
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262165238

Compile-time reflection and metaprogramming for Java

Conference Paper · January 2014

DOI: 10.1145/2543728.2543739

CITATIONS

6
READS

247

2 authors:

Weiyu Miao

University of Colorado Boulder

3 PUBLICATIONS 20 CITATIONS

SEE PROFILE

Jeremy Siek

Indiana University Bloomington

131 PUBLICATIONS 2,832 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jeremy Siek on 11 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/262165238_Compile-time_reflection_and_metaprogramming_for_Java?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/262165238_Compile-time_reflection_and_metaprogramming_for_Java?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weiyu_Miao?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weiyu_Miao?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado_Boulder?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weiyu_Miao?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Siek?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Siek?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indiana_University_Bloomington?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Siek?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Siek?enrichId=rgreq-39c90c6ab3820a3ea621a05e318c986c-XXX&enrichSource=Y292ZXJQYWdlOzI2MjE2NTIzODtBUzozMTY3MjI4ODI1MTQ5NDZAMTQ1MjUyNDAyNzE3NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Compile-time Reflection and Metaprogramming for Java

Weiyu Miao Jeremy Siek

University of Colorado at Boulder

{weiyu.miao, jeremy.siek}@colorado.edu

Abstract

Java reflection enables us to write reusable programs that are inde-
pendent of certain classes. However, when runtime performance is
a big concern, we propose to use compile-time reflection for writ-
ing metaprograms that generate non-reflective class/type specific
code, which has lower runtime cost.

We proposed both compile-time reflection and metaprogram-
ming for Java, and extended our previous work on pattern-based
traits. Pattern-based traits integrate pattern-based reflection with
flexible composition of traits. They are capable of pattern-matching
over class members and generating expressive code. We add and
formalize pattern-based reflection at the statement-level, which
enables a meta program to generate statements. We add reified
generics for pattern-based traits, which enables a pattern to iter-
ate over any class when traits are instantiated. We implemented
an ORM tool (called PtjORM) using pattern-based traits. PtjORM
uses compile-time reflection and our benchmark tests show that it
has competitive runtime performance compared to the mainstream
Java ORM tools.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definition and Theory; D.3.3 [Programming lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords compile-time reflection, metaprogramming, object-
oriented programming, traits, object-relational mapping

1. Introduction

Java reflection [9] has the ability to inspect and analyze class mem-
bers (i.e. metadata of a class) at run time. It enables programmers
to write reusable programs that are independent of certain classes.
For example, we are given a great number of classes and asked to
implement the function hasGetters. The function checks if all the
fields in a class have getters (i.e. field get methods) and prints out
those fields without getters. This function is useful when class ob-
jects need to be serialized (e.g. converting objects into XML data)
or object-relational mapped: many ORM tools require fields to have
getters for access. It is impractical to manually write a hasGetters
for each class, because each time we change the fields of a class,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543739

we also likely need to change the hasGetters for that class, therefore
such implementation is not adaptable to the change of a class.

With runtime reflection, we can write a hasGetters that is appli-
cable to any class. Following shows the partial implementation of
the hasGetters.

1 public boolean hasGetters(Class cls) {
2 Field[] fds = cls.getFields();
3 for(int i = 0; i < fds.length; ++i) {
4 Field fd = fds[i];
5 String mn = ”get”+capitalize(fd.getName());
6 Class fTy = fd.getType();
7 try {
8 Method m = cls.getMethod(mn, new Class[0]);
9 if (! m.getReturnType().equals(fTy)) {

10 ... /∗ print the message that field fd has no getter ∗/
11 }
12 } catch (Exception e){
13 ... /∗ print the message that field fd has no getter ∗/
14 }
15 }
16 ...
17 }

The hasGetters iterates over all the fields of a class (line 2-3).
For each field, it creates the name of the getter (line 5, function
capitalize converts the first character to upper case) and searches
in the class for a method that has the same name and with no
parameters (line 8). If such method is found and its return type is
equal to the field’s type (line 9), then the method is a getter method.

Though Java runtime reflection enables programmers to write
general programs, it has three drawbacks.

First, runtime reflection is not efficient. Suppose a program uses
the hasGetters method to check a class that is statically known.
Each time we run the program, the function needs to iterate over
all the fields and the methods in the class. We quote the following
words from the Java’s documentation 1:

“Reflective operations have slower performance than their non-

reflective counterparts, and should be avoided in sections of code

which are called frequently in performance-sensitive applica-

tions.”

That is why many Java ORM (Object Relational Mapping) tools
(such as Hibernate, Ebean, etc) which use runtime reflection, raise
the concern about the runtime cost of reflection.

Second, Java has no specific language that is dedicated to reflec-
tion. It uses objects to store metadata. For ease of use and for ex-
pressiveness, we would like to have a meta language, which enables
users to inspect and manipulate metadata more easily. For exam-
ple, the meta language of Garcia’s calculus [10] for type-reflective
metaprogramming has abundant type-level operators and uses types
as terms.

1 see http://docs.oracle.com/javase/tutorial/reflect/

27

Third, Java reflection has little support for code generation.
Forman’s book [9] mentioned code generation via reflection, but
the object-level code is written in string, which has no type safety
guarantees. We would like Java to have an object-level language
that the compiler can type-check before code generation.

To overcome the drawbacks of runtime reflection, researchers
have proposed compile-time reflection for its lower run-time cost
and improved safety. Draheim [3] developed reflective program
generators with compile-time loops that can iterate over the mem-
bers of one class to create the members for another class. Fähndrich
[6] introduced pattern-based reflection, which provides high-level
patterns and templates. For better code reuse, researchers integrated
pattern-based reflection with different composition mechanisms.
Huang [11, 12] introduced MorphJ, which increased the expres-
siveness and safety guarantees of pattern-based reflection. In Mor-
phJ, reflective patterns reside in mixin-like structures [8]: a reflec-
tive pattern can match the members of a parametrized superclass
and generate members for its subclass. Mixins support linear com-
position, which imposes some restriction on code reuse. Borrowing
the concept of the reflective patterns from MorphJ, we proposed
pattern-based traits [20]. They are the combination of pattern-based
reflection with traits [23], which offer more expressive forms of
composition.

In this paper, we present pattern-based reflection at the state-
ment level. Pattern-based reflection is not new, but to our knowl-
edge, its use at the statement level has never been fully discussed
and formalized. We find out that statement-level pattern-based re-
flection supports the writing of reusable metaprograms, thus it is
necessary to formalize the language and prove that it always gener-
ates well-typed statements.

Following shows the hasGetters implemented in statement-
level pattern-based reflection.

1 trait getterChecker<class X>
2 provides {
3 public boolean hasGetters() {
4 boolean has = false; boolean ret = true;
5 pattern <F, name f> F $f in X {
6 pattern <> public F get#$f() in X {
7 has = true;
8 }
9 if (! has) {

10 ret = false;
11 println(”Field ”+$f::getName()+” has no getter!”);
12 } else { has = false; }
13 }
14 return ret;
15 }
16 }

Trait getterChecker is parameterized over the class that is to be
reflected over. Inside the body of function hasGetters, the outer
pattern matches each field in X (line 5) and passes the field’s name
and the type to the inner pattern, which searches the field’s getter
method in X (line 6). The symbol # is the name concatenation
operator. In line 11, expression $f::getName() is a meta function
call that, at compile time, returns the string of field f’s name. The
hasGetters in the trait can be specialized for any class and also
adaptable to the change of a class.

