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Università degli Studi di Bergamo, Italy
Email: paolo.arcaini@unibg.it

Elvinia Riccobene
Dipartimento di Informatica
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Abstract—The MAPE-K (Monitor-Analyze-Plan-Execute over
a shared Knowledge) feedback loop is the most influential
reference control model for autonomic and self-adaptive systems.
This paper presents a conceptual and methodological frame-
work for formal modeling, validating, and verifying distributed
self-adaptive systems. We show how MAPE-K loops for self-
adaptation can be naturally specified in an abstract stateful
language like Abstract State Machines. In particular, we exploit
the concept of multi-agent Abstract State Machines to specify
decentralized adaptation control by using MAPE computations.
We support techniques for validating and verifying adaptation
scenarios, and getting feedback of the correctness of the adapta-
tion logic as implemented by the MAPE-K loops. In particular,
a verification technique based on meta-properties is proposed
to allow discovering unwanted interferences between MAPE-K
loops at the early stages of the system design. As a proof-of-
concepts, we model and analyze a traffic monitoring system.

I. INTRODUCTION

Modern software systems typically operate in dynamic
environments and deal with highly changing operational con-
ditions: components can appear and disappear, may become
temporarily or permanently unavailable, may change their
behavior, etc. Self-Adaptation (SA) has been widely rec-
ognized [17], [18], [26] as an effective approach to deal
with the increasing complexity, uncertainty and dynamicity
of these systems. A well recognized engineering approach
to realize self-adaptation is by means of a feedback control
loop called MAPE-K [26], [13] and conceived as a sequence
of four computations Monitor-Analyze-Plan-Execute over a
Knowledge base.

To provide guarantee of the functional correctness of the
adaptation logic, formal methods can be used as a rigorous
means for specifying and reasoning about self-adaptive sys-
tems’ behavior, both at design time and at runtime. However,
the survey in [34] shows that, although the attention for
self-adaptive software systems is gradually increasing, the
number of studies that employ formal methods remains low,
and mainly related to runtime verification. Formally founded
design models that cover both structural and behavioral as-
pects of self-adaptation and of approaches to validate and
verify behavioral properties are highly demanded. Of extreme
importance is engineering self-adaptive systems in a way
that unwanted interferences/conflicts between feedback control
loops are excluded at the early stages of the system design.

This work is part of our ongoing research activity [31], [32]
on formal modeling self-adaptive systems having a decentral-
ized MAPE-K control loop architecture. As in [36], with decen-
tralization, we refer to how control decisions in a self-adaptive
software system are coordinated among different components,
regardless of how those control components are physically
distributed. Specifically, we consider decentralization at the
level of the four computations of a MAPE-K loop.

By assuming a clear separation of adaptation concerns
and exploiting the theoretical framework of the multi-agent
Abstract State Machines (ASM) [12], we here show how to
model and analyze in ASM the behavior of a self-adaptive
system by representing MAPE-K loops explicitly and naturally
formalized in terms of agents’ actions (ASM transition rules).
Most existing formal approaches to SA assume a centralized
point of control and none of them, except [24], [35], [1] (see
Sect. II), provides a semantic description of the adaptation
logic from the perspective of feedback control loops.

Our framework supports also formal techniques for validat-
ing and verifying adaptation scenarios, and getting feedback
(already at system design time) of the correctness of the
adaptation logic as implemented by the MAPE-K loops. In ad-
dition to common state-of-the-art model checking techniques
for verifying properties of self-adaptive systems, we support
the analysis of systems where multiple MAPE-K loops interact
(and possibly operate on top of each other) by detecting
possible intra- and inter- loop interferences and conflicts. To
this purpose, a verification technique based on the proof of
meta-properties is proposed to allow discovering unwanted
interferences between MAPE-K loops.

The rest of this paper is organized as follows. Sect. II
presents related work. Sect. III describes the reference model
we adopt for realizing SA, and Sect. IV introduces the Traffic
Monitoring System here taken as running case study. Sect. V
provides some background on the ASM formal method.
Sect. VI presents the proposed ASM-based modeling and
analysis framework for self-adaptive systems. The ASM model
of the Traffic Monitoring System is shown in Sect. VII.
In Sect. VIII we present the results of applying the model
validation and verification techniques on the case study by,
respectively, simulating adaptation scenarios and verifying
meta-properties and properties through model checking for
system adaptation concerns such as flexibility and robustness.



Sect. IX discusses some faced challenges. Sect. X concludes
the paper and outlines future directions of our work.

II. RELATED WORK

Our proposal takes inspiration by many former works on
formal modeling and analysis of self-adaptive systems.

Automata-based or transition-based computational mod-
els have been advocated for adaptation, such as the S[B]
systems [30] and Synchronous Adaptive Systems (SAS) of
MARS [3]. They have in common a multi-level view of SA.
They rely on a multi-layered model reminiscent of hierar-
chical state machines and automata. In the simple case of
two layers, the lower behavioral level describes the actual
dynamic behavior of the system and the upper structural
level accounts for the dynamically changing environmental
constraints imposed on the lower system. Petri Nets extensions
also exist for dealing with adaptation. The work in [37], for
example, combines Petri Nets modeling with LTL for property
checking, including correctness of adaptations and robustness
properties of adaptive programs.

In the area of concurrency, classical Process Algebra (CCS,
CSP, ACP) have been tailored, such as in [10], to the modeling
of self-adaptive systems as a subclass of reactive systems.
The approach SOTA [2] supports an early, goal-level, model
checking analysis for adaptive systems. However, they adopt
a very complex model checking process involving several for-
malisms: the i* framework is used for modeling static aspects,
an operational SOTA language is defined and used to describe
the dynamic aspects and dependencies among components,
and process calculus Finite State Processes (FSP) and asyn-
chronous first-order linear-time temporal logic (FLTL) code of
the formal model checker Labeled Transition System Analyzer
(LTSA) is then provided to formally define the goal or utility
for verification purposes. In addition to specific temporal
properties specified for a particular model, the framework can
also check general properties that any model should assure
(e.g., absence of deadlock). In [19] a formal model for context-
aware adaptive systems is proposed by establishing a three-
layered separation among system components, context entities,
and management components. Relationships between layers
are dynamically established via the generation of strategies
by the management layer. Maude is adopted as a semantic
framework for the proposed model, and Maude reflection
and meta-programming capabilities are exploited to enrich it
with context-awareness concepts. Formal analysis is performed
using the Maude model checker. [23] presents a case study
of an adaptive production automation cell modeled in the
Lustre language – a typed synchronous dataflow language
with a discrete time model – using the SCADE Suite and
the verification of functional properties.

