
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4083559

PKUAS: An architecture-based reflective component operating platform

Conference Paper · June 2004

DOI: 10.1109/FTDCS.2004.1316609 · Source: IEEE Xplore

CITATIONS

45
READS

58

2 authors:

Some of the authors of this publication are also working on these related projects:

Mobile Web View project

Mobile Data Analytics View project

Hong Mei

Xi'an Jiaotong University

309 PUBLICATIONS 4,957 CITATIONS

SEE PROFILE

Gang Huang

Southeast University (China)

227 PUBLICATIONS 2,135 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gang Huang on 19 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4083559_PKUAS_An_architecture-based_reflective_component_operating_platform?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4083559_PKUAS_An_architecture-based_reflective_component_operating_platform?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mobile-Web?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mobile-Data-Analytics?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hong_Mei5?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hong_Mei5?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hong_Mei5?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gang_Huang20?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gang_Huang20?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast_University_China?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gang_Huang20?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gang_Huang20?enrichId=rgreq-846f49f76543f5064e1c6748858e6adf-XXX&enrichSource=Y292ZXJQYWdlOzQwODM1NTk7QVM6Mjg2MTUxODI4MDk5MDcyQDE0NDUyMzUzMjAxMjc%3D&el=1_x_10&_esc=publicationCoverPdf

PKUAS: An Architecture-based Reflective Component Operating Platform

Hong MEI, Gang HUANG

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.

E-mail: meih@pku.edu.cn, huanggang@sei.pku.edu.cn

Abstract

Reflective middleware is the major approach to

improving the adaptability of middleware and its

applications. Current researches and practices pay little

attention on the usability of reflective middleware. There

also lacks a systematic way to adapt runtime system via

reflective middleware. This paper presents the design and

implementation of PKUAS, an architecture-based

reflective component operating platform compliant with

Java 2 Platform Enterprise Edition. PKUAS constructs

and represents its platform and applications from the

perspective of software architecture so as to provide an

understandable, user-friendly and systematic way to use

reflective middleware.

1. Introduction

Nowadays, Internet becomes a new dominant runtime

environment of software with extremely open and

dynamic characteristics. As a result, middleware, as the

popular operating platform over Internet, has to be much

more adaptable than ever. Traditional middleware has the

philosophy of “black-box” reuse, which hides the

heterogeneity of underlying operating systems, networks

and programming languages. Though the “black-box”

reuse frees the developers from dealing with the

heterogeneity, it also prevents the maintainers from

adapting the middleware for changing environments or

requirements. Then, traditional middleware cannot achieve

the high adaptability required by extremely open and

dynamic Internet.

Being one of the hot topics in the researches and

practices on next generation middleware, reflective

middleware is considered as the fundamental approach to

adaptable middleware [1]. Compared to traditional

middleware, reflective middleware makes the runtime

states and behaviors internal of middleware platform and

applications observable and adaptable. In other words,

reflective middleware employs the philosophy of “grey-

box” reuse to become much more adaptable.

Though reflective middleware receives much more

attentions from the academic and industrial communities

recently, many challenges remain to be addressed. Firstly,

the usability of reflection is still poor. Most reflective

middleware represent their states and behaviors as a set of

fragmented and irrelative items. Such representations are

necessary but insufficient to understand and reason

middleware platform and applications. Secondly, it is

necessary to systematically adapt runtime systems via

reflective middleware because of the consensus that the

adaptability of software systems should be considered in

the whole lifecycle. But current researches and practices

focus on implementing reflective mechanisms, that is, how

to adapt, but pay little attention on why, what and when to

adapt. Thirdly and finally, to the best of our knowledge,

there seems no work on systematically introduce reflection

into J2EE (Java 2 Platform Enterprise Edition), which is

one of the most popular middleware.

This paper presents an architecture-based component

operating platform, called PKUAS (PeKing University

Application Server) and compliant with J2EE, to address

the above issues. The rest of this paper is organized as

follows: Section 2 introduces some work related to

reflective middleware; Section 3 discusses some basic

ideas of architecture-based reflective framework; Section

4 details the design and implementation of PKUAS and

evaluates its performance. Section 5 summarizes the

contributions and identifies the future work of this paper.