For example, suppose we are given the following class Person:

1 class Person {
2 private String full name;
3 private int age;
4 public int getAge() { return this.age; }
5 }

In class Person, field full name has no getter method. When trait
getterChecker is applied to class Person, the trait generates the
following hasGetters function:

1 public boolean hasGetters() {
2 boolean has = false; boolean ret = true;
3 if (! has) {
4 ret = false;
5 println(”Field ”+”full name”+” has no getter!”);
6 } else { has = false; }
7 has = true;
8 if (! has) {
9 ret = false;

10 println(”Field ”+”age”+” has no getter!”);
11 } else { has = false; }
12 return ret;
13 }

The generated hasGetters function is specified for class Person and
it has no runtime reflection in the body. Please note that in line 7,
the value of variable has is changed into true. So, the second println
is not executed.

Besides statement-level pattern-based reflection, we also intro-
duce reified generics, which enables a pattern to iterate over any
specific class when type parameters are instantiated. Previously,
the set of classes that a pattern-based trait can reflect over includes
the class that uses the trait and the class’s superclasses. So, we in-
creased expressiveness of pattern-based reflection.

This paper makes the following contributions:

• We introduce pattern-based reflection at the statement level,
which supports statement-level code generation and reuse (Sec-
tion 2.2).

• We add generics to traits and extend ranges with class types,
which enable a pattern to reflect over a parametrized class.
(Section 2.2).

• We present reified generics, which enable generated code to
access specialized types (Section 2.3) . We introduce meta-level
functions, which enable users to inspect metadata at the compile
time (Section 2.3).

• We formalize our language, both the object language (Section
3) and the meta language, and present their type systems, which
are implementable (Section 4).

• We implemented an ORM tool with compile time reflection and
benchmark tested the tool to seek the improvement of runtime
performance by using compile-time reflection (Section 5).

We implemented our proposed programming language features
based on Polyglot2. The source code and the ORM tool is available
at http://code.google.com/p/pattern-based-traits/.

2. Language Features

In this section, we introduce the language features. We start with an
overview of traits and pattern-based reflection. Even though they
were introduced in our previous paper [20], it is worthwhile to
review their syntax not only for readers’ convenience but also for
the modification we have made to their syntax.

2.1 Traits

A trait [5, 23] is a unit for code reuse. It provides a set of method
implementations, which may depend on class members (i.e. fields
or methods) that are not given by the trait. A trait can import/use
methods from other traits, which means a trait can be composed
of methods imported/used from other traits. When methods are

2 http://www.cs.cornell.edu/projects/polyglot/

28

merged during trait composition, we can manipulate those methods
(such as method renaming, method exclusion, method aliasing, etc)
to avoid name conflicts.

We use the Java trait syntax proposed by Reppy and Turon [22].
A basic trait without parameters has the following syntax:

trait-declaration ::=
trait trait-name
requires { requirements }
provides { members }

The optional requires clause contains the signatures of dependent
class members. The provides clause contains members which in-
clude provided methods and the use clauses for importing methods
from other traits. In detail, the use clause contains a list of expres-
sions of trait names and method manipulations.

2.2 Pattern-Based Reflection

A reflective pattern at the statement level resides in a method body.
It performs both reflection and code generation. The header part can
iterate over a sequence of class members (i.e. fields, methods, and
constructors), and pattern-match against each of them. The body
contains template code that is parameterized over names and/or
types. A reflective pattern generates different code instantiations
from different names and types obtained using pattern-matching.

In the following, we give the syntax for reflective patterns at the
statement level.

pattern-declaration ::=
pattern

<parameters> [modifier-pattern] member-pattern
in range
{ statements }

A pattern declaration may have a name, but it is not necessary at
the statement level. Pattern parameters include name parameters
and (constrained) type parameters.

A member pattern is in the form of a field signature, a method
signature, or a constructor signature. It may be prefixed with an
access-level modifier pattern for pattern-matching a group of class
members with certain access level(s). An access-level modifier
pattern can be public, private, none for package-private, nonprivate
for the access levels that are not private, etc.

A range represents a sequence of class members that a pattern
can iterate over. It has the following syntax:

range ::= identifier | range|{identifiers} | range\{identifiers}

which can refer to a class type, a class type variable (including the
reserved type variable: thisType), a member-selection operation
(i.e. selecting specified members from a range), or a member-
exclusion operation (i.e. removing specified members from a
range). Our previous paper [20] also proposed the sum of two
ranges, which is not allowed here.

The body of a statement-level pattern is a sequence of state-
ments. We do not allow a return statement to appear inside a pat-
tern’s body, otherwise a pattern can generate statements containing
unreachable code.

As we mentioned in the introduction, statement-level reflective
patterns enable us to write general methods that are applicable to
different classes and also adaptable to class change. For example,
when we design an extensible programming language framework,
we have to use the visitor pattern for separating the syntax from its
behaviors. Following is the syntax of a tiny language for integers
and immutable arrays:

E ::= Integer | E + E | {E} | E[E]

In the syntax, expression {E} represents immutable array defini-
tion, which is like a sequence of expressions; and E[E]means array
access. The below shows the Java code of the language’s abstract
syntax tree nodes:

1 interface Node { void visit(NodeVisitor v); }
2

3 class IntLit extends Node {
4 private int; public void visit(NodeVisitor v) { }
5 }
6 class Addition extends Node {
7 private Node left; private Node right;
8 public void visit(NodeVisitor v) {
9 this.left = v.visit(this.left); this.right = v.visit(this.right);

10 }
11 }
12 class Array extends Node {
13 private List fds;
14 public void visit(NodeVisitor v) {
15 List tmp = new ArrayList();
16 for(Iterator i = this.fds.iterator(); i.hasNext();) {
17 Object fd = i.next();
18 if (fd instanceof Node)
19 tmp.add(v.visit((Node) fd));
20 }
21 this.fds = tmp;
22 }
23 }
24 class ArrAccess extends Node {
25 private Node arr; private Node idx;
26 public void visit(NodeVisitor v) {
27 this.arr = v.visit(this.arr); this.idx = v.visit(this.idx);
28 }
29 }

In the above code, we assume that abstract class NodeVisitor gives
the method Node visit(Node n) { n.visit(this); return n; }. For each
syntax tree node, we implement the visit method that visits its sub-
nodes. With this visitor pattern, we can easily write a type-checker,
an evaluator, and a syntax tree printer for this language (detailed
implementations are omitted).

If the above language is fully extended, it will be tedious to
manually write a visit method for each syntax node. Therefore, we
write the following metaprogram to generate the visit methods.

1 trait VisitGen<>
2 provides {
3 public void visit(NodeVisitor v) {
4 pattern<F extends Node, name f> F $f in thisType {
5 this.$f = (F) v.visit(this.$f);
6 }
7 pattern<F extends Collection, name f> F $f in thisType
8 {
9 List tmp = new ArrayList();

10 for(Iterator i = this.$f.iterator(); i.hasNext();) {
11 Object e = i.next();
12 if (e instanceof Node)
13 tmp.add(v.visit((Node) e));
14 }
15 this.$f.clear(); this.$f.addAll(tmp);
16 }
17 // insert a reflective pattern for the fields of array types
18 ...
19 }
20 }

In trait VisitGen and inside visit, the first pattern (line 4-6) matches
the fields which are syntax tree nodes and generates the statements
for them. The second pattern (line 7-16) matches and generates
statements for the fields of type Collection. In the body of the
second pattern, the code traverses the collection and applies the

29

visit method to an element if it is a syntax tree node. We restrict the
range to the type variable thisType, which will be automatically
substituted for the name of the class that uses VisitGen. In the
patterns, we have the code (in lines 5, 10, and 15) that may access
the private fields via the this variable, and the thisType range
guarantees the code is well-typed. For instance, when class Addition
uses VisitGen, the thisType variable is substituted for Addition; a
visit method is generated for Addition; and inside the visit method,
it is safe to access Addition’s private fields. In section 2.4, we give
more detailed discussion about type safety.