We also considered approached relying on state- and
machine-based formalisms close to ASMs such as the B
method, Alloy and Z. The authors in [28] present an ap-
proach to the formal specification and verification of dynamic
re-configurations of component-based systems using the B
method for the specification of component architectures and

FTPL – a logic based on architectural constraints and on
event properties, translatable into LTL – to express temporal
properties over (re-)configuration sequences to model-check.
[21] uses architectural constraints specified in Alloy for the
specification, design and implementation of self-adaptive ar-
chitectures for distributed systems. [29] outlines an approach
for modeling and analyzing fault tolerance and self-adaptive
mechanisms in distributed systems. The authors use a modal
action logic formalism, augmented with deontic operators, to
describe normal and abnormal behavior.

As important as their contribution could be to support the
specification and analysis of self-adaptive systems, the formal-
ization approaches mentioned above do not support the explicit
modeling of feedback loops for SA and their properties. The
actual feedback control loops are hidden or abstracted. In our
approach, instead, we clearly explore MAPE-K feedback loops
as a means to identify and enact adaptation, so elevating them
to first-class entities in the ASM formal specification of a self-
adaptive system. Moreover, most of these formal approaches
to SA assume a centralized point of control.

In [24], Timed Automata are used to model the Traffic
Monitoring case study (the same presented here) and verify
(with the tool Uppaal) flexibility and robustness properties by
model checking. The same case study is specified using the Z
method in [35]. These are (to the best of our knowledge) the
first works presenting a formal approach to specify and verify
behavioral properties of decentralized self-adaptive systems
through MAPE-K feedback loops, and this is the reason why
we mainly inspired to them. However, the approaches in [24],
[35] suffer from the over-specification due to the rigidity of
the formalisms Timed Automata and Z. Differently, the natu-
ral expression in ASM of fundamental computing concepts
through programming practice and mathematical standards
allow the practitioner to work with ASMs without any further
explanation, viewing them as “pseudocode over abstract data”
which comes with a well defined semantics supporting the
intuitive understanding [12]. Moreover, the simplicity and
modularity of the resulting ASM formal specification allow
the application of the method to the specification of large-
scale self-adaptive systems.

The Traffic Monitoring System has been revised in [33]
where the simple sequence of four MAPE computations to
form a control loop is extended in case of camera failures
to (i) allow the execution of multiple sub-loops within a
single control loop – intra-loop coordination, and (ii) enable
MAPE computations across loops to coordinate the various
phases of adaptation – inter-loop coordination. The flexibility
and abstractness of our framework allow us to model any
adaptation strategy and coordination schema of control loops,
and to discover and analyze conflicts that may arise also in
complex scenarios where MAPE-K sub-loops deal with sub-
concerns of the main adaptation concern.

The authors in [14] present an essential model of Adaptable
Transition Systems. The same authors in [15] propose a con-
ceptual framework for adaptation centered around the role of
control data and its realization in a reflective logical language



Fig. 1: A self-adaptive software system (adapted from [36])

like Maude by using the Reflective Russian Dolls model. They
also exploit the statistical model checker PVeStA and present a
robot swarms equipped with obstacle-avoidance self-assembly
strategies as case study. The proposed computational model
for SA is, however, built around hierarchical structures of
managing layers. To really capture the distributed nature of
self-adaptive systems, more coordination patterns of managing
components/agents need to be employed [36].

According to a decentralized feedback loop-based approach,
a general goal-oriented modeling framework [1], called SOTA
(State Of The Affairs) and tool-supported by SimSOTA (an
Eclipse plug-in), is being developed to support the modeling,
simulation and validation of self-adaptive systems. Similarly
to our approach, SOTA aims at supporting the development
of self-adaptive systems by allowing to validate the actual
correctness of decentralized feedback loop models before
implementation. However, unlike our formal approach, SOTA
adopts a semi-formal notation, namely UML activity diagrams,
as primary notation to model the behavior of feedback loops.

A recently proposed approach is ActivFORMS (Active
FORmal Models for Self-adaptation) [25]. Its aim is to
guarantee that the adaptation goals verified offline (i.e., at
design time) are guaranteed also at runtime. It adopts an
integrated formal model of a MAPE-K loop (i.e., models
of the knowledge and the adaptation components) that is
directly executed by a virtual machine at runtime and can
be dynamically changed with changing goals. We postpone
as future work to study the conformance relation between the
formal model and the real system execution at runtime.

III. REFERENCE MODEL FOR SELF-ADAPTATION

According to the conceptual model FORMS [35]1 and the
study in [36], SA is based on the design principle of separation
of concerns. As shown in Fig. 1 (adapted from [36]), a self-
adaptive system is situated in an environment (both physical
and software entities) and basically consists of a two-layer
architecture: a managed subsystem layer that comprises the
application logic, and a managing subsystem on top of the
managed subsystem comprising the adaptation logic. This last
realizes a feedback loop that monitors the environment and
the managed subsystem, and adapts the latter when necessary,

1FORMS is a metamodel consisting of formally specified modeling el-
ements that correspond to the key concerns in the design of self-adaptive
software systems, and a set of relationships that guide their composition.

Fig. 2: Adaptation scenarios (adapted from [24])

such as to deal with particular types of faults (self-heal), self-
optimize when operating conditions change, self-reconfigure
when a goal changes, etc. Typically, the managing subsystem
is conceived as a set of interacting feedback loops, one per
each self-adaptation aspect (or concern). Other layers can be
added to the system where higher-level managing subsystems
manage underlying subsystems, which can be managing sys-
tems themselves.