2. Related Work

Reflection, also known as computational reflection, is

originated by B.C. Smith to access and manipulate the

LISP program as a set of data in execution [16]. Figure 1

illustrates the fundamental concepts of reflection. A

reflective system is a computational system having two

levels. The base level consists of base entities that perform

the usual functionality of the system, that is, the basic

ability of a computational system regardless of whether it

is reflective or not. In details, it builds a model to

represent the problem domain and then reasons and

manipulates on the model to solve the problems. The meta

level consists of meta entities that perform reflection on

the system. It builds a model to represent the base level.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

This model, called self-representation of the system, is

causally connected with base entities, that is, changes of

base entities will immediately lead to corresponding

changes in self-representation, and vice versa [12]. The

computation in the meta level is to guarantee the causal

connection between self-representation and base entities.

Then, a reflective system can be formally defined as the

computational system having the ability, called reflection,

that its internal states and behaviors can be accessed and

modified through its causal connected self-representation.

Figure 1. Architecture of Reflective System

In the past several years, many reflective middleware

are developed as an extension to the common middleware.

DynamicTAO [10], OpenCORBA [11] and FlexiNET [7]

are reflective CORBA (Common Object Request Broker

Architecture) platforms. mChaRM [3] is a reflective RMI

(Remote Method Invocation) platform. OpenORB [2]

adds reflection ability into COM (Component Object

Model). All of these middleware have the limitations of

usability and reflective capability more or less and do little

efforts on the systematic adaptation via reflective

middleware.

3. Overview of PKUAS

Considering the challenges to reflective middleware, it

could be concluded that the self-representation should

represent the states and behaviors of middleware platform

and applications in a uniform and understandable way.

Such self-representation should also facilitate to identify

and analyze changes enabled by reflective middleware in

the whole software lifecycle. Since software architecture

(SA) helps to understand large-scale software systems and

plays an important role in software development [5], it is a

natural idea to make SA act as the self-representation of

reflective middleware.

SA describes the gross structure of a software system

with a collection of components, connectors and

constraints [15]. In general, SA acts as a bridge between

requirements and implementation and provides a blueprint

for system construction and composition. It helps to

understand large systems, support reuse at both

component and architecture level, indicate the major

components to be developed and their relationships and

constraints, expose changeability of the system, verify and

validate the target system at a high level and so on [5].

Since most common middleware provide supports for

component based development, like CORBA Component

Model and Enterprise JavaBean, and even themselves are

constructed from components, their platform and

applications can be sufficiently and suitably represented

by SA.

3.1. Architecture based Reflective Framework

Compared to SA in development, SA introduced into

reflective middleware is available at runtime and provides

a more concrete view of the runtime system with much

more information. We call such SA as runtime software

architecture (RSA) [9]. Figure 2 shows the framework of

such architecture-based reflective middleware.

Figure 2. Architecture-based Reflective Framework

The states and behaviors of middleware platform and

applications can be observed and adapted from the

perspectives of the platform RSA and application RSA

respectively. The platform RSA represents the

implementation of middleware platform as components

and connectors. Middleware applications are invisible or

represented as the attributes of some components. For

example, J2EE application server consists of containers

and services and the J2EE application consists of EJBs or

Servlets. In the platform RSA, the containers and services

are represented as components; their interactions or

dependencies are represented as connectors; and the EJBs

or Servlets are represented as the attributes of the

containers. On the other hand, the application RSA

represents middleware application as components and

connectors. Middleware platform are typically represented

as constraints or attributes of components and connectors.

For example, J2EE security and transaction services are

represented as the security and transaction constraints on

the EJBs or Servlets.

The platform RSA precisely represents the actual

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

implementation of middleware platform, while the

application RSA provides a much more understandable

view for the states and behaviors of runtime systems.

Specially, if SA description in software development is

available, the application RSA can enrich its semantics

with plentiful design information. To ease the work of

analyzing the design artifact and verify the correctness of

reflection, RSA should be formally described by an

extended architecture description language. Such formal

description also helps to keep consistency and traceability

of SA models between software development and runtime,

which is necessary to achieve the systematic adaptation

based on reflective middleware.

3.2. Process Model

Introducing SA into reflective middleware not only

improves the usability of reflection, but also makes SA

explicitly available in the whole software lifecycle. As a

result, it is feasible to systematically adapt middleware

platform and applications via reflection in an architecture

based way. More details will be discussed with an

architecture based process model, as shown in Figure 3.