2.3 Reified Generics

To support code compatibility, Java implements generics using type
erasure 3 so that the specialized types are not available at runtime.
For instance, the following expressions are not accepted in Java (we
assume X is a well-defined type variable): X.class, obj instanceof X,
new X(), new X[10], etc.

Using metaprogramming, we generate specialized code for the
instantiation of generics, like C++ templates [1], so that specialized
types are preserved in generated code.

For example, in the following, we give a generic equals function
at the meta level, which can be instantiated into a specialized equals
function for any class.

1 trait EqualGen<>
2 provides {
3 public boolean equals(Object obj) {
4 if (obj instanceof thisType)
5 return equals k(this, (thisType) obj);
6 return false;
7 }
8 private boolean equals k(thisType obj1, thisType obj2) {
9 boolean is equal = true;

10 pattern <primitive T, name f> T $f in thisType {
11 if (obj1.$f != obj2.$f)
12 is equal = false;
13 }
14 pattern <T extends Object, name f> T $f in thisType {
15 // code for comparing two objects
16 ...
17 }
18 return is equal;
19 }
20 }

In line 4, the instanceof operator is applied to the thisType variable.
Inside function equals k, the first pattern matches and compares
the fields of primitive types, while the second pattern matches and
compares the fields of reference types. When the trait EqualGen is
used by some concrete class C, the variable thisType is specialized
into type C.

Following is the example for another use of reified generics:
generating instance creation functions for the support of the factory
method pattern 4.

1 trait InstanceGen<class X, class S>
2 provides {
3 public S createInstance() throws InstantiationException {
4 X obj = null;
5 pattern <> public constructor() in X {
6 obj = new X();
7 }
8 if (obj instanceof S) {
9 println(”An instance of ”+X::getName()+” is created.”);

10 return (S) obj;
11 }

3 see http://docs.oracle.com/javase/tutorial/java/generics/erasure.html
4 see http://en.wikipedia.org/wiki/Factory method pattern

12 throw new InstantiationException(”...”);
13 }
14 }

The trait receives two arguments: the type of a class whose instance
can be created and the interface that the class implements. In line
5-6, the pattern matches a public nullary (or default) constructor
for class X and creates an instance via the new operator if the
constructor exists. In line 8, we check if the created object is an
instance of type variable S. In line 9, we have the meta function
call X::getName() that returns the name of X at compile time.
Suppose we have class Student, which has the nullary constructor
and implements interface Person. When trait InstanceGen is applied
to Student and Person, it generates the following result:

1 public Person createInstance() throws InstantiationException {
2 Student obj = null;
3 obj = new Student();
4 if (obj instanceof Person) {
5 println(”An instance of ”+”Student”+” is created.”);
6 return (Person) obj;
7 }
8 throw new InstantiationException(”...”);
9 }

Besides the meta function getName, we have other predefined
meta functions that enable users to inspect metadata at compile
time. For instance, expression X::getSimpleName() returns the
simple name of type X; X::equals(Y) checks if X is equal to Y;
X::isSubType(Y) checks if X is a subtype of Y; X::superClass() re-
turns the direct superclass of X; X::isPrimitive() checks if X is a
primitive type; and so on.

2.4 Member Accessilbility

A pattern-based trait uses the pattern structure to reflect over the
members of some class A and uses the composition power of traits
to extend some class B. We have to discuss the relation between A
and B because it has influence over the accessibility of a member.
In this section, we discuss the conditions when the members of a
class can be accessed via the this variable.

Consider the following metaprogram, which generates a func-
tion to backup the fields in a superclass.

1 trait FieldBackupGen<this-class S>
2 provides {
3 public void backup() {
4 pattern <T, name f> nonprivate T $f in S {
5 pattern <> T backup#$f in thisType {
6 this.backup#$f = this.$f;
7 }
8 }
9 }

10 }

The type variable S in the metaprogram cannot be instantiated with
an arbtrary class. For instance, trait FieldBackupGen used as follows
generates ill-typed code.

1 class Account { protected int balance; }
2 class AccBackup {
3 private int backupBalance;
4 use FieldBackupGen<Account>;
5 }

For the above, the body of the instantiated function backup is

this.backupBalance = this.balance

but field balance cannot be accessed via the this variable inside class
AccBackup. The correct implementation is to let class AccBackup

30

inherit from Account, so we can access Account’s non-private mem-
bers via the this variable.

In the definition of trait FieldBackupGen, we use keyword
this-class to restrict the set of classes that a trait can be applied
to. It means that an accepted class must be a super type of the class
that uses the trait. In detail, if the trait is used by class A, then an
accepted class must be a super class of A or class A itself. Suppose
some type variable X is prefixed with this-class; the subtype rela-
tionship between thisType and type variable X is that thisType <:
X.

In the above code, trait FieldBackupGen’s type parameter S is
restricted by the this-class. Trait FieldBackupGen is used by class
AccBackup and is applied to class Account. However, class Account
is not a super type of class AccBackup, thus the trait application is
rejected by the type system.

For a unrestricted type variable X, we allow users to only access
its public members via an instance of X.

3. Calculus for the Object Language

Start from this section, we formalize our language. First, we present
the calculus for our object language, which is the modest extension
of FJ (short for Featherweight Java) [15] with mutable variables and
three basic kinds of statements: variable declaration, assignment,
and return statement.

x, y term variables
m method name
f field name
C type (i.e. class name)

class decl. L ::= class C extends C { C f; K M }

constructor K ::= C(C f){ super(f); this.f=f; }

method M ::= C m(C x){ s; }

statements s ::= return e | C x = e; s | x = e; s

expressions e ::= x | e.f | e.m(e) | new C(e) | (C)e | EJsK

Figure 1. FJ syntax extended with statements.

Figure 1 shows the abstract syntax of the object language. In
the figure, the syntax of statements is the addition to FJ. A state-
ment can be a return statement or a sequence of statements with a
return statement at the end. The variable declaration C x = e de-
clares local variable x of type C and initializes x with the value of
expression e. The assignment x = e assigns the value of e to x. In
Java, an assignment is also an expression that gives the value of e,
but in our object language, we treat an assignment only as a state-
ment. The rest of the syntax in the figure is the same as FJ except
for methods and the expression EJsK. In the object language, the
body of a method is a sequence. The expression EJsK does not ap-
pear in a concrete program. It wraps a statement and splices it into
an expression.

Statement typing: Γ ⊢ s : C

Γ ⊢ x : C1 Γ ⊢ e : C0 C0 <: C1 Γ ⊢ s : C

Γ ⊢ x = e; s : C

Γ ⊢ e : C0 C0 <: C Γ, x : C ⊢ s : C1
Γ ⊢ C x = e; s : C1

Γ ⊢ e : C
Γ ⊢ return e : C

Figure 2. Typing rules for statements.

