supports introspection,
which is the ability to introspect data structures, for example, inspecting a class
definition. This design decision was acceptable because implementing the full
capability was difficult without a decline in runtime performance. An imple-
mentation technique using partial evaluation has been proposed [17,2] but the
feasibility of this technique in Java has not been clear.

However, several extensions to the Java reflection API have been proposed.
To avoid performance degradation, most of these extensions enable restricted
behavioral reflection. They only allow alteration of the behavior of specific kinds
of operations such as method calls, field accesses, and object creation. The pro-
grammers can select some of those operations and alter their behavior. The
compilers or the runtime systems of those extensions insert hooks in programs
so that the execution of the selected operations is intercepted. If these operati-
ons are intercepted, the runtime system calls a method on an object (called a
metaobject) associated with the operations or the target objects. The execution
of the intercepted operation is implemented by that method. The programmers
can define their own version of metaobject for implementing new behavior of the
intercepted operations.

The runtime overheads due to this restricted behavioral reflection are low
since only the execution of the intercepted operations involves a performance
penalty and the rest of the program runs without any overheads. Especially, if
hooks for the interception are statically inserted in a program during compila-
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tion, the runtime overheads are even lowered. To statically insert hooks, Reflec-
tive Java [22] performs source-to-source translation before compilation and Kava
[21] performs bytecode-level transformation when a program is loaded into the
JVM. MetaXa [16,11] internally performs bytecode-level transformation with a
customized JVM. It uses a customized just-in-time compiler (JIT) for improving
the execution speed of the inserted hooks. This hook-insertion technique is well
known and has been applied to other languages such as C++ [4].

Although the restricted behavioral reflection is useful for implementing va-
rious language extensions, there are some kinds of extensions that cannot be
intuitively implemented with that kind of reflection. An example of these exten-
sions is binary code adaptation (BCA) [13], which is a mechanism for altering
a class definition in binary form to conform changes of the definitions of other
classes. Suppose that we write a program using a class library obtained from
a third party. For example, our class Calendar implements an interface Writable
included in that class library:

class Calendar implements Writable {
public void write(PrintStream s) { ... }

}

The class Calendar implements method write() declared in the interface Writa-
ble.

Then, suppose that the third party gives us a new version of their class
library, in which the interface Writable is renamed into Printable and it declares
a new method print(). To make our program conform this new class library,
we must edit the definitions of all our classes implementing Writable, including
Calendar:

class Calendar implements Printable {
public void write(PrintStream s) { ... }
public void print() { write(System.out); }

}

The interface of Calendar is changed into Printable and method print() is added.
BCA automates this adaptation; it automatically alters class definitions in

binary form according to a configuration file specifying how to alter them. Note
that the method body of print() is identical among all the updated classes
since print() can be implemented with the functionality already provided by
write() for the old version. If that configuration file is supplied by the library
developer, we can run our program without concern about evolution of the class
library.

Unfortunately, implementing BCA with behavioral reflection is not intuitive
or straightforward. Since behavioral reflection cannot directly provide the ability
to alter data structures such as a class definition or construct a new data struc-
ture, these reflective computation must be indirectly implemented. For example,
the implementation of BCA with behavioral reflection defines a metaobject indi-
rectly performing the adaptation specified by a given configuration file. For the
above example, this metaobject is made to be associated with Calendar and it
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watches method calls on Calendar objects. If the method print() is called, the
metaobject intercepts that method call and executes the computation correspon-
ding to print() instead of the Calendar object. The metaobject also intercepts
runtime type checking so that the JVM recognizes Calendar as a subtype of Prin-
table. Recall that Java is a statically typed language and the original Calendar
is a subtype of Writable.

The ability to alter data structures used in a program is called structural
reflection, which has not been directly supported by previous systems. Although
a number of language extensions are more easily implemented with structural
reflection than with behavioral reflection, the previous systems have not been
addressing those extensions. They have been too much focused on language
extensions that can be implemented by altering the behavior of method calls
and so on.

3 Javassist

To simply implement language extensions like BCA shown in the previous sec-
tion, we developed Javassist, which is our extension to the Java reflection API
and enables structural reflection instead of behavioral one. Javassist is based on
our new architecture for structural reflection, which can be implemented without
modifying an existing runtime system or a compiler.

3.1 Implementations of Structural Reflection

Structural reflection is the ability to allow a program to alter the definitions of
data structures such as classes and methods. It has been provided by several
languages such as Smalltalk [10], ObjVlisp [6], and CLOS [14]. These languages
implement structural reflection with support mechanisms embedded in runtime
systems. Since the runtime systems contain internal data representing the defini-
tions of data structures such as a class, the support mechanisms allow a program
to directly read and change those internal data and thereby execute structural
reflection on the correspondent data structures.

We could not accept this implementation technique for Javassist since it needs
to modify a standard JVM but portability is important in Java. Furthermore,
a naive application of this technique to Java would cause serious performance
degradation of the JVM because this technique makes it difficult for runtime
systems to employ optimization techniques based on static information of exe-
cuted programs. Since a program may be altered at runtime, efficient dynamic
recompilation is required for redoing optimization on demand. For example, me-
thod inlining is difficult to perform. If an inlined method is altered at runtime
with structural reflection, all the inlined code must be updated. To do this, the
runtime system must record where the code is inlined. This will spend a large
amount of memory space. Another example is the “v-table” technique used for
typical C++ implementations [8]. This technique statically constructs method
dispatch tables so that invoked methods are quickly selected with a constant
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offset in the tables. If a new method is added to a class at runtime, then the
dispatch tables may be updated and all offsets in the tables may be recomputed.
Since the dynamic recompilation technique has been used so far for gradually op-
timizing “hot spots” of compiled code at runtime [12], it has been assuming that
a program is never changed at runtime. Effectiveness of dynamic recompilation
without this assumption is an open question.