Figure 3. ABC Process Model

ABC (Architecture based Component Composition) is

a software reuse methodology that supports to build a

software system with pre-fabricated components under the

guide of SA [13]. In ABC, SA acts as a blueprint in the

whole software lifecycle. In requirements specification,

the concepts and principles of SA are introduced into this

phase to achieve the traceability and consistency between

requirement specifications and system design. In this

phase, there is no actual SA but only the requirement

specifications of the system to be developed, which are

structured in the way similar to SA. In architecture design,

requirements specifications are refined and some overall

design decisions are made. After architecture design, the

components, connectors and constraints in the reusable

assets repository will be selected, qualified and adapted to

implement the target system. However, there are still some

elements unable to be implemented by reusable assets.

These elements have to be implemented by hand in object-

oriented languages or other ones. Before the

implementation of the system being executed, it must be

deployed into middleware platform. In this phase, SA

should be complemented with some information so that

middleware can install and execute the system correctly.

Typically, the information includes declaration of required

resources, security realm and roles, component names for

runtime binding, and so on.

In some sense, the development of a system in ABC

can be considered as a series of automated refinement and

transformation of SA models. The syntax and semantics of

SA would become more accurate or complete after every

refinement or transformation. From the view of software

lifecycle, the observation and manipulation via reflective

middleware can be considered as the activities in software

maintenance and evolution. Then, RSA has the most

accurate and complete details describing the final system.

The adaptation via reflection can be verified and validated

with plentiful information aggregated from requirements

phase to runtime. At the same time, some changes may be

predicted in system development and deployment. Such

information can guide the adaptation via reflection.

Consequently, the adaptation via reflection could be

performed in a systematic way.

4. Implementation

4.1. Componentized Structure

PKUAS is a J2EE-compliant application server which

is the platform including J2SE, common services and one

or both of Web Container and EJB Container [18]. It

provides all functionalities required by J2EE v1.3 [18] and

EJB v2.0 [17] in its componentized structure, as shown in

Figure 4.

Figure 4. Componentized Structure in PKUAS

Container system and container: a container provides

a runtime space for the components in the deployed

applications with lifecycle management and contract

enforcement [18]. PKUAS implements standard EJB

containers for stateless session bean, stateful session

bean, bean-managed entity bean, container-managed

entity bean and message-driven bean [17]. One

instance of a container holds all instances of one EJB.

And a container system consists of the instances of

the containers holding all EJBs in an application.

Such organization of the containers facilitates the

configuration and management specific to individual

applications, such as security realm per application

and architectural information of the application.

Service: it provides the common functions, like

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

naming, communication, security, transaction and log.

The naming and communication services provide an

interoperability framework that enables the

components deployed in PKUAS to interact with

each other and other components outside PKUAS

through multiple interoperability protocols [8].

Tool: it provides functions to facilitate the operation

of PKUAS, such as deployment and management.

Micro kernel: it provides a registry and an invocation

framework for the above platform components and

other management entities, like class loading,

relation, timer and monitor. In fact, it is implemented

as a JMX MBeanServer. JMX (Java Management

Extensions) is a specification that defines the

architecture, design patterns, APIs and services for

application and network management and monitoring

in Java programming language [20]. In JMX, both

managing components and managed components are

implemented as MBeans, which support plug-and-

play dynamically. The MBeanServer is a registry for

MBeans and provides an invocation framework for

MBeans in the same Java Virtual Machine (JVM).

Being programmed in Java, PKUAS is executed in

JVM.

Such componentized structure is essential to reflective

middleware because it can help to identify entities to be

reflected clearly and manipulate a given entity

independently from the others [4]. Considering reflection,

the container systems, containers, components and

services are wrapped by meta-objects and plugged into the

micro kernel. Then the states and behaviors of these

platform components can be observed and changed

through their reflective wrappers.

4.2. Class Loader Hierarchy

In Java, the class loaders are responsible for loading

class definitions from the “.class” files [6]. The default

class loader in JVM only loads classes from the directories

or “.jar” files specified by the “java.class.path” property of

JVM and does not reload the class definition with the

same name as an already loaded class. Obviously, it

cannot support the replacement of classes required by

reflection. Then PKUAS implements a set of class loaders

that constitute a hierarchy as shown in Figure 5.

Being the top of the hierarchy, System Class Loader is

responsible for loading classes of the implementation of

PKUAS, which are visible to all classes in PKUAS and

cannot be replaced at runtime. The second layer consists

of three types of “brother” class loaders. Service Class

Loader is responsible for loading classes specific to one

service, e.g., security service, transaction service and

communication service; EJB Application Class Loader is

responsible for loading classes from the “.ear” or “.jar”

file that contains EJB implementations; and Web

Application Class Loader is responsible for loading

classes from the “.ear” or “.war” file that contains

JSP/Servlet and other web pages. The “brother”

relationship ensure the services, EJB applications and

Web applications cannot access each other without the

help of PKUAS micro kernel. Then the addition of

services, EJB applications and Web applications can be

achieved by adding new class loaders to load the specified

classes. And the replacement can be achieved by removing

the old class loaders and adding new class loaders

sequentially. EJB Application Class Loader will create an

EJB Class Loaders per EJBs, and EJB Class Loader will

create three class loaders to load the contract,

implementation and constraints respectively. Then the

whole of an EJB or its contract, implementation and

constraints can be added or replaced independently by

adding and removing the corresponding class loaders.