A common approach to realize a feedback loop is by means
of a MAPE-K (Monitor-Analyze-Plan-Execute over a Knowl-
edge base) [26] loop. A component Knowledge (K) maintains
data of the managed system and environment, adaptation
goals, and other relevant states that are shared by the MAPE
components. A component Monitor (M) gathers particular data
from the underlying managed system and the environment
through probes (or sensors) of the managed system, and saves
data in the Knowledge. A component Analyze (A) performs
data analysis to check whether an adaptation is required. If
so, it triggers a component Plan (P) that composes a workflow
of adaptation actions necessary to achieve the system’s goals.
These actions are then carried out by a component Execution
(E) through effectors (or actuators) of the managed system.

Computations M, A, P, and E may be made by multiple
components that coordinate with one another to adapt the sys-
tem when needed, i.e., they may be decentralized throughout
the multiple MAPE-K loops [36]. These MAPE components
can communicate explicitly or indirectly by sharing informa-
tion in the knowledge repository.

IV. RUNNING CASE STUDY

As case study to exemplify hereinafter our formal frame-
work for self-adaptive systems, we present a traffic monitoring
application inspired by the work in [24].

A number of intelligent cameras along a road (see Fig. 2)
are endowed with a data processing unit and a communication



Fig. 3: Camera system architecture (adapted from [24])

unit to interact with each other. Cameras have to collaborate to
observe larger phenomena such as traffic jams and aggregate
the monitored data. Traffic jams can span the viewing range
of multiple cameras and can dynamically grow and dissolve.
Cameras enter or leave the collaboration whenever the traffic
jam enters or leaves their viewing range.

Fig. 3 shows the architecture of a camera system. Every
local camera (the component Camera) provides the function-
ality to detect traffic jams and inform clients. To access the
hardware and communication facilities on the camera, the local
camera system can rely on the services provided by the dis-
tributed communication and host infrastructure. Camera col-
laboration dynamics are managed by an organization controller
(the component Organization Middleware). The organization
controller is responsible for restructuring camera organizations
and for adapting the system. The need for self-adaptation is
triggered by changes in the surrounding environment, namely
the congestion detected by a sensor of the camera – a sub-
component Traffic Monitor of the camera component –, and by
the failures of other cameras (silent nodes) as detected by the
component Self Healing Subsystem using a Heartbeat interac-
tion pattern. Organization controllers of cameras collaborate
to manage an organization that spans multiple cameras. To
simplify synchronization issues, a master/slave control model
is used at intra-organizational level. For each organization, one
of the organization controllers is elected as master, whereas the
other controllers of the organization are slaves. The master is
responsible for managing the dynamics of that organization by
synchronizing with all of the slaves.

According to the reference model for SA presented in
Sect. III, the managed system is the local camera, while the
managing subsystem corresponds to the self-healing subsys-
tem and the organization middleware. These last components
implement MAPE-K control loops for two main adaptation
concerns2. The first concern is system flexibility for the
dynamic adaptation of an organization. See, for example,
the scenario in Fig. 2 from configuration T0 to T1, where
camera 2 joins the organization of cameras 3 and 4 after

2The vision of MAPE-K loops we take here slightly differ from the one
taken in [24].

it monitors a traffic jam. The second concern is adaptation
to external camera failures (robustness), i.e., when a failing
camera becomes unresponsive without sending any incorrect
data. This scenario is shown in Fig. 2 from T2 to T3, where
camera 2 fails. A further MAPE-K loop is also used to deal
with internal failures of the camera (robustness).

V. BACKGROUND ON ASMS

ASMs are an extension of FSMs [12] where unstructured
control states are replaced by states comprising arbitrary
complex data, and transitions are expressed by rules describing
how data change from one state to the next. ASM states are
multi-sorted first-order structures, i.e., domains of objects with
functions and predicates (boolean functions) defined on them.
State function values are saved into locations which may be
updated from one state to another by firing a set of transition
rules (or machine program).

The basic form of a transition rule is the guarded update “if
Condition then Updates”, where function Updates – having
form f(t1, . . . , tn) := t – are simultaneously executed when
Condition – a first order formula – is true. Besides the
guarded rule, there is a finite set of rule constructors to
model simultaneous parallel actions (par), sequential actions
(seq), non-determinism (choose), unrestricted synchronous
parallelism (forall), domain extension (extend). Due to
their parallel execution, we require updates to be consistent,
i.e., no pair of updates exist at a time which try to update the
same location to different values.

Functions remaining unchanged during the computation
are static. Those updated by agent actions are dynamic, and
distinguished in monitored (read by the machine and modified
by the environment), controlled (read and written by the
machine), shared (read/written by the machine/environment).

ASMs allow to model any kind of computational paradigm,
from a single agent executing simultaneous parallel actions,
to distributed multiple agents interacting in a synchronous or
asynchronous way. A multi-agent ASM is given by a family
of pairs (a,ASM(a)), where each agent a : Agent has a
“local” view, View(a, S), of the global state S (see Fig. 4).
An agent executes its own (possibly the same but differently
instantiated) machine ASM(a) specifying its local behavior,
and contributes to determine the next state S′. A predefined
function program on Agent indicates the ASM associated with
an agent, and it is used to dynamically associate behavior to
agents. Within transition rules, each agent can identify itself
by means of a special 0-ary function self : Agent which is
interpreted by each agent a as itself.

For a complete theoretical definition of the ASM multi-
agent model, we refer the reader to [12].

The ASM formal method is supported by the tool-set
ASMETA (ASM mETAmodeling) [7], [8] for model editing,
validation and verification.

VI. SELF-ADAPTIVE ASMS

Here we present a formal framework, based on the ASM
formalism, to model a self-adaptive system according to a



Fig. 4: Global state and partial view in a multi-agent ASM
(taken from [12])

system’s layered architecture with decentralized MAPE-K
control loops.

Because of the distributed nature of self-adaptive systems,
we use the notion of multi-agent ASMs. A software component
is therefore represented in terms of an ASM agent able to
interact with other agents (components). All together these
ASM agents comprise the logic of a distributed ASM, called
self-adaptive ASM, that provides the overall functionality of
the self-adaptive system. It is, therefore, able to monitor the
environment and itself and to self-adapt accordingly.

According to Sect. III, the self-adaptive layer (the managing
subsystem) is conceived as a set of interacting MAPE-K loops.
Therefore, the set Agent of a self-adaptive ASM is the union
of the set MgA of managing agents and the set MdA of
managed agents. Managing agents encapsulate the logic of
self-adaptation of the MAPE-K loops, while managed agents
encapsulate the system’s functional logic.

A self-adaptive system may expose a certain number of
MAPE-K loops, {MAPE(adj1), . . . ,MAPE(adjn)}, one per
each adaptation concern adji. The behavior of a MAPE(adji)
is conceptually captured by a set of ASM transition rules:

MAPE(adji) = {Ra1

MAPE(adji)
, . . . , Ram

MAPE(adji)
}

where {a1 . . . , am} ⊆MgA are the managing agents involved
in the execution of the loop MAPE(adji), and R

aj

MAPE(adji)
is the ASM rule modeling the behavior of the agent aj , j =
1, . . . ,m, in the loop MAPE(adji).

Since in a decentralized setting a single managing agent
aj ∈ MgA may be involved in one or more loops MAPE(adji),
i = 1, . . . , n, its program takes the form:

program(aj) = parRaj

MAPE(adjj1 )
, . . . , R

aj

MAPE(adjjk )
endpar

and consists in the parallel execution of its behavioral contri-
butions to the j1, . . . , jk loops the agent is involved in. These
rules are annotated (as comments //) with appropriate labels
@M c (for context-aware monitoring), @M s (for self-aware
monitoring), @A (for analyzing), @P (for planning), and @E

(for execution)3, depending on the role of the agent a in the
loop.

An adaptation concern is also characterized by a knowledge
K(adj). In ASM, this is an ASM module defining only
signature (domains and functions symbols) shared among the
managing agents of the MAPE-K loop MAPE(adj) to main-
tain representations of the managed subsystem (the reflective
model [35]) and the environment, and other useful information
for the enactment of the MAPE computations. The union of
all these knowledges leads to an unique common knowledge
K =

⋃
adj K(adj) shared by all managing agents.

The notion of environment is directly supported in the
ASM theory by means of ASM monitored functions (see
Sect. V). Probes (or sensors) from the environment are
therefore modeled as ASM monitored functions or derived
functions (the result of an elaboration of monitored functions).
Probes from the managed system are instead represented by
the changing value of ASM controlled functions modeling
internal information to aware the system about itself. Actuators
(or effectors) are specified in terms of actions (ASM rules) of
managed agents that update controlled locations according to
the adaptation plan decided by managing agents.

In the subsections below, we describe how to express in
ASM the key mechanisms of the reference model FORMS [35]
for realizing SA through MAPE-K feedback loops.

A. Context- and Self- Awareness

According to [35], an update computation perceives the
state of the environment, while a monitor computation per-
ceives the state of the managed subsystem to update the
system model (the observed data from the system) in the
knowledge. Update computations and monitor computations
may trigger analyze computations when particular conditions
hold. An analyze computation assesses the collected data from
the environment and/or the system itself to determine the
system’s ability to satisfy its goals. Update computations in
combination with analyze computations provides for context-
awareness [35], which is a key property of self-adaptive
systems. Monitor and analyze computations provide for self-
awareness [35], which is another key property.

We use the terms context-aware monitoring and self-aware
monitoring to denote update computations and monitor com-
putations, respectively. In managing components, these com-
putations are explicitly captured by ASM rules annotated with
@M c and @M s, respectively. Context-aware monitoring
consists into looking values of ASM monitored locations (the
environment), while self-aware monitoring consists into look-
ing values of ASM controlled locations representing internal
locations of the managed system.

A rule scheme for a context/self-aware monitoring compu-
tation of a MAPE-K loop may take the two different forms (1)

3These labels help understanding how the MAPE computations are dis-
tributed among the agents. For future scopes, these annotations may be
extracted from the comments and used by the simulation environment at
runtime.



and (2) depending on the decentralized or centralized control
of the loop’s computations, respectively.

if Cond then UpdatesK //@M c[s] (1)

if Cond then Analyze //@M c[s] (2)

In both schemes, Cond, the condition under which the rule is
applied, is an arbitrary first-order formula over monitored (in
case of context-awareness) and/or controlled (in case of self-
awareness) locations of the managed ASM. In the decentral-
ized control scheme (1), UpdatesK is a finite set of transition
rules simultaneously executed. They may consist of function
updates f(t1, . . . , tn) := t changing (or defining, if there was
none) the value of the knowledge location represented by
the function f at the given parameters, and/or of call rules
for more complex computations. Such knowledge updates
may trigger an analyze activity executed by other managing
agents. In case of centralized control (2), Analyze is an ASM
transition rule for an analyze computation (see schemes (3) and
(4)) triggered by the monitoring computation and executed by
the same agent in a waterfall style.

An analyze computation is specified by an ASM conditional
rule annotated with @A:

if CondK then UpdatesK //@A (3)

It involves the evaluation of a first order formula CondK ,
to determine if a violation of the system’s goals occurs and
an adaptation plan has to be triggered. This formula can be
arbitrary complex and expresses the logic relationship of cer-
tain knowledge location values that must be true in order that
violating situation holds. In a decentralized control, UpdatesK
are updates of knowledge functions that may trigger planning
activity executed by other agents. Alternatively, in centralized
mode (schema 4), a planning computation can be directly
executed by the same agent in a waterfall style.

if CondK then Plan //@A (4)

where Plan is a transition rule for planning (see next section).
Note that complex planning computations may be missing

in a MAPE-K loop and therefore the transition from an analyze
computation to an execute computation may be direct. In
this case, the ASM rules schemes 3 and 4 will trigger an
execute activity indirectly (by knowledge updates) or directly
(by executing an execute computation).

B. Adaptation Operators

A plan computation creates or selects a procedure to enact
a necessary adaptation in the managed system. It can be a
single action or a complex workflow. Then, as decided by the
planning, an execute computation carries out the adaptation
actions on the managed system using effectors.

In ASM, plan computations are ASM transition rules anno-
tated with @P. They are conditional rules or may adopt a more
complex ASM rule scheme. Such rules predispose the desired
adaptation actions, and trigger (setting values of the shared

knowledge) the managing agent(s) responsible to execute such
adaptations or directly invoke execute computations.