Another problem is correctness of types. Since Java is a statically typed
language, a variable of type X must be bound to an object of X or a subclass Y
of X. If a program can freely access and change the internal data of the JVM,
it may dynamically change the super class of Y from X to another class. This
change causes a type error for the binding between a variable of type X and an
object of Y. To address this problem, extra runtime type checks or restrictions
on the range of structural reflection are needed.

3.2 Load-Time Structural Reflection

To avoid the problems mentioned above, we designed a new architecture for
structural reflection; it does not need to modify an existing runtime system or
a compiler. On the other hand, it enables structural reflection only before a
program is loaded into a runtime system, that is, at load time. Javassist is a
class library enabling structural reflection based on this architecture. In Java,
the bytecode obtained by compilation of a program is stored in class files, each
of which corresponds to a distinct class. Javassist performs structural reflection
by translating alterations by structural reflection into equivalent bytecode trans-
formation of the class files. After the transformation, the modified class files are
loaded into the JVM and then no alterations are allowed after that. Thereby,
Javassist can be used with a standard JVM, which may use various optimization
techniques.

Javassist is used with a user class loader. Java allows programs to define their
own versions of class loader, which fetch a class file from a not-standard resource
such as a network. A typical definition of the class loader is as follows:

class MyLoader extends ClassLoader {
public Class loadClass(String name) {

byte[] bytecode = readClassFile(name);
return resolveClass(defineClass(bytecode));

}

private byte[] readClassFile(String name) {
// read a class file from a resource.

}
}

The methods defineClass() and resolveClass() are inherited from ClassLo-
ader. They request the JVM to load a class constructed from the bytecode given
as an array of byte. The returned value is a Class object representing the lo-
aded class. Once a class X is manually loaded with an instance of MyLoader,
all classes referenced by that class X are loaded through that class loader. The
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JVM automatically calls loadClass() on that class loader for loading them on
demand.

Javassist helps readClassFile() shown above obtain the bytecode of a re-
quested class. It can be regarded as a class library for reading bytecode from
a class file and altering it. However, unlike similar class libraries such as the
JavaClass API [7] and JOIE [5], Javassist provides source-level abstraction so
that it can be used without knowledge of bytecode or the data format of the
class file. Also, Javassist was designed to make it difficult to wrongly produce a
class file rejected by the bytecode verifier of the JVM.

3.3 The Javassist API

We below present the overview of the Javassist API.

Reification and Reflection: The first step of the use of Javassist is to create
a CtClass (compile-time class) object representing the bytecode of a class loaded
into the JVM. This step is for reifying the class to make it accessible from a
program. If stream is an InputStream for reading a class file (from a local disk,
memory, a network, etc.), then:

CtClass c = new CtClass(stream);

creates a new CtClass object representing the bytecode of the class read from
the class file, which contains enough symbolic information to reify the class.
Also, the constructor of CtClass can receive a String class name instead of an
InputStream. If a String class name is given, Javassist searches a class path and
finds an InputStream for reading a class file.

One can call various methods on the CtClass object for introspecting and
altering the class definition. Changes of the class definition are reflected on the
bytecode represented by that object. To obtain the bytecode for loading the
altered class into the JVM, method toBytecode() is called on that object:

byte[] bytecode = c.toBytecode();

Loading the obtained bytecode into the JVM is regarded as the step for reflecting
the CtClass object on the base level. Javassist provides several other methods
for this step. For example, method compile() writes bytecode to a given output
stream such as a local file and a network. Method load() directly loads the class
into the JVM with a class loader provided by Javassist. It returns a Class object
representing the loaded class. Recall that Class is included in the Java reflection
API while CtClass is in Javassist.

Note that Javassist does not provide any framework for specifying how and
what classes are processed with Javassist. The programmer of the class loader
has freedom with respect to this framework. For example, the class loader may
process classes with Javassist only if they are specified by a configuration file
read at the beginning. It may process them according to a hard-coded algorithm.
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Table 1. Methods in CtClass for introspection

Method Description
String getName() gets the class name

int getModifiers() gets the class modifiers such as public
boolean isInterface() determines whether this object represents

a class or an interface
CtClass getSuperclass() gets the super class

CtClass[] getInterfaces() gets the interfaces
CtField[] getDeclaredFields() gets the fields declared in the class
CtMethod[] getDeclaredConstructors() gets the constructors declared in the class
CtMethod[] getDeclaredMethods() gets the methods declared in the class

Javassist allows a user class loader to define a new class from scratch without
reading any class file. This is useful if a program needs to dynamically define a
new class on demand. To do this, a CtClass object must be created as follows:

CtClass c2 = new CtNewClass();

The created object c2 represents an empty class that has no methods or fields
although methods and fields can be added to the class later through the Javassist
API shown below. If toBytecode() is called on this object, then it returns the
bytecode corresponding to that empty class.