Figure 5. PKUAS Class Loader Hierarchy

4.3. Reflective Container

In PKUAS, one container instance provides a runtime

space for all instances of a component and holds all details

of the component. In that sense, to observe and manipulate

application components in the application RSA is equal to

reflect their containers in the platform RSA. The

observation can be easily implemented by exposing

internal attributes of the container and application

component. The addition and removal of the whole

component can be easily implemented by creating or

releasing the container instance and publish or withdraw

its remote reference in the naming service. The

replacement of the whole component can be easily

achieved by replacing its container. The replacement of

the component interface can be achieved by unloading the

old interfaces and loading new ones. Component

constraints are enforced by a set of interceptors, which can

be dynamically added, removed and replaced.

Considering the lifecycle of component instances,

reflection about component implementation becomes

much more complex. Typically, an EJB instance has five

states in its lifecycle, including Loaded, Instantiated,

Sessional, Transactional and Serving. The Loaded state

indicates that the implementation classes of an EJB are

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

loaded into PKUAS after its deployment and unloaded

after its un-deployment. After the EJB is invoked at first

time, an instance of the implementation is created and

stays in the Instantiated state if it is not associated with

any client. The Sessional instance means that the instance

is associated with a client and cannot deal with the

invocations from other clients. If an instance is in an

uncompleted transaction, it becomes Transactional and has

to keep the transactional information spanning multiple

invocations. The Serving instance means that the instance

is dealing with an invocation by the implementation

classes. Table 1 summaries the details of replacing EJB

instances in terms of the five states.

Table 1. Replacement of EJB instances

EJB State Replacement Details

Loaded (1): Load new classes

Instantiated (2): Release old instances + (1) + create

new instances

Sessional (3): (2) + restore attributes

Transactional (4): (3) + restore transaction context

Serving Not supported

4.4. Reflective Interoperability Framework

PKUAS defines a reflective interoperability framework

to support the components deployed in PKUAS to interact

with the components deployed in other component

frameworks, as shown in Figure 6.

Figure 6. PKUAS interoperability framework

Communication infrastructure provides the necessary

functions required by particular interoperability protocols.

Referring the concepts and design patterns of CORBA

Extensible Transport Framework [14], PKUAS can plug-

play not only multiple transport protocols, e.g., TCP/IP,

SSL and HTTP, but also multiple interoperability

protocols, e.g., IIOP and SOAP. The main entities in

communication infrastructure include the sender, receiver

and transporter. Both senders and receivers are

responsible for sending and receiving messages specified

by the given interoperability protocols, transforming the

messages specific to interoperability protocols into the

messages specific to underlying transport protocols (e.g.,

TCP and HTTP), and managing connections. The sender

can build connections, send requests and receive

responses at the client side, while the receiver can listen at

a given network ad-dress, receive requests and send

responses at the server side. The transporter is responsible

for sending and receiving messages through the

underlying transport protocol. The messages are

understandable to senders and receivers but opaque to

transporters so that one transport protocol can be

employed by multiple interoperability protocols.

Proxy generator can generate stubs and skeletons from

the interface definition of the component automatically.

Both stubs and skeletons transform the method invocation

specific to the client-side programming languages into the

message specific to interoperability proto-cols (e.g., GIOP

and SOAP), and vice versa. The transformation contains

not only the signature but also non-functional constraints

of the given interface, i.e., the interface name, operation

name, return value, parameters, exceptions and contexts,

e.g., security and transaction. The stubs and skeletons are

specific to interfaces, i.e., different stub and skeleton for

different interfaces. For a given interface, the number of

stubs and skeletons is equal to the number of

interoperability protocols supported by the implementation

of the given interface. For example, if an interface wants

to be accessed by IIOP and SOAP, there would be one

stub and skeleton for IIOP and another stub and skeleton

for SOAP.