Figure 2 shows the rules for typing statements. We define Γ
as a typing environment, which is a finite mapping from variables
to types. An environment extension has the form Γ, x : C, which

means extending Γ with variable typing x : C only if x does not
appear in Γ. The judgments C0 <: C1 means class C0 is a subtype
of class C1; and Γ ⊢ e : C means expression e has type C under the
typing environment Γ. We use the subtyping rules and the typing
rules for expressions from FJ’s type system (see the figures Fig.1
and Fig.2 in [15]). For the additional expression EJsK, its type
should be equal to the type of statement s. See the following typing
rule:

Γ ⊢ s : C

Γ ⊢ EJsK : C

We also use the typing rules from FJ to type-check methods
and class declarations. For FJ’s method typing rule, we need to
override the rule of type-checking a method body: we use the
statement typing rule to type-check the method body. Due to the
space limitation, we do not present those rules in this paper.

Statement reduction: s −→ s’

C x = v; s −→ [v/x]s x = v; s −→ [v/x]s

e −→ e’
C x = e; s −→ C x = e’; s

e −→ e’
x = e; s −→ x = e’; s

e −→ e’
return e −→ return e’

Figure 3. Statement reduction rules.

[e’/x](return e) = return [e’/x]e
[e’/x](C y = e; S) = (C y = [e’/x]e; [e’/x]S)
[e’/x](x = e; S) = (x = [e’/x]e; S)
[e’/x](y = e; S) = (y = [e’/x]e; [e’/x]S) where x 6= y

Figure 4. Substitution in statements.

Figure 3 shows the reduction rules for statements. We define
v as the value of an expression, which is new C(v). Similar
to [e’/x]e, the operation [e/x]s means the substitution of x in
statement s for e. Figure 4 shows its definition. The substitution
[e’/x](C x = e; S) does not need to be defined. The substitu-
tion implies that x is declared twice in the same scope, which is
precluded by the type system. In the figure, we use the reduction
rules for expressions (the form e −→ e’) from FJ (see Figure Fig.3
in [15]). But we need to revise the computation rule for method in-
vocation and provide the reduction rules for EJsK. Those rules are
shown in Figure 5.

Expression reduction: e −→ e’

mbody(m, C) = x.s

(new C(e)).m(e0) −→ EJ[e0/x, new C(e)/this]sK

s −→ s’

EJsK −→ EJs’K EJreturn vK −→ v

... (The rest of the reduction rules are the same as those for FJ.)

Figure 5. Selected reduction rules for expressions. (Like FJ’s
mbody function, the mbody function in the figure returns the pa-
rameter(s) and the body of C’s method m.)

The calculus of our object language is type safe. It inherits the
properties of FJ: type preservation and progress for expressions.
Besides, the properties of type preservation and progress also apply
to statements. See the following properties for statements.

31

Lemma 1 (Substitution Preserves Typing). If Γ, x : C0 ⊢ s : C
and Γ ⊢ e : C1 where C1 <: C0, then Γ, x : C0 ⊢ [e/x]s : C’ for
some C’ such that C’ <: C.

Please note that, in Lemma 1, when type-checking [e/x]s, we
do not remove the typing of x from typing context Γ, because the
substitution of x in s does not always substitute all the xs in s (see
the third rule in Figure 4). So, variable x might be still in [e/x]s.

Theorem 1 (Type Preservation). If Γ ⊢ s : C and s −→ s’, then
Γ ⊢ s’ : C’ for some C’ such that C’ <: C.

Theorem 2 (Progress). If Γ ⊢ s : C, then s is either a statement
value (i.e. return v) or there is some s’ with s −→ s’.

4. Calculus for the Meta Language

Our calculus for the meta language captures the new language
features and presents the kernel part of the language, thus we omit
some features that were fully discussed in the previous papers, such
as the manipulation of trait members (e.g. name exclusion, member
aliasing, etc). We also omit type bounds, modifier patterns, and
meta-level functions, which are considered as advanced features.

4.1 Kernel Syntax of the Meta Language

Figure 6 shows the syntax of the core meta language. In the figure,
a type τ is a class name associated with the signatures of the class’s
members. It gives both the nominal and the structural representa-
tion of a class type, and it is the value of a range. A range variable X
can be used as a type variable. When the range variable X is substi-
tuted for some τ in type T, X should be substituted for the nominal
representation of τ , that is the substitution [C ⋄ {F;Q;H}/X]T is re-
duced into [C/X]T. But it performs a normal substitution when the
range variable X is substituted for some τ in range R.

In the expressions, we can use the new operator to create an
instance of a parameterized class, for instance, we can write the
expression new X(e).

A trait TR is parameterized over ranges. We attach the symbol +
or the symbol − to each range parameter. The parameter X+ means
the members (excluding constructors) of X can be accessed via the
this variable. The parameter X− means the members of X can be
only accessed via an instance of X.

Ranges include member selection (R|{l}) and member exclu-
sion (R\{l}). A range is evaluated into a range value τ , which does
not appear in a concrete program. For the range of some class C, we
compute its value by collecting the signatures of the members in C,
including C’s inherited members.

4.2 Type System

In this section, we discuss the type system of the meta language
calculus. First, we give some preliminary definitions (see Figure 7)
which are used by the type system.

In the figure, member types present the types for different kinds
of class members: T for fields, T → T for methods, and T → · for
constructors. A member name ℓ extends l with the reserved name
C as the unified name for all constructors. A member typing context
∆ is the mapping from names to member types. The notation
∆[ℓ 7→ φ] means to extend ∆ with the mapping from ℓ to φ. The
notation ∆1 ⊕ ∆2 means to merge two member typing contexts
if the domains of ∆1 and ∆2 are disjoint; otherwise it generates
a type error. A structural typing context Θ is the mapping from
structure names to member typing contexts. The notation Θ⊎ [κ 7→
∆] means to extend Θ with the new mapping from κ to ∆ if κ /∈ Θ,
or means (Θ\κ) ⊎ [κ 7→ ∆ ⊕Θ(κ)] if κ ∈ Θ. A variable binding
context Γ can bind a term variable to a nominal type (x : T), a range
variable Xo, the thisType variable, or a name variable η.

x, y term variables
X, Y type/range variables
η member name variable
m method name
f field name
C class name
C reserved name constant
T trait name
L object class declaration (see Figure 1)

(1) types, names, and member signatures:

type τ ::= C ⋄ {F;Q;H}

nonvar. types N ::= C | thisType

nominal types U, T ::= X | N

member names l ::= η | f | m

field sig. F ::= T l

constructor sig. Q ::= C(T)

method sig. H ::= T l(T)

(2) meta classes:

meta class MC ::= L uses E

meta meth. M ::= T m(T x){ s; }

single stmts. ss ::= T x = e | x = e | ps

statements s ::= return e | ss; s

expressions e ::= x | e.l | e.l(e) | new T(e) | (T)e

(3) traits:

trait TR ::= trait T <Xo> req { F; H } prov D

access ctrl. o ::= + | −

trait body D ::= { M; use E }

trait app. E ::= T <R>

(4) pattern statements:

pattern stmt. ps ::= pattern<X,η> P in R { ns; }

patterns P ::= F | Q | H

ranges R ::= X | N | R|{l} | R\{l} | τ

non-return stmts. ns ::= ss | ss; ns

Figure 6. Syntax of the calculus for the meta language.

member types φ ::= T | T → T | T → ·

member names ℓ ::= l | C

structure names κ ::= T | T

member typings ∆ ::= · | ∆[ℓ 7→ φ] | ∆⊕∆

structural typings Θ ::= · | Θ ⊎ [κ 7→ ∆]

variable bindings Γ ::= ∅ | Γ, x : T | Γ, Xo | Γ, thisType | Γ, η

Figure 7. Preliminary definitions for the type system.

32

We define the function N, which computes the nominal repre-
sentation of a range: N(X) = X, N(N) = N, N(R|{l}) = N(R),
N(R\{l}) = N(R), and N(C ⋄ {...}) = C. We define the function
δ, which literally translates a member pattern into a single member
typing context: ·[ℓ 7→ φ].

Before type-checking a program, the compiler computes the
structural type (this is member typings) for each class and each
trait in the program, thus the following two structural typing con-
texts are available if there are no name conflicts. First is the context
ΘCL that maps the names of all the classes into their member typ-
ings. The members of a class include declared members, members
imported from used traits, and members inherited from the super-
classes. Second is the context ΘTR that maps the names of all the
traits into their member typings. The members of a trait include de-
clared members, members imported from used traits, and members
in trait requirement.

Pattern statement typing: Γ;Θ ⊢ ps ok

N(R) = C Γ ⊢ R ok Γ′ = Γ, X-, η
Γ′ ⊢ P ok Θ′ = Θ ⊎ [C 7→ δ(P)] Γ′; Θ′ ⊢ ns ok

Γ;Θ ⊢ pattern<X,η> P in R { ns; } ok

N(R) = X X+ ∈ Γ Γ′ = Γ, X-, η Γ′ ⊢ P ok δ(P) = ∆
(P = F or P = H) implies Θ′ = Θ ⊎ [X 7→ ∆] ⊎ [thisType 7→ ∆]
P = Q implies Θ′ = Θ ⊎ [X 7→ ∆] Γ′; Θ′ ⊢ ns ok Γ ⊢ R ok

Γ;Θ ⊢ pattern<X,η> P in R { ns; } ok

(N(R) = X and X− ∈ Γ) or N(R) = thisType

Γ′ = Γ, X-, η Γ′ ⊢ P ok Γ ⊢ R ok

Θ′ = Θ ⊎ [N(R) 7→ δ(P)] Γ′; Θ′ ⊢ ns ok

Γ;Θ ⊢ pattern<X,η> P in R { ns; } ok

Statement typing: Γ;Θ ⊢ s : T and Γ;Θ ⊢ ns ok

Γ;Θ ⊢ ps ok Γ;Θ ⊢ s : T

Γ;Θ ⊢ ps; s : T

Γ;Θ ⊢ e : T0 T0 <: T
Γ, x : T; Θ ⊢ s : U

Γ;Θ ⊢ T x = e; s : U

Γ;Θ ⊢ x : T Γ;Θ ⊢ e : T0 T0 <: T Γ;Θ ⊢ s : U

Γ;Θ ⊢ x = e; s : U

Γ;Θ ⊢ e : T

Γ;Θ ⊢ return e : T

for some e Γ;Θ ⊢ (ns; return e) : T

Γ;Θ ⊢ ns ok

Expression typing: Γ;Θ ⊢ e : T

x : T ∈ Γ
Γ;Θ ⊢ x : T

Γ;Θ ⊢ e : T Γ ⊢ l ok ∆ = Θ(T)

Γ; Θ ⊢ e.l : ∆(l)

Γ;Θ ⊢ e : U Γ ⊢ l ok ∆ = Θ(U)
∆(l) = T → T Γ;Θ ⊢ e : U U <: T

Γ;Θ ⊢ e.l(e) : T

Γ ⊢ T ok ∆ = Θ(T) ∆(C) = T → · Γ;Θ ⊢ e : U U <: T

Γ;Θ ⊢ new T(e) : T

Γ ⊢ T ok Γ;Θ ⊢ e : U
U <: T or T <: U
Γ;Θ ⊢ (T)e : T

Γ ⊢ T ok Γ;Θ ⊢ e : U
U ≮: T and T ≮: U stupid warning

Γ;Θ ⊢ (T)e : T

Figure 8. Statement and expression typing.

Due to the space limitation, we omit the rules for type-checking
ranges (Γ ⊢ R ok), member patterns (Γ ⊢ P ok), names (Γ ⊢ l ok),
and nominal types (Γ ⊢ T ok). Those rules are not difficult to write.
We also omit the subtyping rules (T <: T). Because we do not have

bounded type parameters in the kernel calculus, thus the subtyping
rules are similar to those for FJ [15].

In Figure 8, the pattern statement typing has three typing rules.
The first rule is for the case when the range R’s nominal part is
some class name C. In this case, we extend the member typing
context of C with the member typing generated from the pattern
P: Θ ⊎ [C 7→ δ(P)]. The first rule type-checks the following code:

1 C obj;
2 pattern <name f> public int $f in C {
3 println($f+” has value ”+ obj.$f);
4 }

By type-checking the header of the pattern (line 2), C’s member
typing context is extended with f 7→ int, which means C has field f
of type int within the scope of the pattern’s body. So in line 3, the
expression obj.$f is well-typed. The second rule is for the case when
R’s nominal part is some range variable X and X+ ∈ Γ, thus we
know X is a super type of thisType and the members (excluding
constructors) of X should be accessible via the this variable. In this
case, if P is a field or a method signature, we extend the member
typing contexts of both X and thisType with δ(P); or if P is a
constructor signature, then only the member typing context of X is
extended, because a constructor is not inheritable. In the following
code:

1 trait T<this-class X>
2 provides {
3 public m() {
4 pattern <T, name f> public T $f in X {
5 T fx = this.$f;
6 }
7 pattern <> public constructor() in X {
8 X objx = new X();
9 thisType objths = new thisType(); // error

10 }
11 }
12 }

The expression of field access in line 5 is well-typed; the instance
creation in line 8 is well-typed, but the instance creation in line 9
is not well-typed. The third rule is for the case when R’s nominal
part is some range variable X with X− ∈ Γ, or it is the thisType
variable. If it is X, then we extend X’s member typing context with
δ(P), otherwise we extend the thisType’s member typing context
with δ(P). The third rule type-checks the following code:

1 trait T<class X> requires { X obj; }
2 provides {
3 public m() {
4 pattern <T, name f> public T $f in X {
5 T fobj1 = obj.$f;
6 T fobj2 = this.$f; // error
7 }
8 pattern <T, name f> public T $f in thisType {
9 T fths1 = this.$f;

10 T fths2 = obj.$f; // error
11 }
12 }
13 }

Type variables X and thisType are unrelated (i.e. no subtype
relations). In the above code, the first pattern only allows us to
access f via an instance of X, so the field access in line 6 is not
well-typed. The second pattern only allows us to access f via the
this variable, so the field access in line 10 is not well-typed.

In FJ, expression typing uses the additional functions for finding
a field/method type. In contrast, because the member typing context
of a class changes within different environments, thus the rules for

33

typing expressions in Figure 8 obtain the type of a member via a
member typing context.

Method typing: Γ;Θ ⊢ M ok in N

Γ ⊢ T, T ok Γ, x : T, this : C; Θ ⊢ s : U U <: T
class C extends C0 { ... } uses ...

(ΘCL(C0))(m) = U → U implies U = T and U = T

Γ;Θ ⊢ T m(T x){ s; } ok in C

Γ ⊢ T, T ok Γ, x : T, this : thisType; Θ ⊢ s : U U <: T

Γ;Θ ⊢ T m(T x){ s; } ok in thisType

Trait application typing: Γ;Θ ⊢ E ok in N

trait T <Xo> req { F; H } prov { ... }

Γ ⊢ R ok Γ ⊢ N(R) in N ⇒ o Θ(N) = ∆
for each T f in F : ∆(f) = U and U = T

for each T m(T) in H : ∆(m) = U → U and U = T and U = T

Γ;Θ ⊢ T <R> ok in N

Trait typing: TR ok

Γ = Xo, thisType Γ ⊢ F ok Γ ⊢ H ok

Θ = ΘCL ⊎ [thisType 7→ ΘTR(T)]
Γ; Θ ⊢ M ok in thisType Γ;Θ ⊢ E ok in thisType

trait T <Xo> req { F; H } prov { M; use E } ok

Meta class typing: MC ok

K = C(C0 f0, C f){super(f0); this.f=f;}
fields(C0) = C0 f0 ∅; ΘCL ⊢ M ok in C ∅; ΘCL ⊢ E ok in C

class C extends C0 { C f; K M } uses E ok

Figure 9. Method, trait application, trait, and class typing.

Figure 9 shows the rules for typing methods, trait applications,
traits, and meta classes.

There are two rules for typing a method. The first rule type-
checks a method that resides in some class C, then the type of the
this variable is C and the validity of method overriding needs to
be checked. The second rule type-checks a method that resides in a
trait, then the type of the this variable is the thisType variable.

For the rule of type-checking a trait application, we have func-

tion Γ ⊢ N(R) in N ⇒ o that computes the this access control
modifiers for a sequence of ranges. According to the definition of
function N, the value of N(R) can be either a type variable or a class

name. The definition of function Γ ⊢ N(R) in N ⇒ o is shown as
follows:

Xo ∈ Γ

Γ ⊢ X in N ⇒ o

N <: N0
Γ ⊢ N0 in N ⇒ +

N ≮: N0

Γ ⊢ N0 in N ⇒ −

The rule for typing a trait application checks if the modifiers
of the parameters are consistent with the modifiers of the trait
arguments; and also checks if the trait requirements are satisfied
in the use context N.

For the rule of typing a trait declaration, we add the thisType
variable into the binding context so that the thisType can appear
inside a trait. The initial structural typing context is

ΘCL ⊎ [thisType 7→ ΘTR(T)]

so that we can access a member via the this variable in a trait.
For a meta class, we do not allow an imported method to over-

ride a method in the meta class or in the meta class’s superclasses.
Such restriction is checked when the compiler computes the struc-
tural typing context for the meta class before type-checking. So in

the rule of typing a meta class, we do not need to check if an im-
ported method correctly overrides a method in a superclass.

4.3 Meta Evaluation

The meta evaluation of a metaprogram includes (1) pattern-matching
and code generation, and (2) trait flattening (i.e. methods from traits
are inlined into classes). Because many previous papers have fully
discussed the process of trait flattening [7, 19, 21, 22], we here
focus on the former. Because pattern-matching and code gener-
ation is performed at the statement level while trait flattening is
performed at the member level, there is no side effect if we discuss
the evaluate rules for those separately.

A statement-level pattern is evaluated into a sequence of state-
ments. In Figure 10, we present part of the reduction rules for pat-
terns. The rules are for the pattern-matching of fields. Those rules
can be applied to the pattern-matching of methods or constructors
with some slight modification. In the figure, the first rule is for the
case when the pattern matches a field (it can be implemented by
the unification algorithm), then it generates a sequence of instanti-
ated statements. If the local variables in a generated statement have
name conflicts with other local variables, we perform α renaming
to substitute those local variable for fresh ones. The second rule
is for the case when the match fails, then the pattern continues to
pattern-match the rest fields. The third rule is for the case when
there is no field, then the pattern generates an empty statement se-
quence.

4.4 Soundness

In this section, we give the properties of our meta language. Our
purpose is to show that a metaprogram always generates a piece of
well-typed code.

Lemma 2 (Staged Type Preservation of Statements). For some
meta-level non-pattern statement s (i.e. statement without pat-
terns), if Γ;Θ ⊢ s : C where TyVars(Γ) = ∅, then when ap-
plying object-level type-checking to s, we have Γ′ ⊢ s : C for some
object-level typing environment Γ′.

Definition 1 (Class Name Alias Ñ). An alias of a class name,
written Ñ, is a distinct class name. A class name can have multiple
name alias.
(1) An alias of a class name preserves the nominal subtyping
relations of that class.

(2) For any class alias Ñ, Ñ /∈ dom(ΘCL).
(3) For some class name alias Ñ and some Θ, if Ñ does not appear

in the domain of Θ, then Θ(Ñ) = ΘCL(N); otherwise because there

exists some ∆ such that Ñ 7→ ∆ ∈ Θ, Θ(Ñ) = ∆.

Lemma 3 (Type Substitution Preserves Typing).
i) Suppose this : N0 ∈ Γ,Γ′; Ñ is an alias of N; and Ñ /∈ dom(Θ).
If Γ, Xo,Γ′; Θ ⊢ e : U, Γ ⊢ N ok, and Γ ⊢ N(N) in N0 ⇒ o, then

Γ, [Ñ/X]Γ′; [Ñ/X]Θ ⊢ [Ñ/X]e : [Ñ/X]U.

ii) Suppose this : N0 ∈ Γ,Γ′; Ñ is an alias of N; and Ñ /∈ dom(Θ).
If Γ, Xo,Γ′; Θ ⊢ ns ok, Γ ⊢ N ok, and Γ ⊢ N(N) in N0 ⇒ o, then

Γ, [Ñ/X]Γ′; [Ñ/X]Θ ⊢ [Ñ/X]ns ok.

Lemma 4 (Name Substitution Preserves Typing).
i) If Γ, η,Γ′; Θ ⊢ e : U, and Γ ⊢ l ok, then Γ,Γ′; [l/η]Θ ⊢
[l/η]e : U.

ii) If Γ, η,Γ′; Θ ⊢ ns ok, and Γ ⊢ l ok, then Γ,Γ′; [l/η]Θ ⊢
[l/η]ns ok.

Lemma 5 (Statement Concatenation Preserves Typing). Sup-
pose function lvar collects all the local variables in a sequence
of statements. If Γ;Θ ⊢ ns1 ok, Γ;Θ ⊢ ns2 ok, and lvars(ns1) ∩
lvars(ns2) = ∅, then Γ;Θ ⊢ ns1;ns2 ok.

34

pattern<X,η> T f in C ⋄ {(T0 f0), F;Q;H} { ns; } −→ [l/η][T/X]ns; (pattern<X,η> T f in C ⋄ {F;Q;H} { ns; })
where ∃T.∃l such that [T/X]T = T0 and [l/η]f = f0

pattern<X,η> T f in C ⋄ {(T0 f0), F;Q;H} { ns; } −→ pattern<X,η> T f in C ⋄ {F;Q;H} { ns; }
where ∄T.∄l such that [T/X]T = T0 and [l/η]f = f0

pattern<X,η> T f in C ⋄ {[];Q;H} { ns; } −→ []

Figure 10. Pattern-matching and code generation using a field pattern.

Theorem 3 (Type Preservation for Patterns). If Γ;Θ ⊢ ps ok and
ps −→ ns, then Γ;Θ ⊢ ns ok

Theorem 4 (Progress for Patterns). If ∅; Θ ⊢ ps ok and ps is in
the form of pattern<X,η> P in R { ns0 }, then there is some ns
with ps −→ ns (suppose ns includes an empty list of statements).

5. ORM via Compile-Time Reflection

Object-relational mapping (ORM for short) is the ability of map-
ping objects from/to records in a relational database. Some Java
ORM tools, such as Hibernate 5, use run-time reflection, which may
cause some runtime performance overhead.

We present an ORM tool, called PtjORM, which is a real-
world application of pattern-based traits. PtjORM is not as power-
ful as Hibernate, but it supports compile-time reflection and avoids
the overhead of runtime reflection. Like many other ORM tools,
PtjORM supports property mapping, association mapping, and in-
heritance mapping. Current version of PtjORM supports two kinds
of inheritance mapping strategies: table per subclass and table per
concrete class.

Besides the type of reflection, the performance of an ORM tool
can be influenced by other factors, such as object saving/fetching
mode and the number of executed SQL statements. So, instead of
evaluating compile-time reflection solely, we evaluate the overall
performance of PtjORM.

We evaluated PtjORM by testing it with a benchmark based on
the 007 benchmark [2]. The 007 benchmark was originally im-
plemented in C++. It tests the performance of persistence for a
CAD application. Ibrahim and Cook provided its Java implementa-
tion [14]. Our modified 007 benchmark generates the databases of
three different sizes: tiny, small, and medium. The tiny one has 996
records; the small one has 11,465 records, and the medium one has
75,779 records. We compare the runtime performance of saving
and fetching objects for the following four ORM tools: PtjORM
(version 2.0), Hibernate (version 4.1), Ebean (version 2.7.7), and
EclipseLink (version 2.4.1). In default, they all use some Java byte-
code generation and manipulation (runtime) tool for reflection op-
timization.

We ran the 007 benchmark on a laptop with a 2.2 GHz, Intel R©

CoreTM i7 processor (4 cores) and 8GB memory. The MySQL
database was installed on a desktop with a 1.80GHz Intel R©

PentiumTM E2160 dual processor and 1GB memory. The desktop
and the laptop were connected in the same local network.

5.1 Object Saving Evaluation

First, we give Table 1, which shows the number of the SQL state-
ments executed during the object saving tests. While the others used
the table per hierarchy strategy, PtjORM used the table per subclass
strategy for inheritance mapping and it generated the largest num-
ber of SQL statements.

The ORM tools were tested with MySQL database. The test
results about the object-saving performance is show in Table 2. The
test results show that even with the largest number of executed SQL

5 http://www.hibernate.org

statements, PtjORM achieved the best object-saving performance.
Approximately, PtjORM is 20% faster than Hibernate, 24% faster
than EclipseLink, and 15% faster than Ebean.

❵
❵
❵
❵
❵
❵
❵
❵
❵

ORM tools
DB size

tiny small medium

Ebean 1111 11.7K 75.9K
Eclipselink 1071 11.5K 75.7K
Hibernate 1005 11.6K 75.6K
PtjORM 1125 12.6K 76.7K

Table 1. The number of SQL statements executed by each of the
ORM tools for object saving.

❵
❵
❵
❵
❵
❵
❵
❵
❵

ORM tools
DB size

tiny small medium

Ebean 955ms 9610ms 62476ms
Eclipselink 1120ms 10084ms 64357ms
Hibernate 1169ms 9817ms 60178ms
PtjORM 823ms 8258ms 50365ms

Table 2. Time used for object-saving. Unit ms is short for mil-
lisecond.

5.2 Object Fetching Evaluation

We use the batch fetching mode for object fetching. For fetching
a tiny database, we use batch sizes: 4, 8, 12, 40, 70, and 100.
For fetching a small database, we use batch sizes: 40, 100, 160,
400, 700, and 1000. For fetching a medium database, we use batch
sizes: 200, 600, 1000, 2000, 3500, and 5000. The tables in Table
3 show the number of SQL statements executed by each of the
ORM tools for fetching the databases of three different sizes. From
the tables, we note that PtjORM generates the largest number of
SQL statements when the batch size is small. With the increase of
batch size, the number of SQL statements generated by PtjROM
drops dramatically. When fetching a large number of objects, we
suggest PtjORM users to assign a large batch size for efficiency.
For EclipseLink and Hibernate, increasing the batch size does not
have a big influence on the number of SQL statements.

The tables in Table 4 show the time used by each of the ORM
tools for fetching the databases of three different sizes. We learned
that Ebean has the best performance and one reason is that it gen-
erates the least number of SQL statements. For fetching a tiny
database, PtjORM is 2%−70% faster than Hibernate, -2%−70%
faster than EclipseLink. When fetching a small database, except
for the batch size of 40, PtjORM is 8%−58% faster than Hiber-
nate; and PtjORM is 60% faster than EclipseLink in average. When
fetching a medium database, PtjORM does not perform well with
small batch sizes, but with larger batch sizes, its performance ex-
ceeds the performance of Hibernate and EclipseLink. With a small
batch size, because PtjORM generates a greater number of SQL
statements, the cost of executing the SQL statements and commut-
ing with the server outweighs the saving from compile-time reflec-

35

tion. But when the batch size is equal or larger than 3500, its per-
formance exceeds the performance of Hibernate and EclipseLink.
In summary, PtjORM has the second best performance for fetch-
ing objects. Of course, from the benchmark test results, we feel the
need to improve PtjORM by reducing the number of SQL state-
ments that PtjORM generates.

❳
❳
❳
❳
❳
❳
❳❳

tools
batch size

4 8 12 40 70 100

Ebean 203 118 91 50 41 37
Eclipselink 159 130 125 149 161 160
Hibernate 228 185 153 142 142 140
PtjORM 458 284 208 79 63 54

❳
❳
❳
❳
❳
❳
❳❳

tools
batch size

40 100 160 400 700 1000

Ebean 171 83 65 48 44 41
Eclipselink 431 314 303 290 288 286
Hibernate 428 395 368 335 358 374
PtjORM 976 469 287 141 109 74

❳
❳
❳
❳
❳
❳
❳❳

tools
batch size

200 600 1000 2000 3500 5000

Ebean 160 75 58 47 43 41
Eclipselink 454 404 395 389 394 393
Hibernate 615 485 518 527 526 523

PtjORM 1673 648 404 295 178 126

Table 3. The number of SQL statements executed by each of the
ORM tools for fetching the databases of three sizes

6. Related Work

For Composition FeatherTrait Java (FTJ) [19] extends Feather-
weight Java with traits. The FTJ does not support the compile-time
reflection but its type system is modular. Chai [25] also extends
Java with traits. Chai allows traits to be more generally used: a trait
not only performs a building block for a class but also creates a
subtype relation with the class. Moreover, when used, a trait can
be dynamically substituted by another trait with the same interface.
Featherweight Jigsaw [18] applies the concept of traits into classes
and therefore, classes are also building blocks with a set of compo-
sition operators. Jigsaw uses the symmetric sum for composition.
Besides the member-level operations, Jigsaw introduces member
modifiers to solve name conflicts. Reppy and Turon [22] introduced
the traits that can be parametrized over names, types, and values.
These traits offer the same ability of pattern-based reflection and
can be used to generate fields and methods for a class. MixML [4]
extends ML modules with imports and outports (like require and
provide in a trait) for flexible composition. MixML does not flatten
a composed module. Instead, it keeps module hierarchy. So, access
to a member in a module may need to refer to its namespace.

For Reflection Programming languages such as Genoupe [3],
SafeGen [13], CTR [6], and MorphJ [11] support reflection.
Genoupe introduces a type system for reflective program gener-
ators, which offers an particular high degree of static safety for
reflection. However, the type system does not guarantee that gen-
erated code is always well-typed. SafeGen uses first-order logic
formulae to express patterns and those formulae are used by a
theorem prover to check the safety of generated code. Therefore,
the type system of SafeGen is undecidable. CTR introduces trans-
forms, which support pattern-based compile-time reflection and
static type safety. MorphJ refines the type system of CTR with a
modular type system. Considering its power for static reflection, we

believe that MorphJ is the calculus closest relative to ours. How-
ever, one reflective power of MorphJ that we do not have is negative
nested patterns, which can be used to prevent name conflicts. Mor-
phJ cannot extend a class in place while our pattern-based traits
can.

For Code Generation Some programming languages, such as
MetaML [26], MetaOCaml, and Template Haskell [24], enable
metaprogramming by providing multiple stages of computation,
where earlier stages can manipulate code for late stages. These
languages use explicit stage annotations for the support of code
manipulation at expression level. Our programming language sup-
ports (two-staged) metaprogramming: pattern-matching, code gen-
eration, and trait flattening are performed at compile time while
generated program is evaluated at run time. Another difference is
that these metapogramming languages do not support compile-time
type reflection. In paper [10], Garcia presented a metaprogramming
language that has type-reflection at the meta level, but it does not
support generics.

Comparison with Aspect-Oriented Programming Aspect-oriented
programming (AOP) [17] intends to separate cross-cutting con-
cerns. Though not dedicated for AOP, our pattern-based traits
can be used to describe some cross-cutting concerns. Compared
with AspectJ [16], which weaves advice code into original applica-
tion code at the Java bytecode level, pattern-based traits generates
source code, which enables a programmer to inspect the effect of a
metaprogram. The current stable version of AspectJ, that is AspectJ
5, supports Java generics, but it does not allow the use of type vari-
ables and name variables. AspectJ inserts code flexibly, allowing
users to define different point cuts for insertion, but pattern-based
traits enable us to merely add wrapper code for members.

References

[1] David Abrahams and Aleksey Gurtovoy. C++ Template Metapro-
gramming: Concepts, Tools, and Techniques from Boost and Beyond

(C++ in Depth Series). Addison-Wesley Professional, 2004.

[2] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007
benchmark. In Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, SIGMOD ’93, pages 12–21, New
York, NY, USA, 1993. ACM.

[3] Dirk Draheim, Christof Lutteroth, and Gerald Weber. A type system
for reflective program generators. In Proc. of the Conf. on Generative

Programming and Component Engineering. Springer, 2005.

[4] Derek Dreyer and Andreas Rossberg. Mixin’ up the ml module
system. In Proc. of the 13th ACM SIGPLAN International Conference
on Functional Programming. ACM, 2008.

[5] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
and Andrew P. Black. Traits: A mechanism for fine-grained reuse.
ACM Trans. Program. Lang. Syst., 2006.

[6] Manuel Fähndrich, Michael Carbin, and James R. Larus. Reflective
program generation with patterns. In Proc. of the Conf. on Generative

Programming and Component Engineering. ACM, 2006.

[7] Kathleen Fisher. A typed calculus of traits. In In Workshop on

Foundations of Object-oriented Programming, 2004.

[8] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In Proc. of the Symposium on Principles of Pro-

gramming Languages. ACM, 1998.

[9] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action

series). Manning Publications Co., Greenwich, CT, USA, 2004.

[10] Ronald Garcia and Andrew Lumsdaine. Toward foundations for type-
reflective metaprogramming. In Proc. of the Conf. on Generative

Programming and Component Engineering. ACM, 2009.

[11] Shan Shan Huang and Yannis Smaragdakis. Expressive and safe
static reflection with morphj. In Proc. of the Conf. on Programming

Language Design and Implementation. ACM, 2008.

36

❳
❳
❳
❳
❳
❳
❳❳

tools
batch size

4 8 12 40 70 100

Ebean 345ms 254ms 217ms 159ms 148ms 140ms
Eclipselink 514ms 484ms 478ms 564ms 632ms 622ms
Hibernate 639ms 599ms 608ms 591ms 625ms 586ms
PtjORM 627ms 458ms 353ms 224ms 195ms 186ms

❳
❳
❳
❳
❳

❳
❳❳

tools
batch size

40 100 160 400 700 1000

Ebean 677ms 541ms 509ms 458ms 461ms 456ms
Eclipselink 7964ms 2465ms 2479ms 2390ms 2440ms 2391ms
Hibernate 1505ms 1463ms 1423ms 1365ms 1405ms 1421ms
PtjORM 2167ms 1352ms 1103ms 826ms 697ms 601ms

❳
❳
❳
❳
❳
❳
❳❳

tools
batch size

200 600 1000 2000 3500 5000

Ebean 2473ms 2287ms 2299ms 2241ms 2281ms 2285ms

Eclipselink 8337ms 8287ms 8165ms 7704ms 7746ms 7706ms
Hibernate 4970ms 4648ms 4743ms 4952ms 4952ms 5139ms
PtjORM 18365ms 9869ms 6802ms 5310ms 4453ms 4253ms

Table 4. Time used for fetching objects from the databases of three sizes

[12] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Morphing:
Safely shaping a class in the image of others. In Proc. of the European

Conf. on Object-Oriented Programming. Springer-Verlag, 2007.

[13] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically
safe program generation with safegen. Sci. Comput. Program., 2011.

[14] Ali Ibrahim and William R. Cook. Automatic prefetching by traversal
profiling in object persistence architectures. In Proceedings of the 20th
European conference on Object-Oriented Programming, ECOOP’06,
pages 50–73, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. ACM Trans.
Program. Lang. Syst., 2001.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. In Proc.

of the European Conf. on Object-Oriented Programming. Springer-
Verlag, 2001.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proc. of the European Conf. on Object-Oriented

Programming. SpringerVerlag, 1997.

[18] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight
jigsaw: A minimal core calculus for modular composition of classes.
In Proc. of the European Conf. on Object-Oriented Programming.
Springer-Verlag, 2009.

[19] Luigi Liquori and Arnaud Spiwack. Feathertrait: A modest extension
of featherweight java. ACM Trans. Program. Lang. Syst., 2008.

[20] Weiyu Miao and Jeremy Siek. Pattern-based traits. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 1729–1736. ACM, 2012.

[21] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening
traits. Journal of Object Technology, 2006.

[22] John Reppy and Aaron Turon. Metaprogramming with traits. In Proc.
of the European Conf. on Object-Oriented Programming. Springer,
2007.

[23] Nathanael Schärli, Stphane Ducasse, Oscar Nierstrasz, and Andrew P.
Black. Traits: Composable units of behaviour. In Proc. European

Conf. on Object-Oriented Programming. Springer, 2003.

[24] Tim Sheard and Simon Peyton Jones. Template metaprogramming for
Haskell. In Haskell Workshop ’02. ACM, 2002.

[25] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-

Like Languages. In Proc. of the European Conf. on Object-Oriented

Programming. Springer, 2005.

[26] Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In Proc. of the 1997 ACM SIGPLAN Symposium on Par-

tial Evaluation and Semantics-based Program Manipulation. ACM,
1997.

37

View publication statsView publication stats

https://www.researchgate.net/publication/262165238

	Introduction
	Language Features
	Traits
	Pattern-Based Reflection
	Reified Generics
	Member Accessilbility

	Calculus for the Object Language
	Calculus for the Meta Language
	Kernel Syntax of the Meta Language
	Type System
	Meta Evaluation
	Soundness

	ORM via Compile-Time Reflection
	Object Saving Evaluation
	Object Fetching Evaluation

	Related Work