Introspection: Javassist provides several methods for introspecting the class
represented by a CtClass object. This part of the Javassist API is compatible with
the Java reflection API except that Javassist does not provide methods for crea-
ting an instance or invoking a method because these methods are meaningless
at load time. Table 1 lists selected methods for introspection.

CtClass objects returned by getSuperclass() and getInterfaces() are
constructed from class files found on a class path. They represent the origi-
nal class definitions and thus accept only introspection but not alteration. To
alter a class, another CtClass object must be explicitly created with the new
operator. Modifications to this object have no effect on the CtClass object re-
turned by getSuperclass() or getInterfaces(). For example, suppose that
a class C inherits from a class S. If a CtClass object for S is created with new
and a method m() is added to that object, this modification is not reflected on
the object returned by getSuperclass() on a CtClass object for C. The class C
inherits m() from S only if the CtClass object created with new is converted into
bytecode and loaded into the JVM.

The information about fields and methods is provided by objects separate
from the CtClass object; it is provided by CtField objects obtained by getDeclar-
edFields() and CtMethod objects obtained by getDeclaredMethods(), res-
pectively. The information about a constructor is also provided by a CtMethod
object. Table 2 lists methods in CtField and CtMethod for introspection.
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Table 2. Methods in CtField and CtMethod for introspection

Method in CtField Description
String getName() gets the field name
CtClass getDeclaringClass() get the class declaring the field

int getModifiers() gets the field modifiers such as public
CtClass getType() get the field type

Method in CtMethod Description
String getName() gets the method name
CtClass getDeclaringClass() get the class declaring the method

int getModifiers() gets the method modifiers such as public
CtClass[] getParameterTypes() gets the types of the parameters
CtClass[] getExceptionTypes() gets the types of the exceptions that the

method may throw
boolean isConstructor() returns true if the method is a constructor
boolean isClassInitializer() returns true if the method is a class initializer

Table 3. Methods for alteration

Method in CtClass Description
void bePublic() make the class public
void beAbstract() make the class abstract
void notFinal() remove the final modifier from the class
void setName(String name) change the class name
void setSuperclass(CtClass c) change the super class
void setInterfaces(CtClass[] i) change the interfaces
void addConstructor(...) add a new constructor
void addDefaultConstructor() add the default constructor
void addAbstractMethod(...) add a new abstract method
void addMethod(...) add a new method
void addWrapper(...) add a new wrapped method
void addField(...) add a new field

Method in CtField Description
void bePublic() make the field public

Method in CtMethod Description
void bePublic() make the method public
void instrument(...) modify a method body
void setBody(...) substitute a method body
void setWrapper(...) substitute a method body

Alteration: A difference between Javassist and the standard Java reflection
API is that Javassist provides methods for altering class definitions. Several
methods for alteration are defined in CtClass (Table 3). These methods are ca-
tegorized into methods for changing class modifiers, methods for changing class
hierarchy, and methods for adding a new member. They were carefully selected
to satisfy our design goals.
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Our design goals are three. (1) The first goal is to provide source-level ab-
straction for programmers. Javassist was designed so that programmers can use
it without knowledge of the Java bytecode. (2) The second goal is to execute
structural reflection as efficiently as possible. (3) The last goal is to help pro-
grams perform structural reflection in a safe manner in terms of types.

As for the first goal, the most significant design decision was how program-
mers specify a method body. Suppose that a new method is added to a class.
If a sequence of bytecode is used for specifying the body of that method, the
programmers would get great flexibility but have to learn details of bytecode.
To achieve the first goal, Javassist allows to copy a method body from another
existing method although this design decision restricts the flexibility of the ad-
ded method. The copied bytecode sequence is adjusted to fit the destination
method. For example, the bytecode for accessing a member through the this
variable contains a symbolic reference to the type of this. This reference is
replaced with one to the class declaring the destination method.

Despite the well-known quasi-equivalence between Java source code and byte-
code, the correspondence between source-level and bytecode-level alterations are
not straightforward. Hiding the gap between the two levels from programmers
is also a part of the first goal.

For example, setName() renames a class but it also substitutes the new
name for all occurrences of the old name in the definition of that class, including
method signatures and bodies. Modifying a single constant-pool item never per-
forms this substitution. If a constructor calls another constructor in the same
class (if it executes this()), then the bytecode of the former constructor is mo-
dified since the bytecode contains a symbolic reference to the name of the class
declaring the latter constructor. This reference must be modified to indicate the
new name.

setSuperclass() performs similar substitution. If it is called, all occurren-
ces of the old super class name is replaced with a new name and all constructors
are modified so that they call a constructor in the new super class. However,
there is an exception to this substitution. If the name of the original super
class is java.lang.Object (the root of the class hierarchy), setSuperclass() does
not perform the substitution except it modifies constructors. This is because
java.lang.Object is often used for representing any class. For example, although
addElement() in java.util.Vector takes a parameter of class java.lang.Object,
which is the super class of java.util.Vector, this never means that addElement()
takes an instance of the super class.

The second design goal is to reduce overheads due to class loading with Ja-
vassist. Since we will use Javassist for implementing a mobile-agent system, in
which Javassist inserts security-check code into bytecode, Javassist must trans-
form bytecode received through a network as efficiently as possible. Mobile agents
frequently move among hosts and thus we cannot ignore the loading time of the
bytecode implementing the mobile agents.

Our design decision on how programmers specify a method body was influen-
ced by the second goal as well as the first one. Javassist does not use source code
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for specifying the body of an added method. If source code is used, it must be
compiled on the fly when a class is loaded into the JVM. A naive implementation
of this source-code approach would produce a complete class definition including
the added method at source level and then compile it with a Java compiler such
as javac. As we show later, however, this implementation implies serious per-
formance penalties. To achieve practical efficiency, we need a special compiler
that can quickly compile only a method body. We did not adopt the source-code
approach because of limitations of our resources. Instead, Javassist allows to
copy a pre-compiled method body from a class to another. This approach does
not imply overheads due to source-code compilation at load time.

The third design goal is to prevent programs to wrongly produce a class
including type incorrectness. To achieve this goal, Javassist allows only limited
kinds of alteration of class definitions. In general, reflective systems should im-
pose some restrictions on structural reflection so that programs do not falsely
collapse themselves with reflection. Suppose that a reflective system allows to
remove a field from a class at runtime. If there are already instances of that
class, is it appropriate that the system simply discards the value of the removed
field of those instances?

Since erroneous bytecode produced with Javassist is rejected by the byte-
code verifier, it can never damage the JVM. However, restricting the reflective
capability of Javassist is still necessary because it is often awkward to correct
a program producing erroneous bytecode. For this reason, Javassist does not
provide methods for removing a method or a field from a class because they
cause type incorrectness if there is a method accessing the removed method or
field. Javassist also imposes restrictions on the class passed to setSuperclass(),
which is a method for changing a super class. The new super class must be a
subclass of the original super class since there may be methods that implicitly
cast an instance of that class to the original super class. Of course, the new super
class must not be final. Furthermore, Javassist does not provide a method for
changing the parameters of a method. Programmers are recommended to add a
new method with the same name but with different parameters.

Adding a new member: Javassist provides methods for adding a new method
to a class. To avoid the abstraction and performance problems mentioned above,
addMethod() receives a CtMethod object, which specifies a method body. The
signature of addMethod() is as shown below:

void addMethod(CtMethod m, String name, ClassMap map)

name specifies the name of the added method. The method body is copied from
a given method m. Since a method body is copied from an existing compiled
method, no source-code compilation is needed at load time or no raw bytecode
is given to addMethod(). Programmers can describe a method body in Java and
compile it in advance. Javassist reads the bytecode of the compiled method and
adds it to another class. This improves execution performance of Javassist since
a compiler is not run at load time.
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When a method body is copied, some class names appearing in the body
can be replaced according to a hash table map.1 For example, programmers can
declare a class XVector:

public class XVector extends java.util.Vector {
public void add(X e) {

super.addElement(e);
}

}

and copy the method add() into a class StringVector:

CtMethod m = /* method add() in XVector */;
CtClass c = /* class StringVector */;
ClassMap map = new ClassMap();
map.put("X", "java.lang.String");
c.addMethod(m, "addString", map);

The class name java.lang.String is substituted for all occurrences of the class
name X in add(). The added method is as follows:

public void addString(java.lang.String e) {
super.addElement(e);

}

Javassist provides another method addWrapper() for adding a new method.
It allows more generic description of a method body:

void addWrapper(int modifiers, CtClass returnType, String name,
CtClass[] parameters, CtClass[] exceptions,
CtMethod body, ConstParameter constParam)

The first five parameters specify the modifiers, the return type, the method
name, the parameter types, and the exceptions that the method may throw.
The body of the added method is copied from the method specified by body.
No matter what the signature of the added method is, the method specified by
body must have the following signature:

Object m(Object[] args, value-type constValue)

To fill the gap between this signature and the signature of the added method,
addWrapper() implicitly wraps the copied method body in glue code, which
constructs an array of actual parameters passed to the added method and
assigns it to args before executing the copied method body. The glue code
also sets constValue to a constant value specified by constParam passed to
addWrapper(). In the current version of Javassist, an integer value or a String
1 At least, addMethod() replaces all occurrences of the name of the class declaring

the copied method. Even if that class name does not appear at source level, the
corresponding bytecode may include references to it.
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object can be specified for the constant value. For example, this constant value
can be used to pass the name of the added method.

The value returned by the copied method body is an Object object. The glue
code also converts it into a value of the type specified by returnType. Then it
returns the converted value to the caller to the added method. If type conversion
fails, then an exception is thrown. Although methods added by addWrapper()
involve runtime overheads due to type conversion, a single method body can be
used as a template of multiple methods receiving a different number of parame-
ters. Examples of the use of addWrapper() are shown in Section 4.

Javassist also provides a method for adding a new field to a class:

void addField(int modifiers, CtClass type, String fieldname,
String accessor, FieldInitializer init)

If accessor is not null, this method also adds an accessor method, which returns
the value of the added field. The name of the accessor is specified by accessor.
Moreover, the last parameter init specifies the initial value of the added field.
The initial value is either one of parameters passed to a constructor, a newly
created object, or the result of a call to a static method.

Altering a method body: Although Javassist does not allow to remove a me-
thod from a class, it provides methods for changing a method body. setBody()
and setWrapper() in CtMethod substitute a given method body for an original
body:

void setBody(CtMethod m, ClassMap map)
void setWrapper(CtMethod m, ConstParameter param)

They correspond to addMethod() and addWrapper() respectively. setBody()
copies a method body from a given method m. Some class names appearing in
the body are replaced with different names according to map. setWrapper() also
copies a method body from m but it wraps the copied body in glue code. The
signature of m must be:

Object m(Object[] args, value-type constValue)

Javassist also provides a method for modifying expressions in a method body.
instrument() in CtMethod performs this modification:

void instrument(CodeConverter converter)

The parameter converter specifies how to instrument a method body. The
CodeConverter object can perform various kinds of instrumentation. Table 4 lists
methods provided by the current implementation of Javassist. They direct a
CodeConverter object to replace a specific kind of expressions with hooks, which
invoke static methods for executing the expressions in a customized manner. The
idea of CodeConverter came from C++’s operator overloading. CodeConverter was
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Table 4. Methods in CodeConverter

Method Description
void redirectFieldAccess() change a field-access expression to access

a different field.
void replaceNew() replace a new expression with a static method

call.
void replaceFieldRead() replace a field-read expression with a static

method call.
void replaceFieldWrite() replace a field-write expression with a static

method call.

designed for safely altering the behavior of operators such as new and . (dot)
independently of the context.

For example, expressions for instantiating a specific class can be replaced
with expressions for calling a static method. Suppose that variables xclass and
yclass represent class X and Y, respectively. Then a program:

CtMethod m = ... ;
CodeConverter conv = new CodeConverter();
conv.replaceNew(xclass, yclass, "create");
m.instrument(conv);

instruments the body of the method represented by the CtMethod object m. All
expressions for instantiating the class X such as:

new X(3, 4);

are translated into expressions for calling a static method create() declared in
the class Y:

Y.create(3, 4);

The parameters to the new expression are passed to the static method.

Reflective class loader: The class loader provided by Javassist allows a loaded
program to control the class loading by that class loader. If a program is loaded
by Javassist’s class loader L and it includes a class C, then it can intercept
the loading of C by L to self-reflectively modify the bytecode of C (Figure 1).
For avoiding infinite recursion, while the loading of a class is intercepted, further
interception is prohibited. The load() method in CtClass requires that a program
is loaded by Javassist’s class loader although the other methods work without
Javassist’s class loader.

Java’s standard class loader never allows this self-reflective class loading for
security reasons. If it is allowed, a program may change some private fields to
public ones at load time for reading hidden values. Furthermore, in Java, if a
program creates a class loader and loads a class C with that class loader, the
loaded class is regarded as a different one from the class denoted by the name
C appearing in that program. The latter class is loaded by the class loader that
loaded the program.
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loader L

class C

bytecode

class X

load

intercept

Fig. 1. Javassist’s class loader allows self-reflective class loading

Using Javassist without a class loader: Javassist can be used without a
user class loader. There are three kinds of usage of Javassist: with a user class
loader, with a web server, and off line.

For security reasons, an applet is usually prohibited from using a user class
loader. However, we can write an applet working with Javassist if we use a web
server as a replacement of a user class loader. Since classes used in an applet are
loaded from a web server into the JVM of a web browser, we can customize the
web server so that it runs Javassist for processing the classes before sending them
to the web browser. Javassist includes a simple web server written in Java as a
basis for such customization. We can extend it to perform structural reflection
with Javassist. The program of the customized web server would be as follows:

for (;;) {
receive an http request from a web browser.
CtClass c = new CtClass(the requested class);
do structural reflection on c if needed.
byte[] bytecode = c.toBytecode();
send the bytecode to the web browser.

}

Before sending a requested class to a web browser, it performs structural reflec-
tion on the class according to the algorithm, for example, given as a configuration
file.

Another usage of Javassist is “off line”. We can perform structural reflection
on a class and overwrite the original class file of that class with the bytecode
obtained as the result. The altered class can be later loaded into the JVM without
a user class loader. The following is an example of the off-line use of Javassist:

CtClass c = new CtClass("Rectangle");
do structural reflection on c if needed.
c.compile(); // writes bytecode on the original class file.

This program performs structural reflection on class Rectangle and overwrites
the class file of that class with the bytecode obtained by c.toBytecode().
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4 Examples

This section shows three applications of Javassist. We illustrate that Javassist
can be used to implement non-trivial alteration required by these applications
despite the level of the abstraction.

4.1 Binary Code Adaptation

The mechanism of binary code adaptation (BCA) [13] automatically alters class
definitions according to a file written by the users, called a delta file:

delta class implements Writable {
rename Writable Printable;
add public void print() { write(System.out); }

}

This delta file specifies adaptation that we mentioned in Section 2.
If Javassist is used, the implementor of BCA has only to write a parser

of delta file and a user class loader performing adaptation with Javassist. For
example, the parser translates the delta file shown above into the Java program
shown below:

class Exemplar implements Printable {
public void write(PrintStream s) { /* dummy */ }
public void print() { write(System.out); }

}

class Adaptor {
public void adapt(CtClass c) {

CtMethod printM = /* method print() in Exemplar */;
CtClass[] interfaces = c.getInterfaces();
for (int i = 0; i < interfaces.length; ++i)

if (interfaces[i].getName().equals("Writable")) {
interfaces[i] = CtClass.forName("Printable");
c.setInterfaces(interfaces);
c.addMethod(printM, new ClassMap());
return;

}
}

}

The class Exemplar is compiled together with Adapter in advance so that adapt()
can obtain a CtMethod object representing print(). adapt() uses the reifica-
tion and introspection API of Javassist for obtaining it. It first constructs a
CtClass object representing Exemplar and then obtains the CtMethod object by
getDeclaredMethods() in CtClass. The class file for Exemplar is automatically
found by Javassist on the class path used for loading Adapter.

The user class loader calls adapt() in Adaptor whenever a class is loaded
into the JVM. It creates a CtClass object representing the loaded class and
calls adapt() with that object. The method adapt() performs adaptation if the
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loaded class implements Writable. Then the user class loader converts the CtClass
object into bytecode and loads into the JVM.

Note that this implementation is more intuitive than the implementation with
behavioral reflection. Moreover, it is simpler than the implementation without
reflection since the implementor does not have to care about low-level bytecode
transformation. If the users of BCA can directly write the classes Exemplar and
Adaptor instead of a delta file, then the implementation would be much simpler
since we do not need the parser of delta file.

4.2 Behavioral Reflection

Behavioral reflection enabled by MetaXa [16,11] and Kava [21] can be imple-
mented with an approximately 750-line program (including comments) using
Javassist. A key idea of their implementations is to insert hooks in a program
when a class is loaded into the JVM. We below see an overview of a user class
loader performing this insertion with Javassist.

Let a metaobject be an instance of MyMetaobject, which is a subclass of
Metaobject:
public class MyMetaobject extends Metaobject {

public Object trapMethodcall(String methodName, Object[] args) {
/* called if a method call is intercepted. */ }

public Object trapFieldRead(String fieldName) {
/* called if the value of a field is read. */ }

public void trapFieldWrite(String fieldName, Object value) {
/* called if a field is set. */ }

}

If field accesses and method calls on an instance of C:
public class C {

public int m(int x) { return x + f; }
public int f;

}

are intercepted by the metaobject, then the user class loader alters the definition
of the class C into the following:2

public class C implements Metalevel {
public int m(int x) { /* notify a metaobject */ }
public int f;
private Metaobject _metaobject = new MyMetaobject(this);
public Metaobject _getMetaobject() { return _metaobject; }
public int orig_m(int x) { return x + f; }
public static int read_f(Object target) {

/* notify a metaobject */ }
public static void write_f(Object target, int value) {

/* notify a metaobject */ }
}

where the interface Metalevel declares the method getMetaobject().
2 For simplicity, this implementation ignores static members although extending

the implementation for handling static members is possible within the ability of
Javassist.
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class Exemplar {
private Metaobject _metaobject;

public Object trap(Object[] args, String methodName) {
return _metaobject.trapMethodcall(methodName, args);

}

public static Object trapRead(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
return target._getMetaobject().trapFieldRead(name);

}

public static Object trapWrite(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
Object value = args[1];
target._getMetaobject().trapFieldWrite(name, value);

}
}

Fig. 2. Class Exemplar

This alteration can be performed within the ability of Javassist. The interface
Metalevel is added by setInterfaces() in CtClass. The field metaobject and
the accessor getMetaobject() are added by addField() in CtClass.

For intercepting method calls, the user class loader first makes a copy of every
method in C by calling addMethod() in CtClass. For example, it adds orig m()3

as a copy of m(). Then it replaces the body of every method in C with a copy
of the body of the method trap() in Exemplar (see Figure 2). This modification
is performed by setWrapper() in CtMethod. The gap between the signatures
of m() and trap() is filled by setWrapper(). The substituted method body
notifies a metaobject of interception. The first parameter args is a list of actual
parameters and the second one name is the name of the copy of the original
method such as "orig m". These two parameters are used for the metaobject to
invoke the original method through the Java reflection API.

For intercepting field accesses, the user class loader instruments the bodies
of methods in all classes. All accesses to a field f in C are translated into calls
to a static method read f() or write f(). This instrumentation is performed
by instrument() in CtMethod and replaceFieldRead() and replaceField-
Write() in CodeConverter. The methods read f() and write f() notify a me-
taobject of the accesses. They are added by addWrapper() in CtClass as co-
pies of trapRead() and trapWrite() in Exemplar. The gap between the signa-
tures of read f() (or write f()) and trapRead() (or trapWrite()) is filled
by addWrapper(). For example, actual parameters to read f() are converted
into the first parameter args to trapRead(). The second parameter name to
trapRead() is the name of the accessed field such as "f".

3 If a method name is overloaded, a copy of each method must be given a different
name such as orig m1(), orig m2(), ...
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4.3 Remote Method Invocation

Generating stub code for remote method invocation is another application of
Javassist. A Java program cannot directly call a method on a remote object on
a different computer. It needs the Java RMI tools generating stub code, which
translates a method call into lower-level network data transfer such as TCP/IP
communication. However, the Java RMI tools are compile-time ones; a program
must be processed by the RMI compiler, which generates and saves stub code on
a local disk. Also, a program using the Java RMI must be subject to a protocol
(i.e. API) specified by the Java RMI.

Javassist allows programmers to develop their own version of the RMI tools,
which specify a customized protocol and produce stub code at either compile-
time or even runtime. Suppose that an applet needs to call a method on a
Counter object on a web server written in Java. For remote method invocation,
the applet needs stub code defining a proxy object of the Counter object, which
has the same set of methods as the Counter object. If the Counter object has
a method setCount(), the proxy object also has a method setCount() with
the same signature. However, the method on the proxy object serializes given
parameters and sends them to the web server, where setCount() is invoked on
the Counter object with the received parameters.

This stub code can be generated at runtime with Javassist at the server side
and it can be sent on demand to the applet side. The applet programmer can
easily write the applet without concern about low-level network programming.
The stub code for accessing the Counter object is as follows:

public class ProxyCounter {
private RmiStream rmi;
public ProxyCounter(int objectRef) {

rmi = new RmiStream(objectRef);
}
public int setCount(int value) { /* remote method invocation */ }

}

An instance of ProxyCounter is a proxy object. An RmiStream object handles
low-level network communication. The class RmiStream is provided by a runtime
support library.

ProxyCounter can be defined within the confines of Javassist. The field rmi
is added by addField() in CtClass and the initialization of rmi in a constructor
can be specified by a FieldInitializer object passed to addField().

The method setCount() is added by addWrapper() in CtClass as a copy of
the method invoke() in Exemplar shown below:

class Exemplar {
private RmiStream rmi;
Object invoke(Object[] args, String methodName) {

return rmi.rpc(methodName, args);
}

}
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The gap between the signatures of setCount() and invoke() is filled by add-
Wrapper(). If setCount() is called, the actual parameter value is converted into
an array of Object and assigned to args. methodName is set to a method name
"setCount"4. Then rpc() is called on the RmiStream object for serializing the
given parameters and sends them to the web server. Note that the parameters
can be serialized within the ability of the standard Java if they are converted
into an array of Object.

Stub code generation is another example, which is not straightforward to im-
plement with behavioral reflection. In a typical implementation with behavioral
reflection, a proxy object is an instance of the class Counter although all method
calls on the proxy object are intercepted by a metaobject and forwarded to a
remote object; the class ProxyCounter is not produced. Therefore, if the proxy
object is created, a constructor declared in Counter is called and may cause fatal
side-effects since the class Counter is defined as a class at the server side but the
proxy object is not at that side.

5 Related Work

Reflection in Java: MetaXa [16,11] and Kava [21] enable behavioral reflection
in Java whereas Javassist enables structural reflection. They are suitable for im-
plementing different kinds of language extensions. However, Javassist indirectly
covers applications of MetaXa and Kava since a class loader providing functio-
nality equivalent to MetaXa and Kava can be implemented with Javassist as we
showed in Section 4.2.

Although Kava performs bytecode transformation of class files before the
JVM loads them as Javassist does, they only insert hooks for interception in
bytecode but do not run metaobjects at that time. They enable reflection at
runtime and their ability is not structural reflection but the restricted behavioral
reflection.

The Java reflection API was recently extended in the JDK 1.3 beta to par-
tially enable behavioral reflection [19]. The new API allows a program to dy-
namically define a proxy class implementing given interfaces. An instance of
this proxy class delegates all method invocations to another object through a
type-independent interface.

Javassist is not the first system enabling structural reflection in Java. For
example, Kirby et al proposed a system enabling structural reflection (they called
it linguistic reflection) in Java although their system only allows to dynamically
define a new class but not to alter a given class definition at load time [15]. With
their system, a Java program can produce a source file of a new class, compile
it with an external compiler such as javac, and load the compiled class with a
user class loader. They reported that their system could be used for defining a
class optimized for a given runtime condition.

4 If a method name is overloaded, this should be setCount1, setCount2, ... for distin-
ction.
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Compile-time metaobject protocol: The compile-time metaobject protocol
[3] is another architecture enabling structural reflection without modifying an
existing runtime system. OpenJava [20] is a Java implementation of this archi-
tecture. As Javassist does, it restricts structural reflection within the time before
a class is loaded into the JVM although it was designed mainly for off-line use
at compile time. However, OpenJava is source-code basis although Javassist is
bytecode basis; OpenJava reads source code for creating an object representing
a class, a method, or a field. Alteration to the object is translated into corre-
sponding transformation of the source code. The bytecode for the altered class
is obtained by compiling the modified source code. Since OpenJava is source-
code basis, it can deal with syntax extensions within a framework of structural
reflection. For example, one can extend the syntax of class declaration and make
it possible to add an annotation to a class declaration.

On the other hand, the source-code basis means that OpenJava needs the
source file of every processed class whereas Javassist needs only a class file (com-
piled binary). This is a disadvantage because source files are not always available
if the class is provided by a third party. OpenJava also involves a performance
overhead due to handling source code; the source file of every class must be par-
sed for reification and compiled for reflection. Although this overhead is compen-
sation for the capability for fine-grained transformation of source code (including
syntax extension), it is not negligible if OpenJava is used by a class loader for
altering a loaded class. Some kinds of applications such as a mobile agent system
do not need fine-grained transformation but fast class loading.

Although the implementations of OpenJava or Javassist have not been tuned
up, the performance difference between OpenJava and Javassist is notable with
respect to reification and reflection. If a class loader can be implemented with
either OpenJava or Javassist, Javassist achieves shorter loading time. To show
this performance difference, we compared Javassist and OpenJava with two small
applications. We implemented BCA 5 and behavioral reflection presented in
Section 4 with both Javassist and OpenJava and we measured the time needed
for altering a given class with each implementation. For fair comparison, the
implementations with Javassist write modified class files back on a local disk.

Table 5 lists the results. The execution time is the average of five continuous
repetitions, which do not include the first repetition. Since a program is gradually
loaded into the JVM during the first repetition, the first one is tremendously
slow. For compiling a modified source file, OpenJava uses a compiler provided
by the Sun JDK for Solaris. However, it never uses the javac command since it
starts the compiler in a separate process; instead, it directly runs the compiler
(sun.tools.javac) on the same JVM.

Although the sizes of the programs implementing the applications are almost
equal between Javassist and OpenJava, Javassist processed a class more than ten
times faster than OpenJava. Note that the execution time by Javassist is shorter
than the time needed only for compiling a modified source file. This is because

5 Of course, the implementation of BCA with OpenJava does not modify a class file
in binary form. It emulates equivalent adaptation at source-code level.
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Table 5. Performance comparison between Javassist and OpenJava

execution program original modified
time size source class file class file

(msec) (lines) (lines) (bytes) (bytes)
BCA Javassist 42 26 24 372 551

OpenJava 543 (172†) 17 24 548
Reflection Javassist 142 205 35 946 3932

OpenJava 4108 (302†) 247 35 2244

Sun JDK 1.2.2 (HotSpot VM 1.0.1), UltraSPARC II 300MHz
†compilation time by sun.tools.javac (Java compiler).

Javassist can move compilation penalties to an earlier stage. Even a method
body is not compiled while Javassist is running; it is pre-compiled in advance
and the resulting bytecode is directly copied to a target class at run time.

Bytecode translators: Bytecode translators such as JOIE [5] and the Ja-
vaClass API [7] provide a functionality similar to Javassist. They enable a Java
program to alter a class definition at load time. However, they are toolkits for
directly dealing with bytecode, that is, the raw data structure of a class file. For
example, classes included in JOIE are ClassInfo, Code, and Instruction. They show
that JOIE was designed for experienced programmers who have a deep under-
standing of the Java bytecode and want to implement complex transformation.
On the other hand, Javassist was designed to be easy to use; it does not require
programmers to have knowledge of the Java bytecode but instead it provides
source-level abstraction for manipulating bytecode in a relatively safe manner.
Although a range of instrumentation of a method body is restricted, we showed
that Javassist can be used to implement non-trivial applications. Javassist can
be regarded as a front end for easily and safely using a bytecode translator like
JOIE; it is not a replacement of the bytecode translators.

Using bytecode instrumentation for implementing a reflective facility is a
known technique in Smalltalk [1]. A uniqueness of Javassist against this is the
design of the API providing source-level abstraction. The Javassist API was
carefully designed to avoid wrongly producing a class definition containing type
incorrectness.

Others: OpenJIT [18] is a just-in-time compiler that allows a Java program to
control how bytecode are compiled into native code. It provides better flexibi-
lity than Javassist with respect to instrumenting a method body while OpenJIT
does not allow to add a new method or field to a class. However, using OpenJIT
is more difficult than using Javassist because OpenJIT requires programmers to
have knowledge of both the Java bytecode and native code. Although OpenJIT
can be used without knowledge of the Java bytecode if programmers use a me-
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chanism of OpenJIT for translating bytecode into a parse tree of an equivalent
Java program, overheads due to that translation has not been reported.

The idea of enabling reflection only at load time for avoiding performance
problems is found in the CLOS MOP [14]. For example, the CLOS MOP allows
a program to alter the algorithm of determining the super classes of a given
class but the super classes are statically determined when the class is loaded;
the program cannot dynamically change the super classes at runtime.

Some readers may think that Javassist is very similar to BCA. However,
Javassist was designed for a wider range of applications than BCA, which is
specialized for on-line class adaptation. BCA only allows to modify a given class
but not to dynamically define a new class from scratch. On the other hand, BCA
allows programmers to describe the algorithm of adaptation in declarative form.

6 Conclusion

This paper presented Javassist, which is an extension to the Java reflection
API. Unlike other extensions, it enables structural reflection in Java; it allows a
program to alter a given class definition and to dynamically define a new class.
A number of language extensions are more easily implemented with structural
reflection than with behavioral reflection.

For avoiding portability and performance problems, the design of Javassist
is based on our new architecture for structural reflection. Javassist performs
structural reflection by instrumenting bytecode of a loaded class. Therefore, it
can be used with a standard JVM and compiler although structural reflection is
allowed only before a class is loaded into the JVM, that is, at load time. Since
a standard JVM is used, the classes processed by Javassist are subject to the
bytecode verifier and the SecurityManager of Java. Javassist never breaks security
guarantees given by Java.

The followings are important features of Javassist:

– Javassist is portable. It is implemented in only Java without native methods
and it runs with a standard JVM. It does not need a platform-dependent
class library. Portability is significant in Java programming.

– Javassist provides source-level abstraction for manipulating bytecode in a
safe manner while bytecode translators, such as JOIE [5] and the JavaClass
API [7], provide no higher-level abstraction. The users of Javassist do not
have to have a deep understanding of the Java bytecode or to be careful for
avoiding wrongly making an invalid class rejected by the bytecode verifier.

– Javassist never needs source code whereas OpenJava [20], which is another
system for structural reflection with source-level abstraction, does. Since
OpenJava performs structural reflection by transforming source code, it must
parse and compile source code for reifying and reflecting a class. Thus a
class loader using Javassist can load a class faster than one using OpenJava.
However, OpenJava enables fine-grained manipulation of class definitions so
that the resulting definitions may be smaller and more efficient than ones by
Javassist.
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The architecture that we designed for Javassist can be applied to other object-
oriented languages if a compiled binary program includes enough symbolic in-
formation to construct a class object. However, the API must be individually
designed for each language so that it allows a program to alter class definitions
in a safe manner with respect to the semantics of that language.
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