Naming service supports components to publish and

retrieve different interoperability ad-dresses with the

integration of the naming services specific to the

interoperability protocols. Because the naming servers of

other component frameworks cannot be modified at all,

PKUAS integrates them via proxies. At the initialization

of PKUAS, the proxies traverse the associated naming

servers to retrieve all of the bindings and then register

every available name bound with themselves’ references,

instead of the interoperability addresses of the tar-get

components, into PKUAS naming server. In the lookup of

naming bindings, the proxies will retrieve the real

interoperability address of the target component from the

corresponding naming server. On the other hand, an EJB

may be accessed by other components through multiple

interoperability protocols or transport protocols. PKUAS

has to construct and publish multiple addresses into the

specific naming servers with the help of the proxies. Then

other components can retrieve the valid addresses from

their own naming servers and invoke EJBs through their

preferred protocols.

4.5. Meta Objects for RSA

To maintain causal connections between RSA and

reflective mechanisms discussed previously, a set of meta

objects are required, as shown in Figure 7. Briefly, most

of MBeans discussed in Figure 4 are responsible for

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

maintaining platform RSA. The application specific meta

objects are derived from common elements in architectural

description languages. They organize meta objects for

platform RSA to represent application RSA.

Figure 7. Meta objects and base objects

The operations provided by these meta objects can be

divided into five categories: 1) Lifecycle management: the

common services, containers and container systems can be

started, stopped, suspended, resumed and re-started

through manipulating the corresponding elements in

platform architecture. 2) Add/remove/replacement: all

common services except communication, containers,

container systems and application components can be

added, replaced and removed at runtime. 3) Statistics:

some basic entities may provide some statistics of their

internal states and behaviors. Typically, the statistics

includes the number of threads in use, the size of buffer or

memory footprint and the number of connections for a

given application, the number of instances of a given

component, the number of invocations for a given method

or component, the maximum, minimal and average

response time of a given method, and so on. 4) Business

invocation: some methods exposed by basic entities can be

directly invoked through reflective API. For example, the

administrator can explicitly delete some naming bindings

from naming service through invoking the ‘unbind’

method. 5) Basic reflection: all other states and behaviors

of the runtime system represented by the elements in

platform and application architectures can be observed up-

to-date and some of them may be modifiable.

4.6. Programming Model for Reflection

PKUAS provides a reflective programming model for

accessing and manipulating its platform RSA and

application RSA. As shown in Figure 8, the reflective API

is encapsulated in a stateless EJB, called MEJB [19],

which brings three advantages. Firstly, reflective

mechanisms become secure because EJB is protected by

access control mechanism or secure transportation

mechanism in EJB container, such as JAAS (Java

Authentication and Authorization Service) and IIOP-SSL.

Secondly, the users can master the API quickly because it

has the same programming model as J2EE. Thirdly, the

API can be accessed through multiple interoperability

protocols because of PKUAS interoperability framework.

Figure 8. Accessing Reflective Framework

4.7. Performance Evaluation

A test is performed on a PC with PIII 800MHz, 256M

SDRAM and Windows 2000 Server with Service Pack 4.

It consists of a standalone Java client sending a string in

desired bytes and a stateless EJB receiving the string,

printing it in screen and returning it back to the client.

Figure 9. Test result of performance impact

As shown in Figure 9, after RSA is built at runtime, it

may perform computation in every invocation (called

active) or not (called passive). When RSA is passive, the

invocation latency is similar with that of PKUAS without

RSA. If RSA is active, the invocation latency increases

according to the computation per-formed by RSA. In this

test, RSA performs time statistics to expose the minimal,

maximum and average response time of the invocations to

the specified operation of the EJB. When an invocation

comes in, a meta-object increments the invocation counter,

records two time-stamps when the invocation comes in

and its response goes out, calculates their margin as the

response time, determines whether it is minimal or

maximum and add it into the total time of all invocations.

In this case, the latency increases 3%~5%. Note that, the

test EJB is so simple that its computation consumes very

little time. In practice, an EJB will be much more complex

and take more time to deal with invocations. Consequently,

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

the percent of time cost in time statistics will decrease.

Furthermore, the time statistics can be started and stopped

whenever the maintainers need. Then, the performance

impact of RSA is reasonable and acceptable in practice.

5. Conclusion and Future Work

Current researches and practices on reflective

middleware focus on how to implement reflective

mechanisms but pay little attention on the usability and

systematic adaptation of reflective middleware. This paper

argues that these problems can be well addressed by

introducing software architecture into the construction and

usage of reflective middleware. To approve this idea,

PKUAS, an architecture-based reflective J2EE application

server, is presented. PKUAS constructs itself with a set of

components based on a micro kernel. Based on such

componentized structure, PKUAS implements reflective

mechanisms, builds up meta objects to maintain causal

connections, and defines a reflective programming model

compliant with J2EE. Finally, the result of performance

test proves the feasibility and applicability of the

architecture-based approach to reflective middleware.