Finally, an execute computation is an ASM rule annotated
with @E and made of atomic adaptation actions. The follow-
ing adaptation actions are supported:
• change locations value of the knowledge to (indirectly)

trigger the execution of managed ASM agents playing the
role of effectors;

• change locations value of the managed ASM (directly) by
executing update rules or rule invocations (the effectors)
of the managed ASM;

• stop/start managed ASM agents by setting the
program(a) of an agent a to, respectively, the
skip-rule and a rule r;

• dynamically instantiate a new agent to introduce a new
concurrent behavior by an extend-rule over the predefined
domain Agent;

• dynamically change a component’s agent behavior by
updating the function program(a) of an agent a to a
new rule r.

C. Coordination

MAPE computations may be enhanced with support for
distribution through coordination [36]. Cooperation and com-
petition are forms of interactions among concurrent MAPE
computations. So, interactive MAPE-K loops may require
developing coordination models explicitly. To this purpose,
ASM agents may adopt recurrent coordination patterns for
distributed control (e.g., master-slaves pattern, hierarchical
control pattern, alternate pattern, etc.) as formalized in [11].

VII. ASM MODEL OF THE TRAFFIC MONITORING SYSTEM

The ASM specification of a local camera system consists
of four agents: Camera and TrafficMonitor representing the
managed camera subsystem, and OrganizationController (oc)
and SelfHealingController (shc) representing, respectively,
the managing components Organization Middleware and Self
Healing Subsystem.

We use the MAPE-K loops identified before to specify the
self-adaptive behavior of the overall distributed system made
of n cameras. The first MAPE-K loop deals with the flexibility
concern to restructure organizations in case of congestion
and it is handled by the organization controllers. The loop
is defined as follows:

MAPE(flexibility) =

n⋃
i=1

{orgContrFlexBehavior[oci]}

where orgContrFlexBehavior[oci] is an instance of the rule
orgContrFlexBehavior for the organization controller oci
of camera i, for i = 1 . . . n.

The second MAPE-K loop deals with the adaptation to
failures of other cameras (silent cameras). It is handled by both
the organization controllers and the self-healing controllers. It
is defined as:

MAPE(extFailure) =

n⋃
i=1

{
r failureAdapt[oci],
r failureDetect[shci]

}



macro rule r organizationController =
par

orgContrFlexBehavior(self) //Adaptation due to congestion
r failureAdapt[] //Adaptation due to external failure
r selfFailureAdapt[] //Adaptation due to internal failure

endpar

agent OrganizationController : r organizationController[]

Code 1: Program of each organization controller

macro rule r selfHeal =
par

r failureDetect[] //Adaptation due to external failure
r selfFailureDetect[] //Adaptation due to internal failure

endpar

agent SelfHealingController: r selfHeal[]

Code 2: Program of each self-healing controller

where r failureAdapt is the rule of the organization con-
trollers and r failureDetect the rule of the self-healing
controllers.

Finally, the third MAPE-K loop deals with internal failures
of the camera. Both managing agents of each camera imple-
ment such a loop. It is defined as:

MAPE(intFailure) =

n⋃
i=1

{
r selfFailureAdapt[oci],
r selfFailureDetect[shci]

}
where r selfFailureAdapt is the rule of the organization
controllers and r selfFailureDetect the rule of the self-
healing controllers.

In the following, we describe the behavior of the two types
of managing agents (i.e., the organization controller and the
self-healing controller) that implement the three MAPE-K
loops. We make use of the textual syntax AsmetaL of the
ASMETA framework [7], [8]. The complete ASM specifica-
tion is available online at [9].

An organization controller runs on each camera and is
responsible for managing organization adaptations. Code 1
shows the organization controller’s program4 that executes in
parallel three rules as contributions of the agent to the three
MAPE-K control loops.

A self-healing controller runs on each camera. The cor-
responding ASM agent’s program is the rule r_selfHeal
reported in Code 2. It executes in parallel two rules for dealing
with self-adaptation due to external and internal failures (the
two MAPE-K loops for robustness) by alerting (by knowledge
update) the organization controller that, in turn, will adapt
the organization accordingly. This is the situation when two
MAPE-K loops interact.

Details on the rule definitions can be found in the specifi-
cation available on line. As exemplification, we here explain
the last rule of the organization controller for adaptation due
to internal failure. It is defined as instance of the (centralized)

4Note that the concrete syntax agent agent_type : rule[] de-
notes in AsmetaL the initialization of the agent’s function program.

macro rule r selfFailureAdapt =
par

if stopCam(camera(self)) then //@M s
if state(camera(self)) != FAILED then //@A

state(camera(self)) := FAILED //@E
endif

endif
if startCam(camera(self)) then //@M s

if state(camera(self)) = FAILED then //@A
par //@E

state(camera(self)) := MASTER
...

endpar
endif

endif
endpar

Code 3: Excerpt of rule r_selfFailureAdapt

pattern (2) described in Sect. VI and it is partially shown in
Code 3. This rule describes the contribution of the organization
controller in the intFailure MAPE-K loop. It consists of a self-
aware monitoring computation (i.e., the concurrent reading of
the probes stopCam and startCam) followed by an analyze
computation (i.e., the reading of the knowledge’s function
state representing the camera’s state). Finally, if required by
the analyze computation, an execute computation is directly
performed (i.e., the updating of the state of the camera)
without a plan computation.

VIII. VALIDATION AND VERIFICATION

We here describe the model analysis activities we can
perform on self-adaptive systems.

A. Validation

Model validation is a first model analysis activity, less
demanding than property verification, that has to be used to
validate the specification itself, but that can be also used to pro-
vide guarantees about qualities of the self-adaptive system. For
model validation, we exploited the simulator AsmetaS [20]
and the validator AsmetaV [16] of the toolset ASMETA [8].

1) Simulation: We performed either interactive simulation,
where monitored inputs were provided interactively during
simulation, and random simulation, where inputs values were
chosen randomly by the simulator itself. During simulation,
we also checked for consistent updates: in an ASM, two
updates are inconsistent if they update the same location to
two different values at the same time [12]. We discovered,
by simulating (see the trace in Fig.5) a preliminary version
of our specification (shown in Code 4), that the organization
controller could, at the same time, turn the status of its camera
both to MASTER and to FAILED. That particular situation
could occur when a camera c was already FAILED and the
system received the signals to both turn on and turn off the
camera (i.e., both monitored locations startCam(c) and
stopCam(c) were true). This was due to a wrong scheduling
of the operations of the organization controller (the correct
version is shown in Code 3).

By means of the AsmetaS simulator, we also checked for
model invariants, namely properties that must hold in any



Insert a boolean constant for stopCam(c2):
true
Insert a boolean constant for startCam(c2):
false
...
<State 1 (controlled)>
state(c1)=MASTER
state(c2)=FAILED
state(c3)=MASTER
state(c4)=MASTER
</State 1 (controlled)>
Insert a boolean constant for stopCam(c2):
true
Insert a boolean constant for startCam(c2):
true
INCONSISTENT UPDATE FOUND:
location state(c2) updated to FAILED != MASTER

Fig. 5: Example of simulation – Detection of an inconsistent
update

macro rule r selfFailureAdapt =
par

if stopCam(camera(self)) then //@M s
state(camera(self)) := FAILED //@E

endif
if startCam(camera(self)) then //@M s

if state(camera(self)) = FAILED then //@A
par //@E

state(camera(self)) := MASTER
...

endpar
endif

endif
endpar

Code 4: Wrong version of rule r_selfFailureAdapt

state of the machine execution. For example, we added to the
specification the following invariants

(state(ci) = FAILED and state(ci−1) != FAILED) implies next(ci−1) = ci+1

(state(ci) = FAILED and state(ci+1) != FAILED) implies prev(ci+1) = ci−1

checking that the neighboring camera relations are correctly
arranged after a failure: whenever a camera ci fails (with i =
2, . . . , n − 1), camera ci−1 updates its next camera to ci+1,
and camera ci+1 updates its previous camera to ci−1.

2) Scenario-based Validation: This technique consists in
designing a set of scenarios specifying the expected behavior
of the models. We simulated different scenarios with increas-
ing number of cameras. In particular, we created and validated
the adaptations scenarios shown in Fig. 2 from T0 to T1 for
flexibility, and from T2 to T3 for adaptation to external failure.

Scenarios are expressed, by using constructs of the language
Avalla, as interaction sequences of actor actions to set the
environment (i.e., the values of monitored/shared functions),
to check the machine state, to ask for the execution of given
transition rules, and reactions of the machine which can
perform a step or a sequence of steps until a condition holds.
Scenarios are executed by the simulator AsmetaS, instru-
mented properly. During simulation, the validator AsmetaV
captures any check violation and, if none occurs, it finishes
with a PASS verdict.

The scenario reported in Code 5 describes the adaptation
from T0 to T1. At the beginning, cameras c3 and c4 form

scenario Flexibility T0 T1
load main.asm

set stopCam(c1) := false; set stopCam(c2) := false; set stopCam(c3) := false;
set stopCam(c4) := false; set startCam(c1) := false; set startCam(c2) := false;
set startCam(c3) := false; set startCam(c4) := false; set congestion(c1) := false;
set congestion(c2) := false; set congestion(c3) := true; set congestion(c4) := true;
set elapsedWaitTime(shc3) := false; set elapsedWaitTimePlusDelta(shc4) := false;
exec par

state(c3) := MASTERWITHSLAVES
state(c4) := SLAVE
slaves(c3, c4) := true
getMaster(c4) := c3
congested(oc3) := true
congested(oc4) := true

endpar;
step

set congestion(c2) := true;
step
check getMaster(c4)=c3 and s offer(c3)=true and s offer(c4)=false and

slaves(c3,c4)=true and state(c1)=MASTER and state(c2) = MASTER and
state(c3) = MASTERWITHSLAVES and state(c4)=SLAVE;

step
check isAlive(c4)=false and newSlave(c2,c3)=true and getMaster(c4)=c3 and

s offer(c3)=true and s offer(c4)=false and slaves(c3,c4)=false and
state(c1)=MASTER and state(c2) = MASTER and state(c3) = SLAVE and
state(c4)=SLAVE;

step
check isAlive(c4) = false and newSlave(c2,c3) = false and getMaster(c4) = c3 and

s offer(c3) = true and s offer(c4) = false and slaves(c2,c3) = true and
slaves(c2,c4) = true and state(c1) = MASTER and
state(c2) = MASTERWITHSLAVES and state(c3) = SLAVE and
state(c4) = SLAVE;

Code 5: Flexibility validation scenario from T0 to T1 in Avalla

an organization. When c2 detects congestion, it joins the
organization as MASTER. Appropriate assertions control that
the right messages are sent and that the correct slavery
relations are established.

B. Verification

We have verified the specifications through model checking.
AsmetaSMV [4] is a tool of the ASMETA framework that
translates ASM specifications into models of the NuSMV
model checker. It allows the verification of Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL) formulae.

We have verified system-independent properties (or meta-
properties), i.e., properties that any self-adaptive model should
guarantee, and properties representing adaptation goals related
to the requirements of the specific system. Sect. VIII-B1
presents the former category, while Sect. VIII-B2 describes
the latter category.

1) Model Review: This approach aims at determining if a
model is of sufficient quality to be easy to develop, maintain,
and enhance. This technique permits to identify defects early
in the system development, reducing the cost of fixing them.
For this reason, it should be applied also on preliminary mod-
els. The AsmetaMA tool [5] (based on AsmetaSMV) allows
automatic review of ASMs. Typical vulnerabilities and defects
that can be introduced during the modeling activity using
ASMs are checked as violations of suitable meta-properties
(MP , defined in [5] as CTL formulae). The violation of a



meta-property means that a quality attribute is not guaranteed,
and it may indicate the presence of a real fault (i.e., the ASM
is indeed faulty), or only of a stylistic defect (i.e., the ASM
could be written in a better way).

For this work, we have identified some meta-properties
tailored for self-adaptive systems:
• MPnc : MAPE loops are not in conflict. Two MAPE

loops (or the same MAPE loop) are in conflict if they
simultaneously update the same knowledge (i.e., the same
location) at the same time to two different values. This
definition corresponds to the definition of inconsistent
update [12]. We have an intra-loop inconsistency if the
inconsistent updates belong to the same MAPE loop, and
an inter-loop inconsistency if the inconsistent updates
belong to two different MAPE loops.

• MPe : all rules involved in MAPE loops are executed.
This meta-property only guarantees that there is no over
specification inside a MAPE loop formalization. How-
ever, it does not guarantee functional correctness of a
MAPE loop. This can only be controlled with application-
dependent properties specified by the user, as described
in Sect. VIII-B2.

• MPm : the knowledge is minimal, i.e., it does not contain
locations that are unnecessary (they are never read nor
updated) or that do no assume all the values of their
codomains. Note that a violation of this meta-property
may also indicate that the specification is not complete,
i.e., that the designer forgot to read/update a location.

In our first developed models we discovered an intra-loop
inconsistency (meta-property MPnc) caused by the inconsis-
tent updates also found by simulation (see Sect. VIII-A1).
Although a normal simulation or the scenario-based validation
can sometimes unveil the presence of inconsistent updates,
when the model becomes particularly complex, inconsistencies
may be more difficult to find, and an automatic approach as
that provided by the model reviewer is helpful. Moreover,
simulation can show only some inconsistencies (i.e., those
detected in the executed runs), whereas model review detects
all the inconsistencies.

We have also found several minimality violations (i.e., meta-
property MPm ), since some locations could not assume all the
values of their codomains. For example, the boolean binary
function slave(Camera, Camera) represents the slavery
relations exiting between the cameras: location slave(ci,
cj) is true iff cj is slave of ci. The model reviewer advised
us that all the locations slave(ci, cj) with j ≤ i cannot
be true: indeed, a camera cannot be slave of a subsequent
camera or of itself. Obviously, in this case the meta-property
violation does not indicate a real fault, but only that the model
is not minimal. In order to address the minimality violation,
we could have modeled the slavery relations using a different
data structure (e.g., associating with each camera the set of
its slaves). Note that, although in the formal specification
the chosen data structure is not a real issue, in the final
implementation the choice of an optimized data structure could

be important, particularly if there are some memory limitations
on the hardware.

2) Verification of Case Study Requirements: Model review
permits to verify general properties (automatically built from
the model) that any model should guarantee. More complicated
properties related to the requirements of the application must
be specified by the modeler.

We have verified classical temporal properties to guarantee
correctness and reliability of our running case study. Moreover,
we also considered properties originally proposed in [24],
dividing them in three categories: invariants, flexibility, and
robustness to silent node failures. Below we report some of
the specified properties.

Invariants: These properties must hold in all the states.
For example, we have verified that all cameras cannot be slaves
(or master with slaves) at the same time.
I1: ag(not(forall $c in Camera with state($c) = SLAVE))
I2: ag(not(forall $c in Camera with state($c) = MASTERWITHSLAVES))

Note that the AsmetaS simulator supports invariant check-
ing. Each invariant ϕ, here verified through model checking
with the temporal property ag(ϕ), has also been checked by
the simulator and the scenario-based validator. Obviously, by
simulation we have been able to verify only the states covered
by the executed runs, whereas model checking gave us the
assurance that the invariants hold in each model state.

Flexibility: The following properties check that the sys-
tem correctly adapts itself to the different traffic conditions
(i.e., presence or absence of traffic congestion). We have
proved different properties, considering the possible different
roles assumed by the cameras when they observe congestion.

For example, we have checked the most basic organization:
when a master camera ci detects a congestion and the next
camera ci+1 is master and congested as well, then the two
cameras form an organization where ci is master with slaves
and ci+1 its slave (for each i = 1, . . . , n− 1).
F1: ag((state(ci) = MASTER and congested(oci) and

state(ci+1) = MASTER and congested(oci+1)) implies
af(state(ci) = MASTERWITHSLAVES and slaves(ci, ci+1)) )

Based on our master election policy, we have checked
more complex properties, as, for example, the following. If
three consecutive master cameras are congested, they form an
organization, where the leftmost camera ci is the master and
the other two cameras are its slaves (with i = 2, . . . , n− 2).
F4: ag((state(ci) = MASTER and congested(oci) and

state(ci+1) = MASTER and congested(oci+1) and
state(ci+2) = MASTER and congested(oci+2) and
stateC(ci−1) = MASTER and not(congested(oci−1))) implies

ef(stateC(ci) = MASTERWITHSLAVES and slaves(ci, ci+1) and
slaves(ci, ci+2)))

Robustness: We have verified that the system is able to
correctly recover from a silent node failure, i.e., that the non-
failing cameras reorganize themselves correctly.

First, we have checked that, if a camera ci fails (being ci+1

its slave), then ci+1 leaves its master (with i = 1, . . . , n− 1).
R1: ag((stateC(ci) = FAILED and slaves(ci, ci+1)) implies

ef(not(slaves(ci, ci+1))))



As additional property we have checked that, whenever the
slaves of an organization detect a failure of their master, they
eventually form a new organization, as long as the traffic
remains congested. We only show one configuration, but all
the possible configurations have been checked.
R2: ag((stateC(c1) = FAILED and slaves(c1,c2) and slaves(c1,c3))

implies e[(congested(orgCont2) and congested(oc3)) U
(stateC(c2) = MASTERWITHSLAVES and slaves(c2,c3))])

IX. DISCUSSION & FACED CHALLENGES

Self-adaptive systems are generally difficult to specify,
validate, and verify due to their high complexity and dynamic
nature. Particularly, when involving decentralized adaptation,
the system adaptive behavior is the result of the collabora-
tive behavior of multiple managing agents and components
responsible for enabling adaptation.

Modeling self-adaptation features was possible thanks to the
multi-agent computational model available in ASMs to spec-
ify distributed computation and coordination among agents.
Furthermore, in the way we model MAPE-K control loops
in ASMs, we achieve a clear separation between adaptation
logic and functional logic. This is possible since the formal
approach allows:

(i) To separate, by modeling them as separated agents,
managing components from managed ones. E.g., the
agent OrganizationController manages the local camera.

(ii) To distribute a MAPE loop among those agents that are
involved in the loop’s computations. E.g., both agents
SelfHealingController and OrganizationController are
involved in the robustness loops for external and internal
failure.

(iii) To separate, inside the behavior of a managing agent,
different adaptation concerns (modeled by separated tran-
sition rules). E.g., in the program of the Organization-
Controller, the rule orgControlFlexBehaviour
models the agent’s contribution in the flexibility concern,
while the rule r_failureAdapt is related to the
robustness concern for external failures.

(iv) To distinguish between decentralized and centralized
loop’s control, by defining specific rule schemes.

This separation of concerns helps the designer to focus on
one adaptation activity at a time, and, for each adaptation
aspect, separate the adapting parts from the adapted ones. This
also facilities reasoning about components behavior and avoid
over-specification, keeping models concise.

The availability of a set of tool for model analysis helped
us in different activities:

(v) Validate adaptation requirements by executing specifica-
tions. For the Traffic Monitoring case study, we simulated
different scenarios for flexibility and robustness.

(vi) Determine conflicting MAPE loops. Simultaneous exe-
cution of different adaptive behaviors might cause con-
sistency violations, when different MAPE loops update
locations inconsistently. Model simulation, by checking
for inconsistent updates, can help to discover these situa-
tions. However, a deeper model analysis, by means of the

proof of suitable meta-properties, can reveal intra/inter-
loop inconsistencies inside the agents’ programs. Such
conflicting situations often requires to reason about “pri-
orities” of adaptation concerns, which can be established
by appropriate scheduling of the agents’ operations.
In our case study, by this technique, we discovered
an intra-loop inconsistency inside the program of the
OrganizationController.

(vii) Assert the system correctness. Once one gains enough
confidence that the self-adaptive system works according
to the expected adaptation logic, verification is necessary
to assure correctness properties. By model checking, we
have verified a set of properties expressing, as temporal
logic formulas, adaptation goals (mainly flexibility and
robustness) of our case study.

(viii) Check for model completeness without over-
specification. Besides correct, a model must be
complete, i.e., all the computational and adaptive
aspects must be specified, but also minimal, i.e., no
over-specification must be, due to unnecessary signature
and/or transition rules never executed. We checked
suitable meta-properties to guarantee knowledge
minimality and the absence of “dead” rules. In our case
study we found some minimality violations.

X. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we showed how to model the self-adaptation
layer of modern distributed systems in terms of multi-agent
ASMs. By exploiting the abstraction and flexibility of this
formal method, we introduced the concept of self-adaptive
ASMs as formal framework to specify self-adaptive behavior.
We applied our formal modeling approach to the Traffic Mon-
itoring case study. We were able to avoid over-specification
while achieving clear separation of concerns that helped us
to focus on one adaptation concern at a time, and, for each
concern, to separate the managing behavior from the managed
one. We were able to model the interaction between managed
and managing agents as ASM agents interaction, without
the necessity to extend the ASM formalism. Validation and
verification activities helped us to reason about interfering
adaptation concerns and adaptation goals.

In the future, we want to exploit runtime monitoring tech-
niques, that the ASM formalism already supports [6] for Java-
like programs, to connect our formal model to a runtime
adaptation middleware. We also plan to exploit appropriate
extensions of ASMs with time models [22] for specifying
time-triggered adaptation.
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[23] M. Güdemann, A. Angerer, F. Ortmeier, and W. Reif. Modeling of self-
adaptive systems with SCADE. In International Symposium on Circuits
and Systems (ISCAS 2007), 27-20 May 2007, New Orleans, Louisiana,
USA, pages 2922–2925. IEEE, 2007.

[24] M. U. Iftikhar and D. Weyns. A case study on formal verification of
self-adaptive behaviors in a decentralized system. In Kokash and Ravara
[27], pages 45–62.

[25] M. U. Iftikhar and D. Weyns. Activforms: active formal models for
self-adaptation. In G. Engels and N. Bencomo, editors, SEAMS, pages
125–134. ACM, 2014.

[26] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[27] N. Kokash and A. Ravara, editors. Proceedings 11th International Work-
shop on Foundations of Coordination Languages and Self Adaptation,
FOCLASA 2012, Newcastle, U.K., September 8, 2012, volume 91 of
EPTCS, 2012.

[28] A. Lanoix, J. Dormoy, and O. Kouchnarenko. Combining proof and
model-checking to validate reconfigurable architectures. Electronic
Notes in Theoretical Computer Science, 279(2):43 – 57, 2011.

[29] J. Magee and T. Maibaum. Towards specification, modelling and analysis
of fault tolerance in self managed systems. In Proceedings of the 2006
International Workshop on Self-adaptation and Self-managing Systems,
SEAMS ’06, pages 30–36, New York, NY, USA, 2006. ACM.

[30] E. Merelli, N. Paoletti, and L. Tesei. A multi-level model for self-
adaptive systems. In Kokash and Ravara [27], pages 112–126.

[31] E. Riccobene and P. Scandurra. Towards ASM-based formal specifica-
tion of self-adaptive systems. In Y. A. Ameur and K. Schewe, editors,
ABZ, volume 8477 of Lecture Notes in Computer Science, pages 204–
209. Springer, 2014.

[32] E. Riccobene and P. Scandurra. Formal modeling self-adaptive service-
oriented applications. In Proc. ACM SAC 2015, 30th ACM Symposium
on Applied Computing, Service-Oriented Architecture and Programming
(SOAP) Track, 2015.

[33] P. Vromant, D. Weyns, S. Malek, and J. Andersson. On interacting
control loops in self-adaptive systems. In Software Engineering for
Self-Adaptive Systems, SEAMS 2011, 2011.

[34] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey
of formal methods in self-adaptive systems. In B. C. Desai, E. Vassev,
S. P. Mudur, and B. C. Desai, editors, C3S2E, pages 67–79. ACM, 2012.

[35] D. Weyns, S. Malek, and J. Andersson. FORMS: a formal reference
model for self-adaptation. In M. Parashar, R. J. O. Figueiredo, and
E. Kiciman, editors, ICAC, pages 205–214. ACM, 2010.

[36] D. Weyns, B. R. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Pre-
hofer, J. Wuttke, J. Andersson, H. Giese, and K. M. Göschka. On pat-
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