Reflective middleware just provides basic mechanisms

to adapt runtime systems. The future work will focus on

architecture-based maintenance and evolution that

provides the methodology of systematic adaptation and

autonomic middleware that can determine why, what and

when to adapt without human intervention.

Acknowledgement

This effort is sponsored by the National Key Basic

Research and Development Program (973) under Grant

No. 2002CB31200003; the National Natural Science

Foundation of China under Grant No. 60233010,

60125206; the National High-Tech Research and

Development Plan of China under Grant No.

2001AA113060; the Major Project of Science and

Technology Research of Ministry Of Education P.R.C.

under Grant No. 0214.

References

[1] Agha, G., “Adaptive Middleware: Introduction”,

Communications of the ACM, 2002, 45(6): 30-32.

[2] Blair, G.S., G. Coulson, A. Andersen and etc., “The Design

and Implementation of Open ORB 2”, IEEE Distributed

Systems Online, 2001, 2(6).

[3] Cazzola, W., Communication-Oriented Reflection: a Way

to Open Up the RMI Mechanism, PhD thesis, Milano, Italy,

2001.

[4] Costa, F.M., Combining Meta-Information Management

and Reflection in an Architecture for Configurable and

Reconfigurable Middleware, PhD Thesis, Lancaster

University, 2001.

[5] Garlan, D., “Software Architecture: A Roadmap”, The

Future of Software Engineering 2000, Proceedings of 22nd

International Conference on Software Engineering, ACM

Press, 2000, pp. 91-101.

[6] Gosling, J., B. Joy, G. Steele and G. Bracha, The Java

Language Specification, Second Edition, 2000.

[7] Hayton, R. and ANSA Team, FlexiNet Architecture,

Technical Report, 1999.

[8] Huang, G., H. Mei, Q.X. Wang and F.Q. Yang, “A

Systematic Approach to Composing Heterogeneous

Components”, Chinese Journal of Electronics, Vol. 12, No.

4, 2003, pp 499-505.

[9] Huang, G., M. Hong and F.Q. Yang, “Runtime Software

Architecture based on Reflective Middleware”, Science in

China (Series F), accepted.

[10] Kon, F., M. Roman, P. Liu, J. Mao, T. Yamane, L.C.

Magalhaes, and R.H. Campbell, “Monitoring, Security, and

Dynamic Configuration with the dynamicTAO Reflective

ORB”, In Proceedings of IFIP/ACM International

Conference on Distributed Systems Platforms and Open

Distributed Processing, volume 30, LNCS 1795, Springer-

Verlag, 2000, pp.121-143.

[11] Ledoux, T., “OpenCorba: A Reflective Open Broker”, In

Proceedings of the 2nd International Conference on

Reflection’99, LNCS 1616, Springer-Verlag, 1999, pp.

197–214.

[12] Maes, P., “Concepts and Experiments in Computational

Reflection”, In Proceedings of ACM Conference on

Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA' 87), Orlando, FL USA, October

1987, pp.147-155.

[13] Mei, H., J.C. Chang and F.Q. Yang, “Software component

composition based on ADL and middleware”, Science in

China (Series F), Vol.44, No.2, 2001, pp. 136-151.

[14] O' Ryan, C., F. Kuhns, D. C. Schmidt, etc., “The Design

and Performance of a Pluggable Protocols Framework for

Real-time Distributed Object Computing Middleware”,

IFIP/ACM Middleware 2000 Conference, New York, 2000,

pp. 154-163.

[15] Shaw, M. and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline, Prentice Hall,

1996.

[16] Smith, B.C., Procedural Reflection in Programming

Languages, Ph.D Thesis, MIT, 1982.

[17] SUN Microsystems, Enterprise JavaBeans Specification,

Version 2.0, 2001.

[18] SUN Microsystems, Java 2 Platform Enterprise Edition

Specification, Version 1.3, 2001.

[19] Sun Microsystems, Java 2 Platform, Enterprise Edition

Management Specification, 2002.

[20] Sun Microsystems, Java 2 Platform, Enterprise Edition

Management Specification 2002.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

View publication statsView publication stats

https://www.researchgate.net/publication/4083559

	footer1:

