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Abstract

Component-based Software Engineering (CBSE), to produce software by connecting of the shelf

ready-to-use components, promises costs reduction during the development, the maintenance and

the evolution of a software. The recent period has seen the production of a very important set of

new results in this field. As the term “component” is very general, it encompasses many researches

having different objectives and offering various kind of abstractions and mechanisms. However one

main overall accepted idea is to model software with components organized into architectures and

to generate code from such abstract descriptions. This is a good idea but the question arise to know

which languages are good candidate for the generated code. In the current practice the design phase

happens in the component world and the programming phase occurs in the object-oriented world.

It appears that languages and technologies used to achieve component-based development are only

partially component-based. Our first claim is that to use component-based languages to write the

executable code is primarily important just because the original component-based designs (e.g. re-

quirements, architectures) do not vanish at run-time, making programs more understandable and

reversible. By doing this, it is then possible to imagine that design (modeling) and programming can

be done at the same conceptual level and why not using the same language. Usually, objects are

most always chosen to implements component-based designs. It is true that an object is certainly the

existing executable thing the closest to a component as they are understood today; close but not ex-

actly the same. Our second claim is then that it is possible to achieve component-programming lan-

guages by smoothly modifying object-oriented ones. Following these ideas, we present in this thesis

an example of a new pure component-based programming and modeling language, named COMPO

incorporating, in a simple and uniform way, core concepts and mechanisms necessary for the de-

scription and implementation of components and of component-based architectures: component,

port, service, connection and the following mechanisms: instantiation, service invocation, compo-

sition and substitution. We also claim that describing components, their architectures (structures)

and their services (behavior) would benefit (as objects descriptions do) from an inheritance-based

differential description. In consequence we propose a specification and implementation of an inher-

itance system taking requirements into account on a covariant specialization policy base and with a

corresponding dedicated substitution mechanism. We finally claim that making such a language fully

reflective will open an interesting new alternative (in the component’s context) for any king of model

or program checking or transformation. We revisit some standard solutions to achieve an original

component-oriented reification of concepts to build up an executable meta-model designed on the

idea of “everything is a component”. A complete prototype implementation of the COMPO language

has been achieved and is described in this thesis.
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Résumé

L’ingénierie des logiciels a base de composants, produisant du logiciel en assemblant des composants

sur « étagere » et « prets-a-l’usage », promet la réduction des couts au cours du développement, la

maintenance et l’évolution d’un logiciel. La période récente a vu la production d’un ensemble tres

important de nouveaux résultats dans ce domaine. Comme le terme «composant» a un sens assez

général, cet ensemble englobe de nombreuses recherches ayant des objectifs différents et offrant

divers types d’abstractions et mécanismes. Cependant, une idée générale communément admise

consiste a modéliser les logiciels avec des composants organisés en architectures, puis générer du

code a partir de ces descriptions abstraites. Ceci est une bonne idée, mais la question qui se pose

consiste a savoir quel langage est le meilleur candidat pour le code généré. Dans la pratique actuelle,

la phase de conception se déroule dans le monde des composants alors que la phase de program-

mation se produit dans le monde des objets. Il semble aussi que les langages et technologies util-

isées dans le développement a base de composants ne sont que partiellement a base de composants.

Notre premiere revendication consiste a dire qu’il est important d’utiliser les langages a composants

pour écrire du code exécutable, simplement parce que les artefacts a base de composants d’origine

(comme, les besoins ou les architectures) ne disparaissent pas au moment de l’exécution, rendant

les programmes plus compréhensibles et réversibles. En faisant cela, il est alors possible d’imaginer

que la conception (modélisation) et la programmation peuvent etre effectuées au meme niveau con-

ceptuel et pourquoi pas en utilisant le meme langage. Généralement, les objets sont presque toujours

choisis pour implémenter les conceptions a base de composants. Par ailleurs, il est vrai que c’est sans

surprise les objets qui sont utilisés pour implémenter des conceptions a base de composants ; un

objet étant certainement l’entité exécutable la plus proche d’un composant tel que c’est compris au-

jourd’hui. Par contre, ils sont proches mais il ne sont pas exactement les memes. Notre deuxieme

revendication est qu’il est possible d’atteindre des langages de programmation par composants en

apportant des modifications souples aux langages a objets. Suivant ces idées, nous présentons dans

cette these un exemple d’un nouveau langage pur de modélisation et de programmation par com-

posants, nommé COMPO intégrant d’une maniere simple et uniforme, les concepts de base pour la

description et l’implémentation des composants et des architectures a composants: composants,

ports, services et connexions, et les mécanismes nécessaires suivants: l’instanciation, l’invocation

de service, la composition et la substitution. Nous soutenons également que la description des com-

posants, leurs architectures (structures) et leurs services (comportement) gagneraient (comme le font

les descriptions d’objets) a utiliser des descriptions différentielles qui se basent sur un mécanisme

d’héritage. En conséquence, nous proposons une spécification et une implémentation d’un systeme

d’héritage en prenant en compte une politique de spécialisation covariante et un mécanisme de sub-

xi



xii Résumé

stitution dédié. Nous affirmons enfin que faire un tel langage totalement réflexif ouvrira une nouvelle

alternative intéressante (dans le contexte des composants) pour n’importe quel genre de modele ou

de programme de vérification ou de transformation d’architecture. Nous revisitons quelques solu-

tions standards pour obtenir une réification a composants originale pour construire un méta-modele

exécutable conçu sur l’idée du «tout est un composant». Une implémentation complete du prototype

du langage COMPO a été réalisée et est décrite dans cette these.

Mots clés: Langage à composants, modélisation, l’architecture, la programmation, la séparation des

préoccupations, découplage, l’héritage, la réflexion, la réification, COMPO
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Introduction

To program is to understand.

Kristen NYGAARD.

Preamble

This chapter introduces the context of our research. The context is software engineering and more
specifically Component-Based Software Engineering (CBSE) which study development of reusable com-
ponents (development for reuse) and development by assembling reusable components (development

by reuse). We explain the problems regarding the existing component-based approaches and the strate-
gies they are using to build component-based software. In this context, we place our approach and the
solutions offered. We finish this chapter with presenting characteristics of the contributions and orga-
nization of the document.



2 Chap 1. Introduction

1.1 Context: Component-based Software Engineering

EVOLUTION, the ubiquitous process in every science discipline goes hand in hand with complex

problems and development of their solutions. It has been proven that a very helpful approach

to solve a complex problem is to identify and solve its sub-problems, ergo the Divide and Conquer
principle. The strategy of constructing a problem’s solution from solutions of its sub-problems has

been widely adopted by industry in many domains. Hence, for example, we drive cars assembled

from reusable and substitutable parts, called components, like an engine, wheels, doors, etc.

The process of seeking a viewpoint which simplifies a complex problem is commonly known as

abstraction. History shows that there are always more viewpoints of a problem and although a found

viewpoint, i.e. an abstraction of a problem, might be fundamentally wrong, it still can be used to

approximately solve the problem. For example, gravity laws as they were described by Isaac Newton

are a very good abstraction of weak-field gravity and slow speeds, but they are fundamentally wrong,

when used for solving problems in a context of strong-field gravity and high speeds (close to the

speed of light), as shown by Einstein. The quality of an abstraction depends on its ability to describe

a system that solves a given problem in an accomplishable way.
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Figure 1.1 : Growing complexity of solutions, here mesured in terms of Lines of Code (LoC), forces the

evolution of computer programming languages

Evolution in software development industry, enforced by increasing complexity of developed sys-

tems [Kriens, 2012], has driven the creation of modern software in terms of objects and classes and

not by assembling individual bits or bytes, like it was usual less than 6 decades ago. Bits or bytes

were good abstractions for programming arduous calculations, but due to the amount of information

being manipulated and due to the evolution of business processes by new software, it was too expen-

sive to keep using these abstractions for programming present complex systems. Therefore they were

replaced by more convenient abstractions being able to describe solutions for modern problems in

manageable ways. Figure 1.1 shows how the growing complexity of solutions (measured by terms of

lines of code) forced the evolution of computer programming languages. The process can be sum-

marized into the following statement: “When things got too complex, it is time to increase abstraction
level.”



1.1. Context: Component-based Software Engineering 3

Year Operating System LoC (Million) Year Operating System LoC (Million) Year Operating System LoC (Million)

1994 Windows NT 3.5 7.5 2000 Debian 2.2 57.5 2003 Linux kernel 2.6.0 5.2

1996 Windows NT 4.0 11.5 2002 Debian 3.0 104 2009 Linux kernel 2.6.29 11

2000 Windows 2000 29.2 2005 Debian 3.1 215 2010 Linux kernel 2.6.32 12.6

2001 Windows XP 45 2007 Debian 4.0 283 2010 Linux kernel 2.6.35 13.5

2003 Windows Server 2003 50 2009 Debian 5.0 324 2013 Linux kernel 3.6 15.9

Table 1.1 : Growing complexity of software illustrated in terms of lines of code (LoC) in case of OS

Development of software projects with millions of lines of code (cf. Table 1.1) is no longer a matter

of a single developer, it is not in ones powers to be knowledgeable enough to confidently change every

part of such projects. Thus, the frequent practice is to assign one or more parts of the system to a de-

veloper. To understand how a part interacts with the rest of the system becomes crucial information

for the developer of the component in order to effectively evolve the component. For example, when

modifying the invariants of a data structure, a developer must discover what code within and outside

the part relies on those invariants, and make appropriate modifications to that code. Understanding

how the parts interact is especially difficult in many modern systems, which communicate indirectly

through shared data structures, dynamic dispatch, and events. To evolve these programs effectively,

an engineer often needs an abstraction of the possible run-time types and aliases of each element

involved in the change. Such abstractions are difficult to gain, and if they are incorrect, engineers are

likely to inject defects as they evolve the software system [Aldrich, 2003].

The complexity has been the engine of component-based research with a goal to develop, ma-

nipulate and reuse software parts that make up these complex systems. Component-based Software

Engineering (CBSE) is an approach that uses Component-oriented Programming (COP)1 to develop

reusable components (development for reuse) and to assemble software from these reusable “off-the-

shelf” components, connected together into various kinds of architectures (development by reuse).

In the sense of seeking for an appropriate abstraction to manage the growing complexity, CBSE
takes the notion of software component and uses it as the abstraction which makes development
of complex systems easier and manageable. The vision of reusable and connectable software pieces

made of other reusable and connectable software pieces is consistent with the divide and conquer

principle. Moreover, the well-established methodologies and techniques used in other engineering

domains, like electric-circuits design or product lines strategies, can be taken and adapted for the

purposes of CBSE.

As pointed by Szyperski in [Szyperski, 2002], CBSE opens the possibility to establish a component

market, similar to applications markets like AppStore, or Google Play Store, where developers store

their components and other developers use the stored components to design new components or to

assemble final products. In contrast to applications markets, the consumers of this component mar-

ket are developers and not final users. Software evolution then would became a matter of updating,

because it is easy to substitute a component with a new (more sufficient, effective, etc.) one. Also

on demand applications would became real, as it is possible to dynamically assemble an application.

For example a demanding customer may require a graph application with 3D rendering component

while a graph application with 2D rendering component will be enough for a regular customer. As

long as the 3D a 2D rendering components are substitutable, the rest of the application can be reused

1COP is a programming technique and paradigm producing reusable components as the output of coding process.
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and the two customers can be satisfied easily.

1.2 Limitations of the Existing Approaches

The existing component-based approaches have opened the door for the development of

component-based software. They have changed the way distributed applications are developed. In

particular, they enable the large-scale deployment of applications in distributed heterogeneous en-

vironments, by making transparent the distribution, security and many other non-functional aspects

and enabling the developers to focus on application concerns.

The approaches differ in many aspects, for example: in the way they define a component (run-

time vs. design-time entity, made from objects or not); whether or not they separate an external

contract definition from an internal composition definition; or in the way they define a component’s

behavior. In this work we divide the approaches into three global categories according to strategy

they use to construct a final solution.

The generative strategy uses high-level abstraction design models as conceptual tools for man-

aging the complexity of large software systems. These models specified in Architecture Description

Languages [Medvidovic et Taylor, 2000] (ADLs) describe the high-level organization of a software sys-

tem as a collection of components, connections between the components, and constraints on how

the components interact. The intent of these models is to communicate to an entire engineering team

part of the global knowledge needed to develop and evolve each component of the system. They also

aid in the specification and analysis of high-level designs. For example, an architectural model can be

analyzed to prove that the design invariants described by architectural constraints are satisfied. Once

the architecture design stage of development cycle is finished, the generative strategy takes the for-

mal description of a designed architecture and generates code skeletons using an a generator specific

for an implementation language. This implementation-language independence property is another

advantage of the approach as the same abstraction layer can generate code for different machines,

taking into account the heterogeneity of platforms.

However, this may cause problems in the analysis, implementation, understanding, and evolution

of software systems, because consistency between architecture design and final code is not guaran-

teed. While the architecture design may be analyzed for certain properties, it is difficult to know if

the properties hold in the implementation of the design. In addition, even if a system is initially built

to conform to its intended architecture design, as the system evolves to address new requirements,

its design may become inconsistent with the original architecture design over time. This inconsis-

tency causes problems for engineers working with the system, making it difficult to understand parts

of the system in isolation, and causing program errors when engineers rely on their inaccurate ar-

chitectural models. In summary, inconsistency between architecture and implementation pervades

existing systems, causing problems both in human reasoning and automated analysis of programs.

The framework strategy, represented by COM+ [Microsoft, 2012], Enterprise JavaBeans [Oracle,

2012], CORBA Components [OMG, 2012], Fractal [Bruneton et al., 2006], Spring [GoPivotal, Inc.,

2013], OSGi [OSGi Alliance, 2012], FraSCAti [Seinturier et al., 2012] etc. provides component models

and development frameworks for building component-based distributed applications. They all em-

ploy a similar global system design providing a separation between the functional aspects of the ap-
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plication, which are captured by the components, and the non-functional, technical concerns, which

are captured by the containers. Run-time containers provide capabilities to dynamically lookup, load

and release components making it possible to develop adaptable distributed component-based sys-

tems.

As pointed by [Crnkovic et al., 2011], most component models classified under the framework

strategy use mainstream object-oriented programming languages C++, Java and C# for the imple-

mentation stage. By following the programming style guidelines of each particular framework a de-

veloper is able to design and implement components or create applications by assembling off-the-

shelf components. These programming style guidelines often prohibit common programming idioms

such as data sharing making the developer’s life harder as it tends to be very difficult for them to avoid

messing with the system’s integrity for their own convenience. Another problem is that the respect

of the programming style is not mandatory. The implementation languages do not treat component

related concepts, like required interfaces or composition, explicitly separating design development

stage from implementation stage, causing that the original component based design may vanish dur-

ing implementation. For example, in most cases, the connection between objects in object-oriented

programming languages are implicit in the implementation code, making it hard to verify that sys-

tems have, indeed, the intended architecture with explicit connectors.

While the previous strategies use Domain Specific Languages (DSL) and code generators or pro-

gramming style guidelines and run-time support systems to produce a software system, they fail in

verifying full conformance between a rich architectural specification and an implementation in a

general-purpose programming language. The lack of automated conformance checking seriously

compromises the benefits of architecture during implementation, testing, and software evolution.

The last approach, the component-oriented language (COL) strategy, is an evolution compati-

ble with both previous approaches. It operates in languages design domain and states that the more

natural way to develop component-based software systems is to use a single programming language

that allows doing so in the first place. Such programming languages should have a primitive sup-

port for both component definition, and composition (building components by assembling smaller

components).

“[...] we feel that there is need for pure component languages. These languages are needed
to provide a component developer with a clean and concise vocabulary and semantics for
building and composing components.” [Wuyts et Ducasse, 2001].

One of the main illities CBSE brought to software is modularity. In practice, Object-oriented pro-

gramming (OOP) also brought some modularity in code, but has some limitations to fully address

this quality attribute. Although it is possible to capture a component-based architecture in an object-

oriented language, the problem is that the capture is implicit, making it hard to reveal original design

intentions later. For example, the following Java code snippet models a very simple text-editor com-

ponent.
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public class TextEditor {
private ISpellChecker sc;
public TextEditor() { }
public void setSpellChecker(ISpellChecker sc) {...}
public ISpellChecker getSpellChecker() {...}
...

}

The global semantics of the sc attribute with the getter and setter operations is: “a text-editor
requires a spell-checker”. Unless users of such an editor read the editor’s documentation or its code,

they are not aware of the fact that the editor requires a spell-checker. The information is not explicit.

The example illustrates the need for a pure component-based language which treats these concepts

explicitly.

Component-oriented Programming Languages (COPLs) like ACOEL [Sreedhar, 2002], Arch-

Java [Aldrich et al., 2002], ComponentJ [Seco et al., 2008] or SCL [Fabresse et al., 2008] give solutions

for the previous problem by allowing developers to express full description of executable compo-

nents.

Moreover, using different concepts for design and implementation stages of development opens

a gap which makes architectural reasoning (i.e. the action of thinking about architectures in a log-

ical, sensible way) complicated. For example, architecture should show all of the components that

could possibly communicate with a given component. An engineer who is enhancing that compo-

nent can effectively use this knowledge to make sure that the enhanced component interacts properly

with all the existing components in the system. In order to enable architectural reasoning about an

implementation, the implementation must conform to its architecture. A system conforms to its ar-

chitecture if the architecture is a correct abstraction of the run-time behavior of the system. However,

an engineer who cannot trust the architecture to be complete must fall back on more labor-intensive

techniques for finding the other interacting components, or else risk introducing defects into the

code.

Recent experience [Fabresse et al., 2012 ; Aldrich et al., 2002] with COLs showed that it is possible

to bridge the gap between implementation and design and that in the same time we obtain better

code-level decoupling in component-based programming than in object-oriented one. Architecture

implementation conformance is automatically guaranteed, because there is no separation between

the design and implementation stage.

The above mentioned approaches provide means to design component-based software, but they

do not address very well maintenance and evolution of such software. For example, the generative

approach is forced to re-generate implementation of an architecture design every-time the design

changes. While smaller changes are manageable, larger ones require wider refactoring leading to

possible architecture-implementation inconsistencies. Managing software evolution and increasing

productivity are the main objectives of Model-driven engineering (MDE) approach.

Transformations are one of the essential principles of MDE needed for enhancing primary

models into final software products [Carrière et al., 1999]. Because MDE support is not present

in the above discussed approaches, transformations have to be described in third-party lan-

guages [Sánchez Cuadrado, 2012] making it difficult to apply a transformation on a model in a
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straightforward way. We believe that the problem lays in fact that the solutions do not pay enough

attention to reflection which is a basic need for doing transformations.

Recently the Models@runtime [Blair et al., 2009] stream addresses this by proposing the reflection

layer and by considering it as a real model that can be uncoupled from the running architecture (e.g.

for reasoning, validation, and simulation purposes) and later automatically re-synchronized with its

running instance. For example Meta-ORB [Costa et al., 2006][Provensi et al., 2010] proposes the de-

sign time use of models to generate middleware configurations, and, at run-time, the use of these

same models as the causally connected self-representation of the middleware components that is

maintained by the reflective meta-objects for the purposes of dynamic adaptation. However, the

approach still suffers from the disadvantage of separating a model from implementation, making it

difficult to ensure that the operational semantics defined in an implementation conform to its model

architecture.

The problem of not paying enough attention to reflection rises up again when talking about ar-

chitectural constraints which represent the formal technique for architecture decision documenta-

tion [Allen, 1997 ; Monroe, 2001 ; Tibermacine et al., 2010b]. Constraint are used in MDE to specify

and verify non-functional quality attributes of models. Examples of constraints include the choice of

a particular architectural style or pattern, like the layered style.

When defining component-based software architecture descriptions, architecture constraints are

generally intended for the validation of some specific architectural elements (components, in most

cases). This limits their potential reuse with architectural elements of other architecture descrip-

tions. In addition, this kind of architecture decision documentation often includes some parts which

can be used individually for documenting parts of design decisions [Tibermacine et al., 2010a]. Un-

fortunately, there is no means to extract these parts, to make them parametrized entities that can be

factorized and used in different reuse contexts.

1.3 SCL, the predecessor of our work

In this work we pick up the threads of the research made during the development of SCL (Simple
Component Language [Fabresse et al., 2008]) which tried to fill the lack of semantically founded and

really usable component-oriented languages (COL) by addressing the following problematics: What

is a COL? What are the advantages of those languages? How to achieve a COL?

SCL has been built to be: (i) minimal because all its abstractions and mechanisms answer to

an identified need; (ii) simple because these abstractions and mechanisms are of a high-level; (iii)

detailed because it targets a lot of crucial points usually forgotten by other propositions such as self-

references, arguments passing based on connections or considering base components (collections,

integers, etc) in a unified world; (iv) dedicated to CBSE because it integrates the two key points that

were identified: decoupling and unanticipation. The core of SCL is built upon the following concepts:

component, port, service, connector, glue code, and the following mechanisms: port binding and

service invocation. All of this is mixed into a language, in which an expert programmer can develop

independent components, design for reuse, and a non expert programmer can develop applications

by connecting previously developed components, design by reuse.

SCL applies the class/instance approach and it clearly distinguishes these two concepts. A com-
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ponent is a run-time entity and it is an instance of a component descriptor. Component descriptors

are written by the component programmer in order to create off-the-shelf reusable pieces of software

while the software architect creates an application by choosing and instantiating some component

descriptors and then connecting components (i.e. instances).

The unique communication protocol is built upon unidirectional named ports which allow the

programmer to group some services in a set and require or provide this set via required resp. provided

ports. Components communicate by service invocation through their ports. Ports help the program-

mer to group related services and then defines view points or security policies. Required ports define

view points for the component on its environment while provided ports define view points on the

component for its environment. A port also defines a security policy because a component that com-

municates with another component through one of its ports can only access the services accessible

through this port. The programmer defines services in the component implementation and chooses

to provide some of them through the provided ports of the component.

Areas where SCL might be improved are: explicit architecture description and reflection. SCL is

hard to use as an architecture description language, because it focuses more on the functional aspect

of components then on the specification aspect. This limits the modeling power of the language

Missing reflection level makes it impossible to reason about an architecture design described by a SCL

program or to apply automatic transformations needed in MDE development for enhancing an initial

design to the final product. In the following we describe a reflective COL based on the outcomes of the

SCL research which aspires to be even more detailed and dedicated to CBSE by taking into account

explicit architectures and MDE, while, in the same time, keeping the language minimal and simple as

much it is possible.

1.4 The problematic of the thesis

This dissertation presents the design and implementation of a reflective component-oriented lan-

guage named COMPO. This section describes the problems we aim to handle in the work. The global

objective of COMPO’s design is to try to preserve and improve the qualities of SCL (the predecessor).

In this sense, COMPO strives to go further in support for the modeling aspects of CBSE, by making it

easier to use techniques and methods designed for ADLs and to perform transformations and verifi-

cations typical for MDE.

The study of existing CBSE approaches, presented in the following chapter (cf. Chapter 2), con-

vinced us that component-based software should be developed by use of component-oriented pro-

gramming languages which provide a development continuum by supporting both the design and

implementation stages of the development process. In the same time, we would like to have the ad-

vantage of explicit architecture description and the advantage of run-time adaptability that we men-

tion in Section 1.2.

The following list presents the problems we plan to handle and answers the question: “How do

we want to do that?”

To program and design components using the same language We want COMPO to be a pure

component-oriented language (COL) in which it should be possible to design and implement
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reusable components. The purity means that we try to not to build just an extension for an

existing programming language, which will support component-oriented programming, be-

cause it could force developers to choose between components and objects to implement

given element of the business domain of their application. Such a COL bridges the gap be-

tween design and implementation by eliminating inconsistencies that may occur when two

conceptually different languages are used for design and implementation [Fabresse et al., 2012 ;

Aldrich et al., 2002].

To handle this: we try to identify the core component concepts and restrict COMPO’s design to

strictly use those concepts only, making it possible to design and seamlessly implement com-

ponents in one language.

To model component-based architectures We would like that COMPO users be able to model var-

ious component-based architectures in the same way ADLs do so. ADLs explicitly describe

architectures of component-based software. With such an explicit approach, the interaction is

with the model architecture and not with an intricate sequence of design features. That makes

initial understanding on the software easier. But it also means designers working with an ex-

plicit architecture of a software system can easily pick up a design where others left off. Much

like anyone can open up and immediately continue working. Thus explicit modeling appeals

to a variety of audiences: companies with flexible staff; infrequent users; and anyone who is

concurrently involved in a large number of design projects. To understand and demonstrate

the advantage of being explicit consider the following example:

“Let’s say we want a person data structure. We can accomplish this by having specific
fields, as Listing 1.4 shows. Of course, to make this work, we must define the variables
in the person class. Many modern languages provide a dictionary data structure (also
knows as a map, associative array, or hash table), so, we could use it to define the
person class, using the approach in Listing 1.4. (This is slower, but let’s assume this
section of code is not performance critical.)

Using a dictionary is appealing because it lets you change what you store in the
person without changing the person class. If you want to add a telephone number,
you can do it without altering the original code.

Despite this, the dictionary does not make it easier to modify the code. If I’m trying to
use the person structure, I cannot tell what is in it. To learn that someone’s storing the
number of dependents, I must review the entire system. If the number of dependents is
declared in the class, then I only have to look in the person class to see what it supports.

The key principle is that explicit code is easier to understand which makes the
code easier to modify. As Kent Beck puts, the explicit code is intention revealing. This
dictionary example is small in scale, but the principle holds at almost every scale of
software design.” [Fowler, 2001].

To handle this: we design COMPO in a way, it will be possible to model and explicitly describe

component-based architectures, i.e. it is possible to use COMPO as a regular ADL.
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class Person {
public String lastName;
public String firstName;
public int numberOfDependents;

}

Figure 1.2 : To be Explicit: fields example

class Person {
public Dictionary data;
/* data["firstName"]; data["lastName"]; ... */

}

Figure 1.3 : To be Explicit: dictionary example

To reuse component designs We want to be able to design a new component on the basis of an exist-

ing component, i.e. to reuse a component design including both the structure description and

the behavior description. There are many ways how to reuse software, like aspects [Kiczales

et al., 2001 ; Seinturier et al., 2006], traits [Curry et al., 1982], mixins [Bracha et Cook, 1990] or

composition which is already a mechanism in the world of components. The successful reuse

mechanism is inheritance, which has proved to be one major cornerstone of software reuse in

the OO world, first for the ability it gives developers to organize their ideas on the base of con-

cept classification (a list is a kind of collection, a given architecture is a kind of visitor, ...) which

is itself one key of human abstraction power and second for the calculus model that makes it

possible to not only reuse but adapt software, by executing an inherited code in a new context

(the receiver environment). Despite the success of inheritance, the question of the interest of

inheritance-based reuse in the CBSE context has not yet been explicitly nor fully addressed.

To handle this: we design and integrate a component-oriented inheritance mechanism for

COMPO.

To support development processes We would like to be able to reason about, transform and verify

component-based architectures (possible at run-time), because we believe that such illities are

fundamental for MDE. Also, we would like to make it possible for users to customize commu-

nication between components or to constraint it. Our previous work [Tibermacine et al., 2011]

shows that architectural constraints can be successfully realized as components. The idea is

attractive when it comes to verification of architectures qualities, especially, after a transfor-

mation was applied. Therefore, we would like to be able to design constraint components and

connect them to standard business components to check their qualities, all at both the static-

time and run-time and in the context of one language.

To handle this: we shall try to design COMPO as a reflective language by making some aspect

of the internal representation explicit and hence accessible from the program. A reflective lan-

guage or system provides a principled (as opposed to ad hoc) means of achieving open engi-

neering [Blair et al., 1998]. Reflection enables language users to reason about architectures, to
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perform model transformations, to examine and modify the structure and behavior of entities

(in or case of components) at run-time.

To summarize our dream
It would be nice to have a language in which one can describe a component-based

architecture and continuously implement it, then verify and execute or transform the

result.

1.5 Characteristics of the contribution

The contributions of this dissertation are as follows:

Uniformity. We propose and describe a component-based meta-model and a reflective descrip-

tion in COMPO of its main component descriptors made executable via a concrete implementation.

We present concrete, adapted (first-class descriptors) or new (first-class ports), meta-level solutions

for a component-based reification of concepts leading to a “everything is a component” operational

development paradigm. We tried to design the component-based model compliant to its meta-model

and the component-based meta-model compliant to itself. The system is self-described by the ex-

plicit definition of the root of the instantiation tree (Descriptor) and the root of the inheritance tree

(Component). One consequence of component-oriented reification is that there is now only one kind

of entity, component: a descriptor is a component and a meta-descriptor is a true descriptor whose

instances are descriptors. This allows a simplification and economy of concepts, which are thus more

powerful.

Architecture within Implementation. COMPO tries to smoothly integrate a rich architectural de-

scription with a programming language to enforce full structural conformance between design and

implementation. COMPO provides architecture description constructs, so that developers can specify

an architecture during design and then fill in the architecture with COMPO implementation code. It

includes all core concepts of CBSE, i.e. components, ports, explicit connections and services. Compo-

nents are instances, supporting instance-based architectural reasoning, and ownership declarations

are used to specify hierarchical relationships between components.

Unique communication protocol. In SCL, sending a service invocation through a port is the only

possible way for two components to interact. Nevertheless, we make effort to integrate ownership

relation to achieve explicit hierarchical design, when doing so, we proposed a solution based on in-

ternal required ports and thus keep the unique communication protocol. Such a protocol is another

step towards full communication integrity of COMPO applications.

Openness and extensibility. Reflection provides the necessary levels of openness making the

language uniformly accessible by the user. It opens the essential possibility that architectures, imple-

mentations and transformations can all be written at the component level and using a unique lan-

guage. It encourages introspection and indeed adaptation of the underlying structure and behavior

of the platform. Reflection ease introduction, possibly dynamic, of different control facilities for com-

ponents such as non-functional aspects; it allows application designers and programmers to define
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important trade-offs such as performance vs. safety; and it makes easier the use of these frameworks

and languages in different environments.

Modeling friendly inheritance system. Reuse scheme designed for COMPO is quite innovative

in the context of CBSE, because it promotes modeling power with covariant specializations. Using

extends statement, a new descriptor can be defined on the base of an existing descriptor, such a

descriptor is then called a sub-descriptor. Sub-descriptors may introduce new ports or extend inter-

faces of inherited ports; new services and override inherited services and finally a sub-descriptor may

extend and specialize the internal architecture it inherits from its parent, ergo, COMPO’s inheritance

system offers means for both structural and behavioral reuse.

1.6 Structure of the thesis

The remainder of this dissertation is structured to gradually present precise definitions for the con-

cepts informally addressed in this introductory chapter. The contents of the remaining chapters are

as follows:

• Chapter 2 presents the state of the art of component-based approach. The general motivation

of this approach is presented through three problematic areas of software engineering, namely

reuse, distribution and explicitness problems for which the component-based development

seems better suited than the object-oriented approach. After presenting the main families of

component-based approaches, some approaches are described in detail. Finally, in conclud-

ing this chapter, we point on weaknesses of these approaches in the context of component-

oriented programming.

• Chapter 3 presents our basic component-based language. Based on the outcomes of Chapter 3

try to identify the main concepts and mechanisms of the component-based approach and then

in each section we discuss how we believe COMPO meets these principals.

• Chapter 4 extends the component language presented in Chapter 3 with the component-based

inheritance system for structural and behavioral reuse. We motivate the need for an inheri-

tance system by showing cases where an inheritance mechanism is inevitable for reusing the

structural definition of component descriptions.

• Chapter 5 describes the self-described component-based meta-model with makes it possible to

integrate reflection into the language. We describe how the integrated reflection allow for stan-

dard application development, and for static or run-time model and program transformations,

all within the context of COMPO language.

• Chapter 6 illustrates the features of our model by means of medium size examples like a HTTP

server design, architecture constraints modeling and verification or architecture transforma-

tion.

• Chapter 7 presents the prototype implementation in Pharo SMALLTALK starting with the

technology choices and meta-model core architecture.
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• Chapter 8 draws some conclusions about the proposed component-oriented programming and

modeling language and describe some future directions.
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Implementations

If a cluttered desk is a sign of a cluttered mind, of what, then,

is an empty desk a sign?

Albert EINSTEIN.

Preamble

In this chapter, we present a state of the art of the Component-Based Software Engineering approach.
Section 2.1 recalls and discusses the main advantages and promises of the component-based approach.
We detail two principles: reuse and explicitness. Given the multitude of component-based approaches,
we made a selection of those we consider pivotal and we detail each selected approach in 2.2. Section 2.3
presents a comparison of the selected approaches, following a set of criteria that we consider relevant
to our contribution. Section 2.4 concludes this chapter by providing a concise overview of the different
approaches and shows the need to propose a new component-oriented programming and modeling
language.



16 Chap 2. Component Models and their Implementations

2.1 Advantages and promises of the component-based approach

RESEARCH works on Component-Based Software Engineering (CBSE) have brought many ad-

vances on how to achieve complex software development by reusing and assembling compo-

nents. CBSE studies the ways reusable pieces of code can and should be described (for example by

giving an explicit high or low level description of what they require to achieve what they provide)

and in the ways software architectures are thought, specified, described or implemented. The cur-

rent trend is to explicitly express architectures of software solutions, to reason about them, to verify

them and to transform them. CBSE also studies the development of distributed applications which

requires an interaction between components deployed on different hosts.

This section presents the three main aspects in which component-based development promises

to be better suited than traditional development paradigms such as object-oriented development.

These three areas are: (i) reuse which directly reduces the cost and time during the phases of de-

velopment and testing [Szyperski, 2002], (ii) distribution which complicates the application code by

requiring the integration of specific code for communications and (iii) explicitness which eases main-

tenance of software by making code structure self-explanatory, hence understandable. Each of these

three areas is developed in a sub-section with the aim to show the contributions or the promise of

component-based approach along this axis.

2.1.1 Reuse

Reuse is one of the major goals of software engineering for its potential to reduce cost and time of

software development. With increasing count of lines of code (LoC) the need for reuse grows.

The Don’t Repeat Yourself (DRY) principle states that:

“Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system.” [Hunt et Thomas, 1999].

When the DRY principle is applied successfully, a modification of any single element of a sys-

tem does not require a change in other logically unrelated elements. Additionally, elements that are

logically related all change predictably and uniformly, and are thus kept in sync.

Many concepts and associated mechanisms were invented to reuse code, such as:

• function and function call

• module and module import

• class and inheritance

• framework and framework setting

• component and assembly of components.

In all cases, reuse is performed in two steps: the identification and declaration of a bounded

parameterizable part, a box, and a definition of how to configure and use the box later. For example,
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the definition of a function is done with formal parameters (a box) which are substituted by actual

parameters in a function call (a later configuration and usage). There are generally three types of

reuse: black box, white box and gray box.

In black-box reuse, the internal of boxes are hidden. The only possible way a user can configure

a box is through a pre-defined external interface. As long as the external configuration interface of a

box has not been changed, the box can be easily changed by another with the same or compatible in-

terface. For example, without changing its external specification (signature and semantics), the code

of a function can be altered, without the need for changing all programs using the function. Thus, in

this setup, functions are black-boxes, because theirs internal implementation is not accessible in the

use-time.

At the opposite, the white-box reuse type reveals internals of boxes. In the use-time, a box can

be configured either through external interfaces or directly through its definition (implementation.)

On the one hand, revealing internals has the advantage of making easier, because all information

about a box is accessible, it also provides better configuration opportunities. On the other hand, this

internal revealing may cause problems. Consider the following example: Zend Framework1 is an

object-oriented web application framework. Its configuration is made explicit through a set of ab-

stract classes. A user of the framework can configure the framework by implementing specialization

classes that define abstract methods of the abstract classes. The definition of the abstract methods is

a white-box reuse. Indeed, as the framework evolves, new abstract methods are introduced and ex-

isting may be removed or altered, i.e. interfaces of the abstract classes change. Client programs that

implement specialization classes for the abstract classes directly by definition of abstract methods

may not work when a new version of the framework is about to be used.

Reuse is facing a paradox. To increase the potential for reuse, the black-box approach provides

better solutions, because its boxes are more independent from a usage context. However, for use in

a given context, mechanisms for setting and adjusting boxes may be necessary, therefore it seems

that the white-box approach should be favored. The gray-box reuse type is an intermediate level

between the previous two forms. The implementation details of a grey-box can be known or disclosed

to understand its realization but cannot be modified by its users and cannot be configured through its

interfaces. For example, by specifying the places where a component may be varied (e.g., extension or

adaptation points), it is possible to avoid unstable implementation dependencies. That is, a supplier

of a component should guarantee that variation points remain invariant in subsequent releases. Such

a specification can be seen as a type definition from which concrete implementations can be derived

all conforming to that type.

For a long time it was claimed that object-orientation was the solution to reusability of software.

Object-orientation indeed enabled the development of reusable class libraries, such as the Standard

Template Library [Stepanov et Lee, 1994] or Foundation Classes for Java or C++. These class libraries

provide particular type constructors and API, such as sets, lists, hash tables and so on; however, soft-

ware reuse in the large [Emmerich, 2002] has never been achieved by object-oriented development.

Reuse of objects is hampered by the large number of fine-grained classes generated during object-

oriented modeling that are entangled in a system of association, aggregation and generalization re-

1http://framework.zend.com
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lationships. The large number of dependencies makes it difficult to take classes out of the context in

which they were developed and reuse them elsewhere.

“ [...] class-based languages encourage the reuse of class definitions through extension,
but they do not permit the reuse of a class extension in disjoint parts of a class hierarchy.
” [Flatt, 2000]

In fact, a class is not independent of context as it is coupled to the hierarchy in which it was

defined. The problem of implicit coupling [Briand et al., 1999 ; Peschanski et al., 2000] results in

the fact that in the code of the methods, it is possible to instantiate or use external elements without

making these links explicitly through interfaces, i.e. the black-box reuse. Figure 2.1 shows an example

of implicit coupling between two objects. Each instance of the class A will use its own instance of the

class B to fill functionality bar. The problem is the b=new B() statement which is inside the class A
while it should be decided outside. This coupling between objects is implicit because it is embedded

in the source code which is not always visible, and it is as strong as non-editable.

A
- b : B
+ A() { b = new B(); }
+ void foo() {
        b.bar();
   }

B
+ void bar() { ... }

Figure 2.1 : Strong and implicit coupling between two classes

A step towards further decoupling is that the constructor of the class A possesses a parameter of

type B to initialize the value of the b private attribute. When instantiating the class A, then it would be

possible to pass back an instance of the class B. The coupling would be made when instantiating the

class A and not statically in the code. This decoupling is still not satisfactory because it does not allow

the setting after A’s instances were instantiated. This could be solved with accessors (get and set),

an explicit interface and sub-typing, see Fgure 2.2. The class A in this example uses the interface IB
to type the attribute and set accessors. The interface IB explicitly declares what features are required

and therefore reduce coupling between the class A and a particular class implementing the interface,

such as Bimpl.

A
- b : B
+ A() {}
+ IB getB() {...}
+ void setB(IB b) {...}
+ void foo() {
        ...
        b.bar();
        ...
   }

«interface»
IB

+ void bar();

app : Application
+ void main(...) {
        A a = new A();
        IB b = new Bimpl();
        a.setB(b);
   }

Bimpl
+ void bar() { ... }

Figure 2.2 : Low and explicit coupling between two classes
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«Component»
b : Component

+ void bar() {
        ...
   }

«interface»
IB

+ void bar();
«Component»
a : Component

+ void foo() {
        ...
        call extern bar();
        ...
   }

Figure 2.3 : Explicit and low coupling between components

Although it is possible to decouple the objects with an object-oriented language, it requires the

use of programming conventions that are not always respected by the programmers. Figure 2.3 shows

a schematic example of the component approach which enforces components decoupling and spec-

ification of explicit communication interfaces. In this example, the component a calls (call) a bar
service it does not define (extern). This call will be handled by another component, here b, con-

nected to the component a later.

Components overcome this problem and provide more easily reusable and more coarse-grained

units of code that provide one or more well-defined interfaces. More importantly they provide mech-

anisms to assemble and configure systems without requiring hard-core programming skills. Thus, in

CBSE, we hope to achieve a massive code reuse and even markets of components [Szyperski, 2002]

like componentsource.com. However further work is needed for simplifying reuse of components.

2.1.2 Distribution

In modern software it is no longer true that an application runs entirely in one address space. Soft-

ware tend to be distributed. A distributed system is a mechanism in software for normalizing the

method-call semantics between application entities residing either in the same address space (ap-

plication) or remote address space (same host, or remote host on a network.) The need to decouple

the business part and the technical part of an application (such as remote communications, security,

etc..) has led to the development of middleware.

Middleware (cf. Figure 2.4) is an intermediate layer between the operating system and the appli-

cation layer that aims to provide a uniform and transparent view to communicating applications by

hiding distribution, heterogeneity of systems, hardware and communication protocols.

Using a middleware ensures independence between the business application code and the tech-

nical code that is facing many problems such as low-level concurrency; marshalling (serializing and

deserializing the arguments and return values of method calls) or distributed garbage collection. Mid-

dleware usually provides a common set of high-level services (also called not functional services) as

concurrency control, transactions and security. The middleware objects or ORB (Object Request Bro-
ker) allow a remote object method invocation. Several middleware exist, certainly, the well known is

the CORBA standard (Common Object Request Broker Architecture) of the OMG (Object Management
Group).

In the past decade, architectures of distributed objects have evolved into distributed component

componentsource.com
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Figure 2.4 : Principle of middleware

architectures. For example, the OMG has developed CORBA Component Model [OMG, 2012] (CCM)

which builds a component model on top of CORBA objects. This movement towards components

was particularly motivated by the problems of coupling discussed in Section 2.1.1 (reuse), but also

by the difficulty to separate the business and technical or non-functional concerns using an object-

oriented approach. With components, the code for using non-functional services is not mixed with

the business logic code.

The communication between the business layer and technical layer is controlled by a third entity

in the middleware platform. This third entity calls the business code when necessary. This princi-

ple of outsourcing, sometimes called inversion of control, is similar to the operation of frameworks
where the code written by a programmer is called by framework code . An example of such a third

party entity is an EJB container which supports the execution of an EJB component, as detailed in

Section 2.2.2.

Although the ideas of CBSE have already taken shape in a number of component systems –

both industrial and academic. The industrial systems (represented mainly by EJB [Oracle, 2012] and

CCM [OMG, 2012]) are oriented on providing a stable and mature run-time, even at the cost of sac-

rificing the option of building component hierarchies and other advanced features (such as multiple

communication styles, behavior description, etc.) [Bures et al., 2006]

Moreover, middleware platforms are built in standard programming object-oriented languages

forcing the users of these platforms to develop their components by use of the same languages. Once

again, the issues raising when a non component-oriented language is used for the design and imple-

mentation of a component-based system (cf. 1.2) limit comprehensibility of such software making it

harder to maintain and evolve.
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2.1.3 Explicitness

Knowledge sharing and understandability are key factors for the development of large-scale software

projects. Making thoughts and ideas “visible”, i.e. explicit, is the way to support these key factors.

The value of making things explicit is that one can “see” what others are thinking and what are the

original design intentions.

Where design counts is often not in how the software runs but in how easy it is to change. This

drive towards changeability is why it is so important for a design to clearly show what the software

does and how it does it. After all, it is hard to change something when you cannot see what it does. An

interesting corollary of this is that people often use specific designs because they are easy to change,

but when they make the program difficult to understand, the effect is the reverse of what was in-

tended.

While the size of applications constantly grows, it is becoming difficult to understand, maintain,

and test programs written in standard programming languages. Several code visualization tech-

niques [Langelier et al., 2005 ; Ducasse et al., 2006 ; Wettel et Lanza, 2007] have been proposed to

ease understanding and evolution of programs’ architectures. It is becoming evident that although it

is possible to capture an architecture in an object-oriented language, the problem is that the capture

is implicit, making it hard to reveal original design intentions later. In fact, object-oriented languages

and the current trend of modeling software architectures using UML is criticized as being inadequate

for the development of large-scale applications [Garlan et Kompanek, 2000].

The component-based approach with its ability to express software architectures [Shaw et al.,
1995] in terms of interconnected components, seems to offer a vision suitable for large-scale pro-

gramming. The high-level languages dedicated to the architecture description attempt to explicitly

describe the structure and behavior of software are the starting point for understanding software’s

architecture as a whole and thus offer high-level techniques adapted to large-scale architectures such

as the model for evolution problem in software architecture SAEV [Oussalah et al., 2006] or a mech-

anism for automatic replacement of a component while preserving the qualities of an original archi-

tecture [Desnos et al., 2007]. In addition to specifying the structure and topology of the system, the

architecture shows the intended correspondence between the system requirements and elements of

the constructed system. It can additionally address system-level properties such as capacity, through-

put, consistency, and component compatibility. Architectural models clarify structural and semantic

differences among components and interactions. Thus components can be re-used in different con-

texts [Shaw et al., 1995] or be composed to define larger systems.

2.2 Presentation of the main Component-based approaches

In Section 2.2.1 we try to identify and present the main families of approaches and the reasons that

drive us when choosing the representatives of each family.

2.2.1 Families of the component-based approaches

There are many ways how to classify component-based approaches, for example [Crnkovic et al.,
2011] focus on component-frameworks and [Medvidovic et Taylor, 2000] on ADLs. Sometimes an



22 Chap 2. Component Models and their Implementations

Domain A
U

T
O

S
T

A
R

B
IP

B
lu

e
A

rX

C
C

M

C
O

M
D

E
S

II

C
o

m
p

o
N

E
T

S

E
JB

F
ra

ct
a

l

K
O

A
L

A

K
o

b
rA

IE
C

6
1

1
3

1

IE
C

6
1

4
9

9

Ja
va

B
e

a
n

s

M
S

C
O

M

O
p

e
n

C
O

M

O
S

G
i

P
a

ll
a

d
io

P
E

C
O

S

P
in

P
ro

C
o

m

R
o

b
o

co
p

R
U

B
U

S

S
a

ve
C

C
M

S
O

F
A

2
.0

General purpose X X X X X X X X X X X

Specialized X X X X X X X X X X X X X

Table 2.1 : General purpose and domain specific component models [Crnkovic et al., 2011]

approach may belong to more than one category. For example, Fractal [Bruneton et al., 2006] com-

ponent model is made of the framework for component-oriented development and the Fractal ADL

which ease use of the framework. In fact, both could be used separately. One can use the framework

without the ADL and another one can use the ADL to describe an architecture and then use a model-

specific generator for another component-model. Thus, Fractal is a component-framework and, in

the same time, an ADL.

In the previous chapter, we have sketched a way how to divide them into three global families

according to the strategy they use to construct a final solution:

Frameworks family provides development frameworks for building component-based distributed

applications based on mainstream object-oriented programming languages. Functional as-

pects of the application are captured by components, and non-functional aspects by run-time

containers.

Generative family uses high-level abstraction design models as conceptual tools for managing the

complexity of large software systems. Once the architecture design stage of development cycle

is finished, the generative family takes the description of a designed architecture and generates

code skeletons using a generator specific to an implementation language.

Component-oriented languages family operates in languages design level and states that the more

natural way to develop component-based software systems is to use programming languages

that allow doing so in the first place.

The classification made in [Crnkovic et al., 2011] divide approaches into general purpose and spe-

cialized models. Table 2.1 shows that the distribution between general-purpose component models

and specialized component models. Following our classification, all the component models belong

to the frameworks family as they use mainstream object-oriented programming languages C++, Java
and C# to build component-based software. One of the goals of this thesis is to provide a general

purpose language for developing component-based systems. Thus, we will consider the general pur-

pose models identified in [Crnkovic et al., 2011] as representatives of the framework strategy fam-

ily. In addition, we chose to study: OpenCORBA for its reflection maturity; Kevoree [Daubert et al.,
2012], DynamicTAO [Kon et al., 2000], MetaORB [Costa et al., 2006] as representatives of the Mod-

els@runtime [Blair et al., 2009] stream and FraSCAti as an implementation of the SCA [OASIS, 2013]

approach. Finally, we also study OSGi [OSGi Alliance, 2012].

The classification of Architecture Description Languages (ADLs) made in [Medvidovic et Taylor,

2000] says that these languages describe the high-level organization of a software system as a collec-

tion of components, connections between the components, and constraints on how the components
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interact. ADLs belong to the generative family because it takes the formal description of the designed

architectures and generate code skeletons using a generator specific to an implementation language.

This implementation-language independence property is an advantage of the approach as the same

abstraction layer can generate code for different machines, taking into account the heterogeneity of

platforms. We take the ALDs described in [Medvidovic et Taylor, 2000] as representatives of the gen-
erative strategy family. In addition, we study UML components package [Cheesman et Daniels, 2000]

which provides means for describing component-based architectures and can be used as a model for

generating code.

As representatives of the component-oriented language family we choose ACOEL [Sreedhar, 2002],

ArchJava [Aldrich et al., 2002], ComponentJ [Seco et al., 2008], CLIC [Bouraqadi et Fabresse, 2009] and

Bichon [Xu et Ren, 2010] because they all address the implementation stage of a component-based

development in a language-level by allowing developers to express full descriptions of executable

components within a programming language.

Each following section is devoted to the study of the previous approaches driven according to the

following plan:

1. Study plan

a) Basic Overview

b) External contract description & Architecture design description

c) Inheritance

i. Structural inheritance - the ability to reuse the structure definition, i.e. external &

internal contracts and architectures

ii. Behavioral inheritance - the ability to reuse the behavior definition of components

d) Reflection

i. Introspection - the ability of a system to observe, and thus reason, about itself com-

prising the operations defined at the meta-level which examines the data structures

of the model

ii. Intercession - the ability of a model to modify its execution state comprising the op-

erations of a meta-level which change the data structures of the model

iii. Reification - the method used to expose the internal representation of a system in

terms of entities that can be manipulated at run-time

2.2.2 Frameworks family

The frameworks family uses mainstream object-oriented programming languages, such as C++, Java
or C#, to build component-based software. By following the programming style guidelines of each

particular framework a developer is able to design and implement components or create applica-

tions by assembling off-the-shelf components. To ease the application of the programming style

guidelines, the models are sometimes accompanied by a model-specific ADL used for generating pre-

arranged source code. The members of this family employ a similar global system design providing a

separation between the functional aspects of the application, which are captured by the components,
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and the non-functional, technical concerns, which are captured by the container. Run-time contain-

ers provide capabilities to dynamically lookup, load and release components making it possible to

develop adaptable distributed component-based systems.

SOFA 2

SOFA 2 [Hnětynka et Plá⇤il, 2006 ; Bures et al., 2006] is a component system employing hierarchi-

cally composed components. It is a direct successor of the SOFA component model [Plásil et al.,
1998], which provides the following features: ADL-based design, behavior specification using behav-

ior protocols, automatically generated connectors supporting seamless and transparent distribution

of applications, and distributed run-time environment with dynamic update of components.

From its predecessor, SOFA 2 has inherited the core component model, which is however im-

proved and enhanced in the following way: (1) the component model is defined by means of its

meta-model; (2) it allows the dynamic reconfiguration of component architecture and accessing com-

ponents under the SOA concepts; (3) via connectors, it supports not only plain method invocation,

but in fact any communication style; (4) it introduces aspects to components and uses them to clearly

separate the control (non-functional) part of components and to make it extensible.

Figure 2.5 : Meta-model of SOFA2

SOFA 2 and all its features are defined using a meta-model (see Figure 2.5). The meta-model serves

directly for the component specification, which is stored in the repository [Hnetynka et Pise, 2004]

and used throughout the application life-cycle. Being a hierarchical model, it allows components to

be hierarchically nested. Components can be either primitive or composite. A composite component

is built of other components, while a primitive one contains no sub-components. In SOFA 2, a com-

ponent is an encapsulated entity interacting with other components only via designated provided

and required interfaces. A component can play the role of both a black-box and gray-box entity. The

black-box role is represented by a component frame, which specifies the set of interfaces, both pro-

vided and required, and determines the component’s type. As a gray-box, a component is specified
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as an architecture that implements a particular component frame (or a number of frames). An ar-

chitecture of a composite component specifies the sub-components and the bindings between their

interfaces. The bindings are performed using connectors that are dynamically generated at deploy-

ment time. An architecture of a primitive component stays empty and directly implements the corre-

sponding frame. SOFA defines the CDL (Component Definition Language) language, based on OMG

IDL to describe interfaces, frames and architectures of components. The language has the ability to

attach behavioral descriptions in the form of protocols [Plásil et al., 1999].

SOFA CDL provides a single inheritance mechanism for interface specification reuse based on the

sub-typing for interfaces. Due to the dichotomy between frames and architectures, SOFA proposes

two multiple inheritance mechanisms for specification reuse, one for frames and one for architec-

tures. SOFA proposes to solve the name collisions occurring during the multiple inheritance using

explicit renaming. Frames inheritance mechanism preserves a form of sub-type relation in the inher-

itance hierarchy. Architectures inheritance mechanism has a non-combinational form. There is not

a notion of behavioral inheritance.

SOFA supports introspection features in form of so-called control interfaces (a.k.a. controllers).

Controllers are not usually accessed by the application logic, but rather by the run-time environ-

ment. The control interfaces together with their implementation form a control part of components

in SOFA 2 which is modular and extensible. A notion of intercession features is captured by the DCUP

extension of SOFA [Plásil et al., 1998]. It proposes an extension of the SOFA model components to

support the update of components in a safe way for their execution. DCPU architecture introduces a

new notion where components are split into two parts, permanent and replaceable parts, as well as

into a functional and a control part. Updates only update the replaceable part of the component, re-

placing it with a newer version. The updating process is controlled by a component manager, which

exists in the permanent part of the component, thus making the component itself responsible for

how the updating process is performed. Although SOFA 2 is defined by the meta-model, the entities

of the meta-model are not reified, hence not accessible in run-time. Reflection can only be used if it

is provided by a target (object-oriented) implementation language.

Fractal

Fractal component model [Bruneton et al., 2006 ; Bruneton et al., 2004] is designed to be used in vari-

ety different software branches, e.g. middleware, operating systems, information systems and graph-

ical user interface libraries. The main Fractal’s design principles are: composite components, shared

components to model resources, introspection capabilities to monitor a running system, configura-

tion and dynamic reconfiguration capabilities. The modular and extensible organization allows the

use of Fractal in different situations from highly optimized and hardly configurable to less optimized

and heavily configurable and dynamic applications.

Fractal components consist of two parts: a controller and a content. The controller is a set of in-

terfaces designated to control behavior, functional and non-functional aspects of a component like

introspection, configuration, security and transactions. Controller interfaces may be internal which

are accessible from component’s sub-components or external which are accessible from outside of

the component. Further, controller interfaces are divided in functional interfaces and control inter-

faces. The functional interfaces are provided or required interfaces, representing functional aspects of
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a component. Functional interfaces are equivalent to remote interfaces from EJB. Control interfaces

that are equivalent to EJB’s home interfaces are provided interfaces that correspond to non-functional

aspect of components such as introspection or configuration. Fractal defines various predefined con-

trollers: attribute controller, binding controller, content controller and life-cycle controller.

The content represents internals of a component. Fractal defines three kinds of components de-

pending on its internals and exposed control interfaces:

• a composite component is a component that exposes a content controller in order to add or

remove its sub-components.

• a primitive component is a component that does not expose its content controller, but has at

least one control interface.

• a base component is a component that does not expose any control interface.

Fractal allows a component to be owned by various distinct components. Such components are

called shared components. They are usually used to represent shared resources.

Creating software using Fractal takes three steps: first, write the implementation code, second,

add code annotation with Fractal meta-information, and last, write the linking code using Fractal

Architecture Definition Language (ADL) [Leclercq et al., 2007]. The code annotations provide the

information about classes that implement components and fields that represent required services,

among others. Fractal ADL was created in order to describe the architecture of Fractal components.

It is an open, extensible XML based language. The language hides some implementation details, like

implementation of attribute, binding or content controllers. Fractal ADL allow users to describe prim-

itive and composite components. Primitive components specify only provisions and requirements in

form of provided and required interfaces and a content which is a name of an implementation class.

Composite components contain nested sub-components that may be interconnected with bindings.

A definition of components and also sub-components in Fractal ADL may use multiple inheri-

tance mechanism to achieve structural definition reuse. Inheritance is simply an extension of the

mechanism that allows adding and overriding component’s interfaces, sub-components, bindings,

attributes and implementation class definitions. Conflicts resulting from multiple inheritance are

solved by linearizing the inheritance graph. Behavior inheritance is not present at the level of ADL,

however it is possible to sub-class and override an implementation class in the level of implementa-

tion language.

The Fractal component model consists of a framework for the instantiation of components and a

set of specifications that a component should or should not implement depending on what control

capabilities a component developer wants to offer to users of the component. The control interfaces

are special provided interfaces with predefined names organized in levels of control with gradually

increasing reflective and introspection capabilities of components:

• lowest level components have no control capabilities, only their methods may be invoked.

These components serve only as a component embedding of existing objects.
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• the next level provides introspection capabilities of components through a standard interface.

This interface allows a user of a component to discover all external interfaces of the component.

• the last level, also called configuration level provides control interfaces to introspect and modify

the content of a component that consists of sub-components interconnected with bindings.

The model also allows to perform dynamic reconfigurations of Fractal structures. This is achieved

by means of a series of calls to the framework or by using its underlying scripting language FScript.

There are currently two reference implementations: Julia 2 (Java) and Cecilia 3 (C/C++) and other

experimental implementations as FractTalk 4 (Smalltalk) or FractNet 5 (.Net).

Kevoree

Kevoree6 [Daubert et al., 2012] is an open-source dynamic component model, which relies on models

at run-time [Blair et al., 2009] to properly support the dynamic adaptation of distributed systems.

Models@runtime basically pushes the idea of reflection one step further by considering the re-

flection layer as a real model that can be uncoupled from the running architecture (e.g. for reason-

ing, validation, and simulation purposes) and later automatically resynchronized with its running

instance. In particular, Kevoree provides a proper support for distributed models@runtime.

In Kevoree, components encapsulate business functionalities. Each component provides a set

of functionalities exposed to others. A component also requires functionalities to achieve their own

ones. All these functionalities are identified by a port (required or provided) on the component. Com-

ponents communicate only through their ports.

Components are described by component types which are realized as Java classes. This make it

possible to use the standard Java inheritance to achieve structural and behavioral reuse. This also

means that Kevoree components are sophisticated Java objects.

Kevoree introduces the Node concept to model the infrastructure topology and the Group concept

to model semantics of inter node communication during synchronization of the reflection model

among nodes. Kevoree includes a Channel concept to allow multiple communication semantics be-

tween remote components deployed on heterogeneous nodes. All Kevoree concepts (Component,

Channel, Node, Group) obey the object type design pattern to separate deployment artifacts from

running artifacts.

Kevoree supports multiple kinds of execution node technology (e.g. Java, Android, MiniCloud,

FreeBSD, Arduino, . . . ).

Kevoree aims at providing advanced adaptation capabilities to different types of nodes:

Level 1 : Parametric adaptation. Dynamic update of parameter values, e.g. change of sampling rate

in a component that wraps a physical sensor (adaptation of instance properties).

2http://fractal.objectweb.org/julia/index.html
3http://fractal.ow2.org/cecilia-site/current/
4http://csl.ensm-douai.fr/FracTalk/Smalltalk
5http://archive.is/rosfp
6http://www.kevoree.org

http://fractal.objectweb.org/julia/index.html
http://fractal.ow2.org/cecilia-site/current/
http://csl.ensm-douai.fr/FracTalk/Smalltalk
http://archive.is/rosfp
http://www.kevoree.org
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Level 2 : Architectural adaptation. Dynamic addition or removal of bindings or components, e.g.
replication of software components and channels on different nodes to perform load balancing

(adaptation of instances graph).

Level 3 : Dynamic provisioning of types. Hot deployment of component types that were not foreseen

before the initial deployment of the system. This allows for system evolution by enabling para-

metric and architectural reconfigurations, including management of instances for types that

are added and managed dynamically (adaptation of types).

Level 4 : Adaptation for remote management. Nodes supporting level 4 adaptation participate in

a remote management layer, which supervises less powerful nodes. This layer monitors re-

mote nodes by requesting their current Kevoree model; the layer triggers dynamic adaptation

of nodes by sending precomputed reconfiguration scripts to them. This remote adaptation pro-

cess supports seamless management of less powerful nodes by a more powerful one, which has

enough resources to build and evaluate new and appropriate configurations.

The adaptation engine relies on a model comparison between two Kevoree models to compute

a script for a safe system reconfiguration; execution of this script brings the system from its current

configuration to the new selected configuration [Morin et al., 2009].

Model comparison yields a delta-model defining changes (using CRUD operations) that should be

applied on the source model to obtain the target model. planification algorithms use this delta-model

as input in order to defined an efficient schedule of the adaptation steps. The delta-model is finally

compiled into a Kevoree script. The Kevoree Script language (KevScript for short) is a core language

for describing reconfiguration. KevScript is comparable to FScript for Fractal Component Model.

Execution of a KevScript directly adapts a Kevoree system, without the need for a full Kevoree model

definition. Such adaptation scripts are written by designers, or they can be generated by automated

processes (e.g. within a control loop managing the Kevoree system).

COM Component Object Model

COM (Component Object Model) [Microsoft, 1995 ; Rogerson, 1997] is a component model developed

by Microsoft. COM component model is designated to run components within different processes on

the same computer. A distributed version DCOM (Distributed COM) extends functionality of COM to

run components over a network. The last COM version COM+ extends COM with Microsoft Transac-

tion Server - MTS to use transactions, Message Queue Server - MSMQ for asynchronous invocations

and other services for improving performance and security. COM specification is not restricted on

any platform, however the mainly supported COM platform is Microsoft Windows.

COM components are not restricted on one programming language, they may be written in any

programming language whose compiler is able to compile into a binary with an internal structure

including virtual tables and function calling conventions as specified in COM specification.

COM uses Object Remote Procedure Call - ORPC which is built on top of DCE/RPC [Group, 1997].

To define components a MIDL (Microsoft IDL)7 may be used. MIDL is not directly used by COM, it is

used to pre-generate source code with MIDL compiler.

7MIDL is an extension of CORBA IDL
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COM component model allows to specify only provisions of components in form of provided in-

terfaces. COM provides capabilities for introspection of provisions of components, but requirements

must be obtained by programming from a source code. The interface discovery mechanism is imple-

mented through the notion of a special interface called IUnknown that must be implemented by every

COM component. The purpose of IUnknown is actually twofold: (i) it allows the dynamic querying

of a component (QueryInterface() operation) to find out if it supports a given interface (in which

case, a pointer to that interface is returned), and (ii) it implements reference counting in terms of

the number of clients using components’ interfaces. Reference counting is used to garbage collect

components when they no longer have any clients.

A COM interface specifies a set of method signatures and has the following characteristics:

• it has a unique identifier called IID (Interface IDentifier), a 128-bit number generated by a

pseudo-random algorithm to avoid conflict;

• it is immutable and any changes such as the addition, modification or removal of a method

signature, is impossible. A new functionality should be introduced by adding a new interface

instead of modifying existing interfaces; This constraint makes managing different versions of

the same interface as they must have different identities;

• it inherits directly or indirectly from the interface IUnknown;

• it is described in MIDL (Microsoft Interface Definition Language).

Figure 2.6 : Graphic of a COM object named CA has two interfaces IX and IY representation

COM objects are instances of classes that can be used only through their interfaces. Figure 2.6

shows a graphical representation of a COM object. COM specifies an interface of a COM object must

be a pointer (accessible by customers) to an area of the component called node interface.

COM supports two approaches in hierarchical composition:

• containment: an owning component reimplements part or all provided interfaces of sub-

components. Reimplementation of interfaces may pass calls to a sub-component, whose in-

terfaces are reimplemented.

• aggregation: when a client is obtaining an interface from a component in order to invoke com-

ponent’s services a sub-component’s interface may be returned and therefore a client works

directly with a sub-component.
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COM hierarchical composition is not explicitly captured by a kind of ADL, but at source code level.

It is actually only a design pattern how to create composed components.

In order to use a COM component, it must be registered in a windows registry database. A GUID

(Globally Unique Identifier), which is a 128 bit key is used to identify COM components within the

registry database. Windows registry database also contains a table to convert a class name to a GUID

identifier. COM components are shared within a system therefore any application can use any of

registered components. This has a drawback that a replacement of a COM component with a newer

version, may cause compatibility problems in other applications that also use the replaced COM com-

ponent.

COM model does not provide any means for structural or behavioral inheritance in the compo-

nent level of abstraction. However it is possible to reuse interface definition by the interface inheri-

tance of MIDL.

OpenCOM

OpenCOM [Clarke et al., 2001] is a lightweight and efficient component model based on Microsoft

COM model. It includes the binary level interoperability standard, Microsoft’s IDL, COMs globally

unique identifiers and the IUnknown interface. The higher level features of COM such as distribution,

persistence, transactions and security are not used. OpenCOM proposes an approach to the design

of configurable and open middleware platforms based on the concept of reflection. More specifically,

OpenCOM defines a reflective architecture for next generation middleware platforms, supplemented

by an open and extensible component framework.

The key concepts of OpenCOM are capsules, components, interfaces, receptacles and connec-

tions. Capsules are run-time containers and they host components. Each component implements

a set of custom receptacles and interfaces. A receptacle describes a unit of service requirement. An

interface expresses a unit of service provision, and a connection is the binding between an interface

and a receptacle of the same type.

The general structure of any OpenCOM component is to have a header file for each provided/re-

quired interface, and one source file for the implementation of a component.

The header file is the place in which a developer defines an interface as a C struct. An “interface”

is a struct containing method pointers. Typically developers define receptacles as a receptacle list

in a component source file, which is a struct containing a list of pointers to interfaces. A compo-

nent source file will therefore need to include the header files of any other component interfaces that

should be bound to component having receptacles.

The source file is the place to define the component’s constructor, destructor, and interface

method implementations. Inside a component’s constructor, we register the interfaces and recep-

tacles of the component with the OpenCOM kernel, and in the process point the interface method

pointers at our implementations of those methods.

Each OpenCOM component must inherit the implementation (through containment [Rogerson,

1997]) of three standard sub-components (called MetaInterception, MetaArchitecture and MetaInter-
face). These implement the reflective facilities identified in [Blair et al., 1998] and (respectively) export
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Figure 2.7 : The Architecture of OpenCOM

the following meta-interfaces from the host component:

• IMetaInterception enables the programmer to associate (dissociate) interceptor components

with (from) some particular interface. Interceptors implement interfaces that contain inter-

ceptor methods; these are invoked before or after (or both before and after) every method in-

vocation on the specified interface. Multiple interceptors can be added/ removed at run-time

and reordered as desired.

• IMetaArchitecture enables the programmer to obtain the identifiers of all current connections

between the host components’ receptacles and external interfaces. These identifiers can then

be used to obtain information about the receptacle/interface/components involved in the con-

nection.

• IMetaInterface supports inspection of the types of all interfaces and receptacles declared by the

host component.
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Figure 2.7 visualizes the component model. It shows an OpenCOM enabled component (top) and

the OpenCOM run-time component (bottom). The components’ management and meta-interfaces

are shown on the left hand side of the OpenCOM enabled component. The three meta-interfaces are

linked to the embedded sub-components that implement OpenCOM’s reflective capability. Among

these interfaces, MetaArchitecture and MetaInterface are further linked to corresponding private in-

terfaces in the run-time. Also associated with the illustrated component are a component specific

interface (labeled “custom interface”) and two receptacles. Components can export any number of

component specific interfaces and receptacles. The OpenCOM runtime component is shown encap-

sulating the system graph and type libraries, and exporting the IOpenCOM interface.

Similarly to the COM model, OpenCOM does not provide any means for structural or behavioral

inheritance in the component level of abstraction.

CORBA Component Model (CCM)

CORBA (Common Object Request Broker Architecture) specified by the OMG is a widely used stan-

dard for middleware and distributed computing. A part of the CORBA specification called CORBA

Object Model (CCM) provides a support for remote procedure calls independently of a communica-

tion protocol, programming language, operating system and hardware platform. OMG also provides

a set of CORBA Object Services that includes naming service, trading service, transactions, security,
persistence and others.

Corba uses Interface Definition Language - IDL to describe procedures and functions that may be

remotely invoked. Mappings of IDL to various programming languages like C++ or Java are defined.

This implies possibility to use CORBA with various programming languages.

The version 3.0 of Corba specification introduces CORBA Component Model - CORBA CM, based

on CORBA Object Model, which covers a set of software component features. It extends Corba Object

Services to provide component specific services for managing, configuring, deploying and intercon-

necting components.

Component IDL (CIDL), which is an extension of CORBA IDL for defining components. CIDL

defines two kinds of components: basic components and extended components. Basic components

serve to simply encapsulate existing CORBA objects within a component. They cannot inherit from

other components and cannot specify provisions and requirements. Only attributes are allowed to be

specified for component configuration purpose.

Extended components provide a rich set of component functionality. Extended components pro-

vide two kinds of provisions and requirements for synchronous and asynchronous invocations. Pro-

visions for synchronous invocations are called facets and requirements receptacles. Asynchronous

provisions and requirements are called event sources and event sinks. CORBA CM also provides a pos-

sibility to define attributes of extended components which are named values, primarily intended for

a configuration purpose.

CORBA objects that want to provide direct access to their meta-data have to implement reflec-
tion provider interfaces. A client can determine whether a given object supports CORBA reflection

by attempting to narrow the object’s reference to the desired reflection provider interface. The reflec-
tion provider interface supports operations for meta-data retrieval in two formats: XML and an any (a
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type) containing an instance of an IFR interface description structure.

CCM uses the CORBA object model as its underlying object inter-operability architecture and

thus is not bound to a particular programming language. All CCM components support introspection

interfaces, which can be used to discover the capabilities of components. The CCM Navigation inter-
face (see Listing 2.1) defines introspection methods (get_all_facets() and get_named_facets(in
NameList names)) for discovering facets (provided ports). The CCM Receptacles interface (see
Listing 2.2) introspection methods (get_all_receptacles() and get_named_receptacles(in
NameList names)) for discovering receptacles (required ports).

interface Navigation {
Object provide_facet (in FeatureName name) raises (InvalidName);
FacetDescriptions get_all_facets();
FacetDescriptions get_named_facets (in NameList names) raises (InvalidName);
boolean same_component (in Object object_ref);

};

LISTING 2.1 : CCM Navigation interface

interface Receptacles {
Cookie connect ( in FeatureName name, in Object connection )
raises ( InvalidName, InvalidConnection,

AlreadyConnected, ExceededConnectionLimit);
void disconnect (in FeatureName name, in Cookie ck)
raises ( InvalidName, InvalidConnection,

CookieRequired, NoConnection);
ConnectionDescriptions get_connections (in FeatureName name)
raises (InvalidName);

ReceptacleDescriptions get_all_receptacles ();
ReceptacleDescriptions get_named_receptacles (in NameList names)
raises(InvalidName);

};

LISTING 2.2 : CCM Receptacles interface

CORBA CM is a flat model though it does not support hierarchical composition of compo-

nents. Hierarchical composition may be substituted by exposing requirements, that represent sub-

component’s interfaces, from a component and connecting them to a component that is supposed to

be a sub-component.

Structural and behavioral inheritance is not present in the component level of abstraction. In the

traditional CORBA object model, interfaces can be extended only via inheritance. To support new

interfaces, therefore, application developers must: (1) use CORBA’s Interface Definition Language

(IDL) to define a new interface that inherits from all the required interfaces; (2) implement the new

interface; and (3) deploy the new implementation across all their servers. Because overloading is not

supported in CORBA multiple inheritance has limited applicability. Moreover, applications may need

to expose the same IDL interface multiple times to allow developers to either provide multiple imple-

mentations or multiple instances of the service through a single access point. Unfortunately, multiple
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inheritance cannot expose the same interface more than once and, alone, it cannot determine which

interface should be exported to clients [Henning et Vinoski, 1999].

CORBA Component Implementation Framework (CIF) is a framework for constructing compo-

nent implementations. CIF uses CIDL source files to generate skeletons that contain implementa-

tions of various mandatory behaviors of components. Mapping to a programming language is per-

formed in two steps: mapping from CIDL to IDL and then mapping from IDL to a chosen program-

ming language. Implemented and compiled component is packed along with a generated component

descriptor file and default properties file into a single Zip file and deployed on a server.

There are two possible ways how components may be instantiated and interconnected. The first

one is statically through an assembly descriptor which is an XML file providing necessary information

about instantiating and interconnecting components. The second way is dynamically either from a

source code using Object Request Broker - ORB services or using a CORBA scripting tool. For this pur-

pose CCM provides a variety of introspection services to determine all provisions and requirements

of a component.

OpenCORBA

OpenCORBA [Ledoux, 1999] is a reflective implementation of CORBA in NeoClasstalk [Rivard, 1996],

which in turn is an extension of Smalltalk with a metaobject protocol that allows the dynamic re-

placement of the class of an object and, importantly, the meta-class of a class. The reflective features

of OpenCORBA are thus based on the idea of modifying the behaviour of a CORBA service by replac-

ing the meta-class of the class defining that service. Two aspects of CORBA are reified and subject to

this mechanism.

First, it allows the dynamic adaptation of the behavior of remote invocations by applying the

above idea to the classes of proxies (stubs) and server templates (skeletons). By default, these classes

are generated (according to the standard IDL to Smalltalk mapping) as instances of the meta-classes

ProxyRemote and TypeChecking, respectively, which implement the standard CORBA behavior. Re-

placing these meta-classes with custom ones therefore allows remote invocations with different non-

functional properties. For instance, it is possible to implement a replication strategy at client side, or

to introduce an optimized form of type checking of server invocations.

The other aspect that can be subject to meta-class change is the creation of meta-information el-

ements in the Interface Repository, allowing the adaptation of the strategy for validating the integrity

of such elements.

The OpenCORBA approach allows for arbitrary customisations based on behavioural reflection.

The facilities provided are an equivalent of request interceptors in CORBA, regarding the customisa-

tion of request behavior.

OpenCORBA, however, provides dynamic customization, whereas CORBA interceptors are static.

In addition, such customization can be made on a per-interface type basis, whereas CORBA intercep-

tors apply to all requests on an ORB instance.

In general, the OpenCORBA approach is limited to the aspects described above (although the

overall approach could apply more generically), thus not allowing, for example, the internal ORB
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mechanisms to be customized or adapted.

Another limitation derives from the use of the meta-class approach, meaning that the scope of

adaptation is a class, thus affecting all of its instances. For instance, as stub and skeleton classes are

generated for each particular interface type, all the running instances of an interface type are affected

by a meta-class change (as all of them share the same proxy and skeleton classes).

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-

ponent level of abstraction.

Meta-ORB

[Costa et al., 2006] proposes the design-time use of models to generate middleware configurations

and run-time use of the same models to represent middleware components which are causally con-

nected with their models. The models are then maintained by the reflective meta-objects for the pur-

poses of dynamic adaptation. The MetaORB meta-model is an extension of the CCM meta-model,

in a way that it allows backward compatibility with the standard. MetaORB provides the meta-

information management with a principled reflective meta-level. This has the benefit of unifying

the use of meta-information in the system (e.g. preventing that different meta-object implementa-

tions use different meta-level representations), as well as providing a basis to closely integrate the

configuration and adaptation features of the platform.

Meta-information describes the structure and semantics of entities in a computational system.

This description is used for static configuration of the middleware (by instantiating its components

at load time) and for its dynamic adaptation (via run-time component-based reconfiguration).

In the MetaORB architecture, meta-information is specified in a model, according to an explicit

meta-model. This explicit meta-model represents the platform’s type system and is maintained in

a repository that can be used for the definition, storage and retrieval of models that represent spe-

cialized configurations of the middleware and its applications. Once the definition of an entity (a

component and its interfaces, for instance) is obtained from the type repository, it may be used to

build a run-time model of the entity, allowing its dynamic instantiation by specialized factories and,

if necessary, the construction of its reflective self-representation, used for dynamic introspection and

reconfiguration.

MetaORB reflection is based on per-object meta-objects, enabling to isolate the effects of reflec-

tion. The MetaORB meta-model reifies the first-class constructs: interfaces (access points to the ser-

vices provided by a component), components (represent the units of functionality) and binding ob-

jects (equivalent to distributed components, whose internal components can be deployed across the

network). The corresponding meta-model elements (meta-types) represent both the type and tem-

plate aspects of such constructs, meaning that the meta-model provides a basis for the functions of

type and configuration management. In short, base-level objects (components) are represented as

multiple meta-model elements, as it is shown in Figure 2.8

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-

ponent level of abstraction.
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Figure 2.8 : Reifying a base-level object according to multiple meta-space.

DynamicTAO

DynamicTAO [Kon et al., 2000] is a CORBA compliant reflective ORB, which makes explicit the ar-

chitectural structure of a system in a causally connected way. Component configurators keep the

consistency of dependencies as new components are added or removed from the system. Reflection

capabilities are limited to coarse-grained components, without possibility to control more detailed

structures of the model.

DynamicTAO is based on the ability to dynamically reconfigure the internal strategies of the ORB,

by plugging and unplugging strategy implementations on existing components. It defines special-

ized component configurator classes, in order to provide the dynamic management of different kinds

of entities, such as particular ORB instances or ORB domains. Each of these configurators defines a

number of hooks for the installation of strategies, depending on the kind of the component it config-

ures. The interfaces of these configurators constitute the DynamicTAO Meta Object Protocol (MOP),

with facilities for loading and installing new strategies, and for inspecting the state and structure of

the reified components.

Customization and dynamic adaptation of ORB components in DynamicTAO is based on strate-

gies with emphasis on environments with very limited resources, such as handheld computers. The

architecture is based on a configurable ORB skeleton, which defines abstract components that repre-

sent customization slots for the several ORB services. It also allows the flexible selection of concrete

components for each abstract component.

Similarly to CCM, the structural and behavioral inheritance mechanism is not present in the com-

ponent level of abstraction.
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JavaBeans

The Javabean component model8 was developed by Sun Microsystems9 in 1996 around the Java pro-

gramming language. A Javabean is "a reusable software component that can be manipulated in a
graphical development environment" [Hamilton, 1997]. It should be noted that all Javabeans are not

necessarily graphical components (called widgets) such as buttons, menu bars, etc.. Even though this

model is particularly well suited for building graphical user interfaces, its usage can be much wider.

A Javabean is an instance of a Java class that has attributes, methods, properties and can emit

and receive events (see Figure 2.9) . Attributes and methods are standard concepts in Java, unlike

properties that are “units” of configuration that affect the appearance or behavior of a Javabean. A

property has a name, a type and a value that is read and/or written via Javabean methods which

conform to the naming conventions of Java. Events are Java objects that are exchanged when the

components are connected. There are a multitude of predefined events and it is possible to define

new ones. In most, events are usually related to changes of properties values.
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Figure 2.9 : Structure of a Javabean component

Javabeans connection is based on notifications and event listeners. Each Javabean listen to a set

of events. It can react to these events. It can also notifies its listeners with events that it produces. In

summary, two independently developed Javabeans can be connected (without changing their code)

if the former is able to listen and handle events that the latter emits. Connections are defined within

an application code by registering a bean as an event listener of another bean.

Javabeans use the Java inheritance mechanism to reuse structure and behavior definition of com-

ponents.

A Javabean also has a standard introspection mechanism accessible through its interface

BeanInfo which offers information about the bean (its properties, the types of emitted or handled

events and its methods). Development environments offered for Javabeans, as the Bean Development
Kit (BDK) or Netbeans, use this mechanism to provide a graphical representation of Javabeans.

A bean shelf (library) comes in the form of an archive (jar) containing the bean implementation

(compiled Java files) and resource files (configuration files, images, etc..). This archive can then be

8The meaning of the word bean, in the case of Javabean, is “grain”. So a Javabean is a coffee bean.
9On January 27, 2010, Sun was acquired by Oracle Corporation for $7.4 billion, based on an agreement signed on April

20, 2009. The following month, Sun Microsystems, Inc. was merged with Oracle USA, Inc. to become Oracle America, Inc.
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easily deployed. The execution of a Javabean is supported by the Java virtual machine that acts as a

container. This makes the Javabeans mobile since JVMs are available for most hardware platforms.

Enterprise Java Beans (EJBs)

EJB (Enterprise Java Beans) is a component model developed by Oracle with actual Version 3.0 [Ora-

cle, 2012 ; Monson-Haefel, 1999]. EJB is primarily used for a client-server model of distributed com-

puting, where clients connect to a server in order to access services provided by the server with an

emphasis to access relational database.

EJB specification introduces three kinds of components: Entity classes, Session beans and

Message-driven beans. In the case when beans export remote interfaces, communication between

client and beans and also between beans is performed using RMI (Remote Method Invocation) which

is a Java implementation of RPC (Remote Procedure Call).

The main purpose of entity classes is to access remotely over network data stored in a database

or another permanent storage. Each entity class represents an object view on one record from a

database, and is therefore identified by a primary key. Due to permanent storage background, en-

tity classes are statefull. Entity classes may be shared between multiple users, that may use a primary

keys to access a concrete class. Invocations are performed synchronously.

Session beans are not permanent and have no primary key since are not backed by a database or

other form of permanent storage. Session beans are not shareable in general. However persistency

and shareability may be achieved by explicit access to a database and use of beans handle. Invoca-

tions of session beans are synchronous. Session beans may be statefull or stateless. A statefull bean

maintains its state across various method calls. It is intended to be used by one remote client. On

the other side stateless bean does not hold its state and may be pooled and used by various remote

clients in an instant.

Message-driven beans do not represent any data directly, however they may access any shared

data in an underlying database. Message-driven beans are executed when a message from a client is

received on a server, so their invocation is asynchronous.

Beans expose two kinds of interfaces:

• A remote interface represents provisions of a bean. It provides an access point for a client to

access methods of a bean and must be implemented by a developer of a bean.

• A home interface provides methods for beans configuration during deployment, access to

beans’ metadata, and managing the lifecycle of its instances (creation, destruction, research

case of persistence, etc. .) A home interface is automatically provided by an EJB container.

Both kinds of EJB interfaces are provided interfaces. EJB does not support required interfaces

of beans. Only requirements in form of co-operating EJB may be specified within a Deployment de-

scriptor. A reference to related EJB must be however obtained programmatically within a code of a

bean and thus an application architecture is hidden.
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An application server embed an EJB container for running beans. Beans are deployed together

with a deployment descriptor which is a single XML file. An EJB server usually provides various ser-

vices similar to Corba Object Services: naming and trading service, transaction service and others.

The interface EJBHome supports introspection with a method to retrieve the EJBMetaData ob-

ject to obtain information about the enterprise Bean. The EJBMetaData object implements the

javax.ejb.EJBMetaData interface which defines methods for obtaining the class of the bean’s re-

mote interface, home interface, bean type (entity, statefull or stateless session), and the primary keys

type (entity only). A reference to the bean’s EJB home can also be obtained. Once a client applica-

tion has a reference to bean’s remote and home interface classes, normal Java reflection can be used

to introspect the methods available for the client. The EJBMetaData is designed to be used by IDEs

and other builder tools that may need generic methods for obtaining information about a bean at

run-time.

Similarly to Javabeans, EJBs use the Java inheritance mechanism to reuse structure and behavior

definition of components.

OSGi

OSGi [OSGi Alliance, 2012] was originally designed for embedded systems, but later has been used

as a general-purpose component model in different domains. The model tries to provide the stan-

dard implementation of dynamic modules for the Java platform. The OSGi specification therefore

defines a framework for managing the life-cycle of a set of components stored in a module concept

called Bundle. The two reference implementations of OSGi are Apache Felix10 and Eclipse Equinox11

projects.

Applications or components (coming in the form of bundles for deployment) can be (optionally

remotely) installed, started, stopped, updated, and uninstalled without requiring a reboot. Appli-

cation life cycle management (start, stop, install, etc.) is done via APIs that allow for remote down-

loading of management policies. The service registry allows bundles to detect the addition of new

services, or the removal of services, and adapt accordingly.

A Bundle means a specific JAR of Java platforms required for deployment. It can define ad-

ditional meta-information in the form of a manifest file and declare dependencies to other Bun-
dles or fragments of Bundles exploiting the notion of Java packages. The dependencies have the

folowing atributes: name, interface (Class of the service registered in the framework) and cardinal-

ity. The cardinality is expressed with the following syntax: cardinality ::= optionality ’..’
multiplicity, for example 0..n means optional and multiple.

In its primary form the OSGi framework therefore introduces modularity to Java. Modules (bun-

dles) are easy to deploy since the granularity of dependencies is either a JAR package or a Java class.

These are accompanied by a Java code to be executed (at start and stop). The code is defined in spe-

cific classes named Activator and representing the internal code of a component. The framework

also defines a concept of internal service whose registration is dynamic in a central registry of the

platform.

10http://felix.apache.org/
11http://www.eclipse.org/equinox/

http://felix.apache.org/
http://www.eclipse.org/equinox/
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In short we can say that components are less formally defined than services.

A service is any object that is registered in the OSGi Service Registry and can be looked up using

its interface name(s). The only prerequisite is that a service should implement some interface.

In contrast, a component tends to be an object whose life-cycle is managed, usually by a compo-

nent framework such as Blueprint12 or iPOJO13. A component may be started and stopped; this would

be considered an “active” component. A component that does not need to be started or stopped is

called “passive”. A component may publish itself as an OSGi service. A component may bind to or

consume OSGi services. For example a developer can say that his/her component “depends on” a

particular service, in which case the component will only be created and activated when that service

is available – and also it will be destroyed when the service becomes unavailable.

SCA standard and its implementation FraSCAti

The standard Service Component Architecture (SCA) [OASIS, 2013] proposed by OSOA (Open Service

Oriented Architecture) as the result of a desire to unify component-based and service-oriented archi-

tectures. Several companies such as IBM, Oracle or SAP have proposed a model to express both: the

notion of service and also the notion of software components and their assemblies to model a full ar-

chitecture. All interconnections between components thus follow the service paradigm which serves

to type components contracts. The best known implementations of the standard are Apache project

Tuscany14 or INRIA’s project FraSCAti [Seinturier et al., 2012].

The SCA model is defined around four main principles: programming language independence,

IDL (Interface Description Language) independence, communication protocols independence, SCA

non-functional properties independence. It advocates the principles of service composition and

reuse: a system can be composed of new services specifically tailored for the intended application,

as well as of components extracted from existing systems and/or applications. SCA provides support

for a wide spectrum of programming languages and frameworks (e.g. BPEL, PHP, Java) and diverse

communication mechanisms (e.g. Remote Procedure Call, Web services).

The model defines systems in terms of service components and composites. The former imple-

ment and use services; the latter describe the assembly of components from the point of view of its

function. This includes connections between components/services and the references the system of-

fers for its use. Other concepts have been proposed in SCA, like wires that connect services (provided

ports) to references (required ports), interfaces that provide a description of both services and refer-

ences, and, at last, binding, which introduces an access mechanism used by services and references.

A visual representation of these concepts can be seen in Figure 2.10

The use of SCA within programming languages such as Java is very similar to Fractal, and is per-

formed by introducing annotations into the source code for SCA elements. The standard is organized

around a set of four sets of specifications: assembly language, component implementations, bind-

ings, and policies.

12http://aries.apache.org/modules/blueprint.html
13http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
14http://tuscany.apache.org/

http://aries.apache.org/modules/blueprint.html
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
http://tuscany.apache.org/
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Figure 2.10 : Visual Representation of SCA Concepts
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FraSCAti is a model for the development of highly configurable SCA solutions. The main contri-

bution of FraSCAti is to address the above issues of configurability and manageability in a systematic

fashion, both at the business (application components) and at the platform (non-functional services,

communication protocols, etc.) levels. This is achieved through an extension of the SCA component

model with reflective capabilities, and the use of this component model to implement both business-

level service components conforming to the SCA specification and the FraSCAti platform itself.

Technically, FraSCAti is built on top of the Fractal component model [Bruneton et al., 2006]. In

fact, FraSCAti is an advanced example of using Fractal controllers. It provides the following six con-

trollers [Seinturier et al., 2012], each implementing a particular facet of the execution policy of an SCA

component:

Wiring Controller providing the ability, for each component, to query the list of existing wires

(lookupFc), to create new wires (bindFc), to remove wires (unbindFc), and to retrieve the list

of all existing wires (listFc). These operations can be performed at run-time.

Instance Controller which creates component instances according to one of the four SCA modes.

The getFcInstance method provided by this controller returns the component instance asso-

ciated with the currently running thread.

Property Controller enabling to attach a property to a component (putFcValue) and retrieving its

value (getFcValue).

Hierarchy Controller implementing the hierarchical design of SCA components, where a compo-

nent is either primitive or composite. Composite components contain sub-components that

are themselves either primitive or composite. The management of this hierarchy is performed

by the hierarchy controller, which provides methods for adding/querying/removing the sub-

components of a composite.

Lifecycle Controller dealing with multithreaded applications where the reconfiguration operations

cannot be performed in an uncontrolled way. For example, modifying a wire while there is a

client request under processing. The life-cycle controller ensures that reconfiguration opera-

tions are performed safely.

Intent Controller managing the non-functional services attached to an SCA component.

The resulting collaboration scheme between controllers is captured in a software architecture

which is illustrated in Figure 2.11.

Compared to the SCA assembly language that only allows the description of the initial configura-

tion of an application, FraSCAti makes this configuration accessible and modifiable while the applica-

tion is being executed. The following component elements can be changed at run-time: wires, prop-

erties, and hierarchies. By providing a run-time API, the platform enables the dynamic introspection

and modification of an SCA application. This feature is of particular importance for designing and

implementing agile SCA applications, such as context-aware applications.

FraSCAti takes over the reuse capabilities introduced by Fractal’s inheritance.
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Figure 2.11 : FraSCAti controllers, each implementing a particular facet of the execution policy of an

SCA component

2.2.3 Generative family

The generative family uses high-level abstraction design models as conceptual tools for managing the

complexity of large software systems. These models, usually specified in ADLs, describe the high-level

organization of a software system as a collection of components, connections between the compo-

nents, and constraints on how the components interact. A system’s architecture provides a model

of the system that suppresses implementation detail, allowing the architect to concentrate on the

analysis and decisions that are most crucial to structuring the system to satisfy its requirements. The

intent of these models is to communicate to an entire engineering team part of the global knowledge

needed to develop and evolve each component of the system. They also aid in the specification and

analysis of high-level designs. For example, an architectural model can be analyzed to prove that the

design invariants described by architectural constraints are satisfied.

Once the architecture design stage of development cycle is finished, the generative strategy takes

the formal description of a designed architecture and generates code skeletons using a generator

specific for an implementation language. This implementation-language independence property is

another advantage of the approach as the same abstraction layer can generate code for different ma-

chines, taking into account the heterogeneity of platforms.

Our study plan focuses on inheritance and reflection, however the static nature of the generative

family do not match with reflection very well [Medvidovic et Taylor, 2000]. Reflection or at least in-

trospection capabilities depend on code which is generated. Behavioral inheritance, i.e. the ability to

reuse the behavior definition of components, is also not supported since the family mainly focuses

on structural description of complex software systems, not on the implementation of functionality

provided by these systems.



44 Chap 2. Component Models and their Implementations

ACME

ACME [Garlan et al., 1997] was developed as a joint effort of several architectural research groups,

ACME is intended to serve as a least- common-denominator interchange language for architectural

descriptions. It defines a basic, un-interpreted vocabulary of components, connectors, ports, roles,

bindings, and configurations. A system is constituted by components connected by connectors; the

ports are end-points of the connectors. These elements may have specifications associated with them

through property lists. In ACME properties may be specified in any language. The semantics of the

properties and, even, of the overall architectural specification are supplied by these auxiliary lan-

guages. The goal is that a specification written in one language, say UniCon, could share a common

architectural structure with a specification in another language, say Rapide, and thus the architect

will be able to take advantage of the descriptive and analytic tools of multiple ADLs or formalisms.

ACME is built on a core ontology of seven types of entities for architectural representation: com-

ponents, connectors, systems, ports, roles, representations, and rep-maps. Among the seven types,

the most basic elements of architectural description are components, connectors, and systems.

• Components represent the primary computational elements and data stores of a system. Intu-

itively, they correspond to the boxes in box-and-line descriptions of software architectures.

• Connectors represent interactions among components. Computationally speaking, connectors

mediate the communication and coordination activities among components.

• Systems represent configurations of components and connectors.

Components’ interfaces define points of interaction between the component and its environ-

ment. Each port identifies a point of interaction between a component and its environment. A com-

ponent may provide multiple interfaces by using different kinds of ports. A port can represent an

interface as simple as a single procedure signature, or more complex interfaces, such as a collection

of procedure calls that must be invoked in a certain specified order, or an event multi-cast interface

point. Connectors also have interfaces that are defined by a set of roles. Each role of a connector de-

fines a participant of the interaction represented by the connector. Binary connectors have two roles

such as the caller and callee roles of an RPC connector, the reading and writing roles of a pipe, or the

sender and receiver roles of a message passing connector. Other kinds of connectors may have more

than two roles. For example an event broadcast connector might have a single event-announcer role

and an arbitrary number of event-receiver roles.

ACME supports the hierarchical description of architectures. Specifically, any component or con-

nector can be represented by one or more detailed, lower-level descriptions. Each such description

is called a representation in ACME. The use of multiple representations allows ACME to encode mul-

tiple views of architectural entities. It also supports the description of encapsulation boundaries, as

well as multiple refinement levels.

When a component or connector has an architectural representation there must be some way to

indicate the correspondence between the internal system representation and the external interface

of the component or connector that is being represented. A rep-map defines this correspondence.
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ACME has focused on providing a common skeleton through which the benefits of other lan-

guages and tools can be combined. Thus, ACME is consistent with the ability to describe and analyze

software architectures, but it does not, in itself, provide a sufficient basis. It is only through mappings

to other languages that ACME descriptions can be interpreted and analyzed. One peculiar thing about

ACME is that its representation can vary depending on the underlying model. For instance, a UNIX

pipeline could be modeled in a syntax similar to C as we show in Listing 2.3.

Component pipe =
{

Port in;
Port out;
Property implementation : String = "while (!in.eof) {in.read; compute; out.write; }";

}

LISTING 2.3 : A component modeling a UNIX pipe in ACME

ACME partially supports structural inheritance with the notion of sub-typing via the extends fea-

ture.

Aesop

The Software Architecture Design Environment Generator (AESOP) [Garlan et al., 1994] is a set of

tools designed to develop a system model which provides a vocabulary for architectural description

through an object-oriented framework of types. It is based on the UNIX environment; it has pipe and

filter style extensions in order to model those features. However, it has a generic kernel, suitable for

all environments. The language does not provide a plain text description of the model; all modeling

is done in the graphic editor of the tool.

An architectural configuration is represented as an interconnected collection of object instances.

The vocabulary of an architectural style is described by defining sub-types of the basic architectural

types: Component, Connector, Port, Role, Configuration, and Binding. By default, an architectural

configuration in AESOP is an un-annotated hierarchical structure of components, connectors, and

configurations. A style provides attributes for representing the semantics of individual elements and

tools for analyzing and exploiting those specialized representations In also modifies the manipulation

methods of the base types to enforce style-specific constraints.

For example, a pipe-filter style would define a “filter” sub-type of component, a “pipe” sub-type

of connector, and appropriate port and role sub-types. The “insert port” method of a filter, for exam-

ple, would require that the inserted port be either a data input or output. Additionally, tools could be

introduced into the environment to generate implementations of pipe-filter systems from the archi-

tectural representation. Aesop can be used to support the analysis techniques of a particular formal

method or some other ADL.

AESOP provides component sub-typing support. Aesop enforces behavior-preserving sub-typing

to create sub-styles of a given architectural style. An AESOP subclass must provide strict sub-typing

behavior for operations that succeed, but may also introduce additional sources of failure with re-

spect to its super-class.
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C2

C2 is a component- and message-based style designed to support the particular needs of applications

that have a graphical user interfaces, with the potential for supporting other types of applications as

well. The style supports a paradigm in which UI components, such as dialogs, structured graphics

models (of various levels of abstraction), and constraint managers, can more readily be reused. A

variety of other goals are potentially facilitated as well. These goals include the ability to compose

systems in which: components may be written in different programming languages, components

may be running in a distributed, heterogeneous environment without shared address spaces, archi-

tectures may be changed dynamically, multiple users may be interacting with the system, multiple

toolkits may be employed, multiple dialogs may be active (and described in different formalisms),

and multiple media types may be involved.

The C2 style can be informally summarized as a network of concurrent components hooked to-

gether by connectors, i.e., message routing devices. The top of a component may be connected to the

bottom of a single connector and the bottom of a component may be connected to the top of a single

connector. There is no bound on the number of components or connectors that may be attached to

a connector (see Figure 2.12).

Figure 2.12 : A sample C2 architecture and a detail of the internal architecture of a C2 component.

Jagged lines represent the parts of the architecture not shown.

Each component has a top and bottom domain. The top domain specifies the set of notifica-

tions to which a component responds, and the set of requests it emits up an architecture. The bot-

tom domain specifies the set of notifications that this component emits down an architecture and

the set of requests to which it responds. All communication between components is solely achieved

by exchanging messages. Message-based communication is extensively used in distributed environ-

ments for which this architectural style is suited. Central to the architectural style is a principle of

limited visibility or substrate independence: a component within the hierarchy can only be aware of

components “above” it and is completely unaware of components which reside “beneath” it. Sub-

strate independence has a clear potential for fostering substitutability and reusability of components

across architectures. To eliminate a component’s dependence on its “superstrate,” i.e., the compo-

nents above it, the C2 style introduces the notion of event translation: a transformation of the re-

quests issued by a component into the specific form understood by the recipient of the request, as

well as the transformation of notifications received by a component into a form it understands. The

C2 design environment is, among other things, intended to provide support for accomplishing this
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task.

The internal architecture of a C2 component shown in Figure 2.12 is targeted to the user interface

domain. While issues concerning composition of an architecture are independent of a component’s

internal structure, for purposes of exposition below, this internal architecture is assumed.

C2 supports multiple sub-typing relationships among components: name, interface, behavior,

and implementation. C2 allows creation of sub-types of such a component by sub-typing from any

or all of the internal blocks. Different combinations of these relationships are specified using the

keywords and and not as we illustrate in the following code snippet:

component Well_1 is subtype Matrix (beh)
component Well_2 is subtype Matrix (beh \and \not int)

C2 also supports conformance checking mechanisms. It even allows sub-typing from several

types, potentially using different sub-typing mechanisms due to multiple conformance mechanisms.

C2 connectors have context reflective interfaces. Each C2 connector is capable of supporting

arbitrary addition, removal, and reconnection of any number of C2 components.

Darwin

Darwin [Magee et al., 1995] is an architectural description language developed by Magee and Kramer.

It describes a component type by an interface consisting of a collection of services that are either pro-

vided (i.e. declared by that component) or required (i.e.. expected to occur in the environment). Con-

figurations are developed by component instantiation declarations and bindings between required

and provided services. Darwin supports the description of dynamically reconfiguring architectures

through two constructs — lazy instantiation and explicit dynamic constructions. Using lazy instanti-

ation, a logically infinite configuration is described and components are instantiated only as the ser-

vices they provide are used by other components. Explicitly dynamic structure is provided through

the use of imperative configuration constructs. In effect, the configuration declaration becomes a

program that is executed at run-time, rather than a static declaration of structure.

In a Darwin-generated implementation, each primitive (non-hierarchical) component is as-

sumed to be implemented in some programming language, and platform specific glue code is gener-

ated for each service type. The elaboration algorithm acts, essentially, as a name-server that provides

the location of provided services to any executing components.

The model does not provide any means of describing the properties of either a component or

its services. Component implementations are uninterpreted black boxes, while the collection of ser-

vice types is a platform-dependent collection whose semantics is also uninterpreted in the Darwin

framework.

Darwin supports hierarchical composition. A component might be composed of other compo-

nents or of primitive components which represent built-in features of the language. Darwin also

supports the structure of parallel programs and modeling of network topologies.

Darwin’s support for architectural style is limited to the description of parameterized configura-

tions. For example, a Darwin pipeline description is shown in Listing 2.4. This description indicates
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that a pipeline is a linear sequence of filters, where each filter’s output is bound to the input of the

next filter in line. Using parameterization to describe families of systems means that only systems

that can be described constructively can be effectively characterized. That is, in order to delineate

membership in an architectural style it is essentially necessary to construct an algorithm that can

construct exactly those members of the style.

component pipeline (int n) {
provide input;
require output;

array F[n]:filter;
forall k:0..n-1 {

inst F[k];
bind F[k].output == output;
when k<n-1 bind

F[k].next == F[k+1].prev;
}
bind

input == F[0].prev;
F[n-1].next == output;

}

LISTING 2.4 : A pipeline component description in Darwin

Components hide their behavior behind well-defined interfaces and programs are constructed by

creating instances of component types and binding their interfaces together. These compositions are

considered as types as well, which leads to a hierarchical composition. Interfaces in Darwin can be

parameterized and derived by inheritance from one or more base interface types. Also, component

types can be defined explicitly or fully or partially typed from an existing component type (a partial

component declaration).

Rapide

Rapide [Luckham et Vera, 1995 ; Luckham et al., 1995a] is a set constituted by a type language, a defi-

nition language, a constraint language, and an executable programming language. The type language

is intended to provide interfaces for the definition language, which defines the architecture. The con-

straint language defines requirements for timing and other pattern events. The executable language

is concurrent and reactive. Its main purpose is to construct behavior of components and connections

between components.

The language is based on modeling computations and interactions as partially ordered event sets

(or “posets”). Rapide defines component types (called interfaces) in terms of a collection of commu-

nication events, which are either observed (Rapide calls these “extern actions”) or initiated (“public

actions”). Rapide interfaces define the computational behavior of a component by relating the ob-

servation of extern actions to the initiation of public actions. Interaction between components is

described for a particular configuration in one of two ways: (i) events can be “connected”, in which

case they are aliased to the same event. (ii) an architecture can declare “constraints” which specify

causal relationships between events on different components. Given a constraint, the initiation of
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one event will result in the generation of another event following it in all event orderings, but they are

not considered as the same event.

Rapide’s connections define an asymmetrical, primitive relation between two components. The

type language of actions permits the definition, essentially, of function calls between components.

Events have parameters and possibly return values. As such, they are not adequate for the introduc-

tion of new interaction types and do not support symmetric interaction patterns.

Rapide’s constraints might appear to provide better support for an explicit connector mechanism,

since related constraints can generate quite complex interactions between components. However,

these constraints can only be declared at the global configuration level and therefore do not permit

the localization of analysis of interactions. Further, because the language does not permit them to be

explicitly bundled as connectors, complex interaction patterns (sets of constraints) can not effectively

be reused in multiple contexts.

Rapide permits a form of consistency checking and analysis through architectural simulation. In

essence, the architecture is simulated, generating a partially ordered set of events that is compati-

ble with the interface, behavior, and constraint specifications. Because the generated set explicitly

defines causal relations between events rather than simply providing one possible sequence of the

events, simulation is useful for detecting execution alternatives such as race conditions.

However, a given simulation execution will provide only one possible poset, rather than all per-

mitted posets. This means that alternatives due to non-determinism in a behavior specification are

not captured by architectural simulation.

Architectures in Rapide can be filled in with implementations in an executable sub-language or

in languages such as C++ or Ada. The Rapide system includes a tool that dynamically monitors the

execution of a program, checking for communication integrity violations. Communication integrity

could be enforced statically if system implementors follow style guidelines, such as never sharing

mutable data between components. However, the guideline forbidding shared data prohibits many

useful programs, and the guidelines are not enforced automatically.

The type language allows deriving new interface type definitions by inheritance from existing

ones, including the capability of dynamic substitution of sub-types for super-types. However, at the

higher levels (Architecture, ...), inheritance is not supported.

UniCon

UniCon [Shaw et al., 1995] provides a tool for constructing executable configurations based on com-

ponent types, implementations and “connection experts” that support particular connector types.

UniCon supports explicit, symmetrical and asymmetrical connectors. That is, an architectural con-

figuration contains connector declarations that logically define an interaction. Each connector has

a collection of roles that define which participants are expected in a given interaction. Component

interfaces, rather than providing or requiring services, are defined by players which have a type (indi-

cating the nature of the interaction expected) and a set of properties (providing details of the compo-

nent’s interaction at that interface). At the configuration step, players on components are associated

with roles on connectors.
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While UniCon’s model of explicit connectors seems to provide promise for architectural style,

by creating a place where new interactions might be defined and compositional rules elaborated,

UniCon currently provides limited mechanisms for defining new connector types. New types can

only be added by hand-implementing new connection experts. This adds to the collection of built-

in, atomic types. Every connector is tagged with a type, which is manifested as a type construct in

the written notation and as the choice of an icon in the graphical notation. This type indicates which

roles must be satisfied for the connector to operate properly, together with the types of players that are

eligible to play the roles. Analysis of architectures in UniCon is limited to those tools supplied with the

given connector types (which depend on specific implementations of components and connectors)

and there is no way to describe architectural styles.

A component’s interface consists of the component’s type, specific properties (attributes with val-

ues) that specialize the type, and a list of points (players) through which the component can interact

with the outside world. Each player is typed and may list properties that further specify the player.

Property lists are used to refine the types to subtypes or to specialize a type to a particular use. A com-

ponent’s implementation may either be primitive or composite. A primitive implementation consists

of some element outside of UniCon’s domain, such as a source file in a given programming language,

a data file, or an executable. A composite implementation consists of other components and con-

nectors, composed as described below. A connector’s protocol consists of the connector’s type, some

specific properties that specialize the type, and a list of points (roles) at which the connector can

mediate the interaction among components. Each role is typed and optionally lists properties that

further specify the role. UniCon supports only built-in connectors, so each connector’s implementa-

tion is specified as built-in.

Wright

Configuration Capitalize
Component UpperCase
Connector Pipe
Instances

Split : SplitFilter
Upper : UpperCase
Merge : MergeFilter
P1, P2, P3 : Pipe

Attachements
Split.left as P1.Source
Upper.Input as P1.Sink
Split.Right as P2.Source
Merge.Right as P2.Sink
Upper.Output as P3.Source
Merge.Left asP3.Sink

End Capitalize

LISTING 2.5 : A component modeling a filter in Wright

WRIGHT is designed to support the formal description of the architectural structure of software

systems. In order to do so, it permits the description of both architectural styles, or families of sys-
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tems, and architectural instances, or individual systems.

WRIGHT is built upon the following abstractions: components, connectors, and configurations.

The language provides explicit notations for each of these elements, formalizing the general notions

of component as computation and connector as pattern of interaction.

A WRIGHT specification describes a component interface as a collection of ports, or logical inter-

action points. Each port is defined in terms of a protocol written in a subset of CSP [Hoare, 1978].

These ports factor the expectations and promises of the component into the points of interaction

through which the component will interact with its environment. The component may optionally

further specify how the interactions on its ports are combined into a computation.

The configurations can be divided into instances (a type if a specification of a component), at-

tachments (describes the topology of the system), and hierarchy (a component may hold other com-

ponents). In Listing 2.5 we give an example of a filter routine.

Components have two important parts — an interface and a computation. The interface consists

of several ports. Each port represents an interaction. The computation provides a more complete

description of what is done.

Connectors are considered as composition patterns among components. A collection of interface

instances combined via connectors is called a configuration.

No inheritance notion is present in the model.

UML

UML (Unified Modeling Language) [OMG, 2011b] is a standard graphical language defined by the

OMG for modeling systems. In its version 1.x, this language already included the notion of compo-

nents, considered modular, expandable and interchangeable system units encapsulating the imple-

mentation and outlining a set of interfaces. This low level vision components for a modeling language

has changed from UML 2.0. The components are now units of abstract structure that represent sub-

parts of a system. They can be modeled from different points of view and refined throughout the

development cycle.

UML 2.0 has introduced concepts and mechanisms inspired by ADLs for describing systems in

terms of interconnected components in the Internal Structures framework. The framework is used to

capture the internal structure of a component (and can be also used for hierarchical components).

The meta-class StructuredClassifier allows to decompose the functionality of a Classifier into

several parts. A part is a Property of the owning StructuredClassifier referenced via the parts

association. Technically, the type attribute of a part specifies the type of the classifier that will be

instantiated within an instance of the owning structured classifier. Further, parts may be intercon-

nected via connectors, which correspond to future links to be established among the corresponding

instances.

A component has an external structure made of ports (see Figure 2.13). Ports isolate a component

from its environment, with the interactions between the internal structure and its environment.

Several ports can be defined for a component, which can distinguish different interactions de-

pending on the port through which they are made. Ports enhance the decoupling between a com-



52 Chap 2. Component Models and their Implementations

Figure 2.13 : Structure of a UML component

ponent and its environment so it can be reused in another environment that meets the constraints

imposed on the port. Constraints associated with a port can be provided interfaces, required inter-
faces or protocols. A port can be associated with several provided and required interfaces. Interfaces

describe static constraints (type and signature operations) that must be implemented by a classifier
(class or component). Protocols are descriptions of dynamic constraints that can be done using state

diagram which we give an example in the following.

Collaboration between two or more components result in connectors representing opportunities

for communication between multiple instances of components. There are two types of connectors in

UML: the assembly connectors and delegation connectors.

An assembly connector is used to connect components that provide and require consistent ser-

vices. A connector assembly is defined between a required interface (resp. a required port) and a

provided interface (resp. specified port). Delegation connectors are used in the construction of com-

posites, that is to say components with an internal structure comprised of Parts (Property derived

from TypedElement), and connectors. Delegation connectors are used to connect external contracts

a component interfaces (or ports) to external contracts such to share that redirect requests inbound

operations. As for ports, a connector can be described by a protocol and it is then possible to check

the validity of a connection by checking the compliance of protocols.

The UML-meta-class Component also inherits from the UML-meta-class Class (as redefined in

the Structured Classes package) and gains the ability to have methods and attributes and to partici-

pate in associations and generalizations. Further, besides the associated ports, a Component may be

also directly associated with a set of provided and required interfaces.

Although UML is a reflective model described in MOF, which is the core sub-set of UML, its re-

flection capabilities are not usable in run-time.

2.2.4 Component-oriented languages family

Component-oriented languages family states that the most natural way to develop component-based

software systems is to use a single programming language that allows doing so in the first place. Such

programming languages provide a primitive support for both component definition, and composi-

tion (building components by assembling smaller components).
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ArchJava

ArchJava [Aldrich et al., 2002] is an extension to the Java Programming Language that allows the

unification between the software architecture and its implementation using the same programming

language, thereby simplifying the development process. The main purpose of ArchJava is to intro-

duce a programming language to deal with components that guarantees communication integrity

between architecture and implementation. A system has communication integrity if components

only communicate directly with the components they are connected to in the architecture of com-

ponent classes. This property ensures that the software system implementation respects the desired

system architecture. The presence of a sound type system guarantees communication integrity be-

tween an architecture and its implementation, even in the presence of shared objects and run-time

architecture configuration.

The three main ingredients of the ArchJava programming language are components, ports and

connections. Components are obtained from the instantiation of component classes, and are seen

as special objects that communicate with other components in a structured way. Ports represent

logical communication channels between one component and the ones it is connected to, making

it the only possible way for two components to communicate with each other. Ports declare three

different sets of methods: requires, provides and broadcasts. The first set represents methods that

are implemented by another component but which are available at the current port (this implies a

connection between the component that implements the method and the one that uses it). Provided

methods are implemented by the current component, and are made available to other components

at the port that is being defined. Broadcast methods are very much like required ones except that they

can be connected to more than one implementation, while required ones only allow the connection

to a single implementation.

This approach also supports hierarchical software architectures where components have got in-

ternal component structures (components connected to each other) to define their functionality. The

outer components are called composite components, and the inner ones called sub-components.

ArchJava does not present ways for exporting the behavior of internal components to outside com-

ponents.

An interesting feature of ArchJava is the possibility to create dynamic architectures, i.e. architec-

tures that change during the execution of the program, where new components can be dynamically

instantiated and connected to each other.

ArchJava’s reflection package is an extension of Java reflection package which is mostly read-only,

i.e. supports introspection, not full reflection. The ArchJava reflection package offers the follwing

classes:

• Call - represents a particular run-time required method invocation on a connected port

• Connection (extends Element implements Serializable) - represents a connection between

ports at run time

• Connector - represents a custom connector. Methods typecheck and invoke can be overridden

by sub-classes to get custom checking and method invocation semantics. Has a connection as

its private attribute.
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• Element - represents an element of the parse tree. Used as a way to tell the system what syntac-

tic element caused a type error

• Method (extends Element implements Serializable) - represents a method in a port instance

• Port (extends Element implements Serializable) - represents a port instance

• Type - represents the type of a method argument or result

Component classes can inherit from other component classes, or from Java class Object. Com-

ponent sub-classes inherit methods, ports, and connections from their super-classes. Component

sub-classes may also override method definitions and specify new methods and ports. However, com-

ponent sub-classes may not specify new required methods because this could break sub-type substi-

tutability. ArchJava also supports architectural design with abstract components and ports, which

allow an architect to specify and type-check an ArchJava architecture before beginning a program

implementation.

Example The example developed in this section is an adapted example inspired by [Aldrich, 2003].

Listing 2.6 shows the code of composite WEBSERVER. In this example, the sub-component Router
accepts HTTP queries and transmits to a Worker who treats. With each new incoming request, the

Router requests a new Worker (see line 29) through its port request to process the request. This

port request is connected to the private port create of the composite WEBSERVER (see line 3). In the

implementation of the requestWorker method of WEBSERVER a new instance of WORKER is created

and connected through the port serve (see line 11). This dynamic connection is valid because

according to the connection pattern in line 4.

public component class WebServer {
2 private final owned Router r = new Router();

connect r.request, create;
4 connect pattern Router.workers, Worker.serve;

6 public void run() { r.listen(); }

8 private port create {
provides r.workers requestWorker() {

10 final owned Worker newWorker = new Worker();
r.workers connection = connect(r.workers, newWorker.serve);

12 return connection;
}

14 }
}

16

public component class Router {
18 public port interface workers {

group stream;
20 requires void httpRequest(stream InputStream in,stream OutputStream out);

}
22 public port request {
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requires this.workers requestWorker();
24 }

public void listen() {
26 unique ServerSocket<stream> server = new ServerSocket(80);

while (true) {
28 unique Socket<stream> sock = server.accept();

this.workers conn = request.requestWorker();
30 conn.httpRequest(sock.getInputStream(), sock.getOutputStream());

}
32 }

}
34

public component class Worker extends Thread {
36 public port serve {

group stream;
38 provides void httpRequest(stream InputStream in,stream OutputStream out) {

this.in = in; this.out = out; start();
40 }

}
42 public void run() {

/ / g e t s r e q u e s t e d f i l e and sends i t on the output stream
44 }

}

LISTING 2.6 : ArchJava’s code of components WEBSERVER, ROUTER and WORKER.

ACOEL

ACOEL [Sreedhar, 2002] is a component-oriented extensional language for creating and plugging

components together. The design of ACOEL was motivated by the following component design prin-

ciples.

• Pluggable Units. A component is a unit of abstraction with clearly defined external contracts

and the internal implementation should be encapsulated. The external contract should consist

of both the services it provides and the requirements it needs when it is plugged or (re-)used in

a system.

• Late and Explicit Composition. For a component to be composable by a third-party with other

components, it must support late or dynamic composition. During the development phase,

requirements of a component should only be constrained by some external contract. Then, at

run-time, an explicit connection is made with other “compatible” components to achieve late

composition.

• Types for Composition. Typing essentially restricts the kinds of services (i.e. operations or mes-

sages) that can be requested from a component.

• Restricted Inheritance. In OOP, it is well-known that one cannot achieve both true encapsula-

tion and unrestricted class inheritance with overriding capabilities. In ACOEL, classes (which

support inheritance) are second-class citizens, and are not visible to the external clients.
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The main construct in ACOEL is component. A component in ACOEL consists of (1) an exter-

nal contract made of typed input and output ports, and (2) an internal implementation consisting

of classes, methods, and data fields. A client can only see the external contract and the internal im-

plementation is completely encapsulated. A component provides services via its input ports, and

specifies the services it requires via its output ports. In ACOEL, a connect statement makes an explicit

connection between an output port of a component to a “compatible” input port of another compo-

nent. To each port a class implementing the behavior offered or demanded via the port is attached.

Any messages that arrive at an input port are forwarded to the instance of the class that is attached to

the input port. The class instance will either process the message or it will delegate to another class

instance inside the component.

ACOEL model supports a kind of behavioral inheritance by the extend statement which allows to

“decorate” inherited ports with mixins, as it is shown in Listing 2.7. This decoration makes it possible

to specialize inherited behavior when an inherited service is re-implemented in the decorating mixin.

A child cannot access any of the internals (implementation classes, methods) of a parent, except via

the input ports of a parent, i.e. This.<portname>.<servicename> (composition-like approach). The

advantage of this black-box approach is that it preserves encapsulation of parent components.

component Foo {
in I fin <mixin M <: I1>;
class Cy implements I;
class Cx = M + Cy;

}
component Goo extends Foo {
in I fin <mixin M <: I2>
...

}
mixin Moo implements I2 { ... }
Goo g = new Goo(){fin<Moo>}

LISTING 2.7 : ACOEL mixins

ComponenJ

ComponentJ [Seco et al., 2008] offers a general component model described in the form of a core

typed programming language whose first-class values are objects, components, and configurators

(see Figure 2.14). In this abstract programming model, objects are component instances (cf. class in-

stances) which aggregate state and functionality in the standard object-oriented sense. Components

are the entities that specify the structure and behavior of objects by means of a combination and

adaptation of smaller components and user-defined building blocks. Each component is defined by

a network of elements which is specified by a functional-like value, a configurator.

The implementation of services provided by component instances is defined by combination and

adaptation of services provided by smaller components. At the component level, ports play an im-

portant role as the connection unit between elements. A component declares a set of required ports,

which denote abstract implementations of external services, and a set of provided ports which it must
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Figure 2.14 : ComponentJ model ingredients and interactions.

implement. In fact, the implementation defined in a component is parameterized in its required

ports, which must be satisfied before the component is used to produce objects.

Configurator values denote composition operations which aggregate or connect existing ele-

ments in an implementation-independent way, and are uniformly used to produce components or

modify the internal structure of objects. Thus, this variety of values and language constructs allows

both the expression of dynamic construction of new components (based on run-time decisions) and

the unanticipated reconfiguration of component instances.

The ability to express component structures at a high-level of abstraction enable the static veri-

fication of structural soundness of components and objects, by means of a type system. In particu-

lar, typing configurators with intensional type information, revealing certain aspects of their internal

structure, permits type safe composition and reconfiguration actions to be performed on run-time

values. Reconfiguration actions are, to some extent, a violation of the encapsulation principle en-

sured by the type system.

The novelty of this approach when compared with other component models lays in the dynamic

construction and run-time modification of the structure and behavior of objects in a statically typed

Java-like setting. ComponentJ provides full computational power to build sophisticated and declar-

atively defined networks of objects while clearly maintaining the definition of architecture and com-

putation separate. The construction of new components and reconfiguration of objects and corre-

sponding soundness properties are defined together in a unique programming language and a single

type system. This provides the language with a higher level of expressiveness and statically ensures

the absence of run-time errors due to ill-formed component structures.
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ComponentJ is an inheritance-free language where authors prefer to avoid inheritance in favor of

object composition. Reflection is not explicitly advocated in ComponentJ. It however appears that a

running system certainly has a partial representation of itself to allow for dynamic reconfiguration of

internal architectures of components as described in [Seco et al., 2008] but it seems to be a localized

and ad.hoc capability. The reification process being neither explicited nor generalized.

Clic

CLIC [Bouraqadi et Fabresse, 2009], an extension of SMALLTALK to support full-fledged components.

It provides component features such as ports, attributes, or architecture. From the implementation

point of view, it fully relied on SMALLTALK reflective capabilities. Thus, from the SMALLTALK virtual

machine point of view, CLIC components are objects and their descriptors are extended SMALLTALK

classes. Because of this symbiosis between CLIC and SMALLTALK, the use of CLIC allows taking benefit

from modularity and reusability of components without sacrificing performance.

A CLIC component has ports. The model is a unidirectional model and thus distinguish provided

and required ports. All interactions with a component have to pass through one of its ports. CLIC

model allows components to have only one provided port. The idea of a single provided port is based

on the observation that developers do not know beforehand, which services will be specified by each

required port of client component. Therefore it is hard to split component functionality over multiple

ports. CLIC also support explicit architecture description and inheritance. A CLIC component inher-

its every part of the definition from its parent. A sub-component can override attribute initialization

directives and extend the other features (attribute declarations, required ports, architecture ...).

Bichon

Bichon [Xu et Ren, 2010] is a Java-based COL whose design seeks to address the needs of COP and

avoid lacks of component-based software design using OOP. Bichon do not extend the Java language

directly. It builds on top of Java with component composition instead of inheritance, retaining only

the basic data types of the Java language. Composition mechanism avoids problems such as fragile

base class caused by inheritance.

In Bichon, components are first-class core language abstractions. The model proposes a

class/instance-like approach and clearly distinguish these two concepts. A component instance is a

run-time entity while a component describes a template for possibly multiple component instances.

In order to achieve separations of static behavior and component run-time behavior, Bichon compo-

nent model defines two types of interfaces: mixinner and connector. Components are black boxes

and all the interactions between them happen only via the mixinner interfaces and the connector

interfaces.

By defining these two kinds of interfaces, the authors offer a way to separate run-time behaviors

from static behaviors. The principle of separation of concerns is also achieved. At compile time, static

mixin between components happened on the mixinner interface. At run-time, components interact

and communicate with each other via the connector interface. With this separation, overriding only

happens on mixinners, and message dispatch only happens on connectors. All interactions among
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components are achieved through these two kinds of interfaces. Bichon do not provide other decla-

rations of message passing.

The model introduces the bi-directional interface supporting bi-directional interactive relation-

ship. Required declarations define view points for the interface on the environment, while provided

declarations define viewpoints on the interface for the environment.

When interaction occurs, the interface of components involved must match each other. The type

system ensures that only the compatible interface could interact with each other and match with each

other.

The model does not reify component related concepts like ports or connection and its reflection

capabilities are the ones of Java reflection.

2.3 Comparison

The study plan presented in the end of Section 2.2.1 puts focus on the three following aspects: external

contract & architecture description, inheritance for structural and behavioral reuse and reflection

capabilities. In this section we present a comparison for each family of component-based approaches

regarding these three aspects.

Frameworks family All surveyed models support specification of the external contract of compo-

nents via declaration of ports. They differ in the terminology and the kinds of information they spec-

ify. For example, while SOFA uses terms provided and required interface for ports, CORBA CCM uses

terms facets and receptacles, respectively. COM, Javabeans does not support specification of require-

ments via required ports. EJB and OSGi enable users to define requirements (called dependencies)

in external files like manifest file (OSGi) or Deployment descriptor (EJB).

Only 4 of 13 models support explicit description of architecture and hierarchical modeling.

Behavioral inheritance is supported only by Javabeans, EJB and Kevoree where components are

described by Java classes following coding guidelines of the models. The similar applies for structural

inheritance, which is also supported thanks to Java inheritance. SOFA and Fractal are approaches

having their own ADLs, these enable users to reuse structural definition. Structural inheritance is

also partially supported with interface inheritance in COM, CCM, OpenCOM, OpenCORBA and Dy-

namicTAO.

Introspection aspect of reflection is well supported. However this is not the case for interces-

sion which is rarely supported and the actual intercession capabilities are usually limited to run-time

substitution of components in an architecture, as for example SOFA DCUP does. Fractal and FraSCAti

models provide extensible reflection capabilities thanks to the ability to put new controllers into com-

ponent membrane. Reification of component parts (ports or architecture) is achieved in MetaORB

where base-level components are realized as multiple components in meta-level.

Table 2.2 gives an overview of the approaches classified under the frameworks family.

Generative family All surveyed models support specification of component interfaces.They differ

in the terminology and the kinds of information they specify. For example, an interface point in
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WRIGHT is a port, and in UniCon a player. On the other hand, in C2 the entire interface is provided

through a single port; individual interface elements are messages.

Members of the generative family typically distinguish between interface points that refer to pro-

vided and required functionality. For example, provides and requires interface constituents in Rapide

refer to functions and specify synchronous communication. Finally, WRIGHT and UniCon allow spec-

ification of expected component behavior or constraints on component usage relevant to each point

of interaction. For example, UniCon allows specification of the number of associations in which a

player can be involved.

The static nature of ADLs and UML does not match with reflection and behavioral inheritance

well, hence these are not supported.

Structural definition reuse is usually supported in a limited notion of sub-typing or relying on

the mechanisms provided by the underlying programming language. For example, ACME supports

strictly structural sub-typing with its extends feature, while Rapide evolves components via OO in-

heritance. AESOP and C2 provide more extensive component sub-typing support. AESOP enforces

behavior-preserving sub-typing to create sub-styles of a given architectural style. An AESOP sub-

class must provide strict sub-typing behavior for operations that succeed, but may also introduce

additional sources of failure with respect to its super-class. C2, on the other hand, supports multiple

sub-typing relationships among components: name interface,behavior, and implementation. Differ-

ent combinations of these relationships are specified using the keywords and and not.

Rapide provides features for refining components across levels of abstraction. This mechanism

may be used to evolve components by explicating any deferred design decisions, which is somewhat

similar to extending inherited behavior [Medvidovic et Taylor, 2000]. Sub-typing is simply a form of

refinement in a general case. This is, however, not true of Rapide of which place additional constraints

on refinement maps in order to prove or demonstrate certain properties of architectures. Refinement

of components and connectors in Rapide is a by product of the refinement of configurations.

UniCon defines component types by enumeration, allowing no sub-typing, and thus structural

inheritance is not supported.

Table 2.3 gives an overview of the approaches classified under the generative family.

Component-oriented languages family All the studied COLs specify external contract of a compo-

nent with ports which are in the case of ACOEL called outputs (required ports) and inputs (provided

ports). Also, all the languages make it possible to explicitly describe component compositions.

On one hand Java-inheritance in ArchJava, SMALLTALK-inheritance in CLIC, mixin-like decora-

tors in ACOEL and mixinner interfaces in Bichon make it possible to reuse behavior definition. On

the other hand, structural inheritance is either not present at all (ComponentJ and Bichon) or it is

supported only partially (CLIC, ArchJava, ACOEL). For example, while it is possible to reuse external

contract definition in ACOEL or ArchJava, it is not possible to specialize inherited architecture15.

The goal of CLIC language is to be fully integrated with SMALLTALK and thus objects are consid-

ered to be “dirty” components. This, in turn, makes it possible to use SMALLTALK reflection in CLIC.

15Architecture specialization and other inheritance operations are detailed in Chapter 4
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The similar applies for ArchJava which benefits from Java reflection. A notion of intercession capa-

bilities is present in ComponentJ which supports dynamic reconfigurations of component’s architec-

tures.

Table 2.4 gives an overview of the approaches classified under the component-oriented languages

family.
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2.4 Conclusion

The study made in this chapter shows that approaches of each family interpret components and re-

lated concepts differently. Despite this, it is possible to observe that there are certain concepts and

mechanisms common to all of them. The concepts are: components as unit of encapsulation, ports as

connection and communication points, connections as binding units, architectures as composition

descriptions and services as units of behavior. The mechanisms are: instantiation for creating new

components according to a description, service invocation for communication, composition for hier-

archical design and substitution for run-time adaptation of architectures. We have also observed that

there is an attempt to provide a reuse mechanism like inheritance and to provide reflection capabili-

ties like introspection among the studied component-based approaches.

The approaches in generative and frameworks families separate design and implementation. The

generative family uses high-level abstractions to describe component-based software and then gen-

erates code skeletons into standard OOP languages. The frameworks family also uses OOP languages

and forces developers to follow and respect conventions and programming guidelines in order to cre-

ate component-based software. Separating design and implementation stages and using the object
concept for building components cause problems in the analysis, implementation, understanding,

and evolution of software systems, because conformance between architecture design and final code

is not guaranteed [Fabresse et al., 2012 ; Aldrich et al., 2002]. Moreover, mixing the concepts makes

developers live harder, because it might be complicated to choose between objects and components

to implement a new entity in an application.

The third family, i.e. component-oriented languages, bridge this gap between design and imple-

mentation by providing conceptual continuum for developing component-based software. However

these languages differ in semantics. Besides, the focus they put on different concepts and mecha-

nisms of the component-based approach. Moreover these languages do not pay enough attention to

reflection and inheritance which are essential mechanisms for reuse, evolution and maintenance of

software.

It is in this context that we propose to present a new language in which we deeply studied the

core concepts and the mechanism of component-based approach and to define and build a reflective

component-oriented language on top of these.
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COMPO’s basics

If a system is to serve the creative spirit, it must be entirely

comprehensible to a single individual.

Dan INGALLS

Preamble

This chapter introduces the heart of this thesis, a component-oriented programming and modeling
language named COMPO. In the beginning we acquaint readers with the philosophy of the language
that have guided us when designing COMPO. We try to identify the main concepts and mechanisms of
the component-based approach and then in each section we discuss how we think COMPO meets these
principals. All through this chapter we highlight and argue for the design choices that we have made
when building COMPO.
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3.1 The language philosophy

BEYOND rhetoric and the existence of different models and languages, the component-based ap-

proach has not yet reach the same level of maturity as, for example, the object-oriented ap-

proach has. Therefore our first task was to study existing component-based approaches and make

observations. From the study that we have made in the previous chapter, we do have two basic ob-

servations:

• The first observation is that there is a gap between the design stage and the implementation

stage of component-based development. The gap exists because while during the design stage,

usually, the concepts of the component-based approach are available and used. The same con-

cepts are not available during the implementation stage. The traditional programming lan-

guages (procedural or object based) are not yet perfectly suitable for component-based devel-

opment in every-day practice. They require programmers to respect conventions or design pat-

terns to implement the concepts and mechanisms on which the component-based approach

stands. For example, when programming a Javabeans component, one has to follow the Java

language naming conventions and use the Observer design pattern [Gamma et al., 1995a] (see
Section 2). This complicates the implementation but also the testing, maintenance and evolu-

tion of the source code of the application. The main reason for this is that the used program-

ming language does not allow to simply express and use the basic concepts and mechanisms of

the component-based approach.

• The second observation concerns the existing component-based programming languages such

as ArchJava, ComponentJ, Lagoona or Piccola. Although these languages effectively integrate

some concepts and mechanisms related to component-based approach, they do not all offer

the same, even if they use a common vocabulary. For example, both ArchJava and ComponentJ

present mechanisms that allow the building of composite components, however, in ArchJava it

is not possible, for instance, to export the behavior of internal components and to define new

component structures at runtime. Unlike ComponentJ, whose components are used to instan-

tiate objects, ArchJava’s components hold state variables, implemented methods and commu-

nication ports. By doing so, dynamic construction of component structures is only allowed

within pre-established connection patterns. We believe that the significant reason why is it so

is a missing definition of the core component concepts and mechanisms [Fabresse et al., 2008].

The first observation hints that there is a need for a component-oriented language (COL) that al-

lows component-based developers to express themselves easily, in all stages of development, without

the necessity to switch into lower-level concepts. As emphasized by J. Privat in his thesis [Privat, 2006]

“a good programming language should allow the programmer to express themselves easily, so it should
be as close as possible to the human way of thinking.” The focus on higher-level concepts improves

expressiveness of the language and lets the language users to easily preserve original architecture de-

signs in all stages of development process. In other words, it is possible to bridge the gap between

design and implementation stage by using higher-level concepts for all stages of development Also,

the presence and usage of higher-level concepts make solutions more understandable and therefore

the later evolution and maintenance easier.
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The second observation suggest that the disparity between existing COLs calls to better identify

and define the core concepts and mechanisms of the component-based approach. The results of

our predecessor[Fabresse, 2007 ; Fabresse et al., 2012] and the synthesis of existing component-based

approaches made in Chapters 1 and 2 shows that there are some concepts and mechanisms that

are common for relevant majority of component-based approaches. In order to facilitate a better

comprehension and in accordance with the objectives of this thesis, we define the core concepts and
mechanisms of the component-based approach as follows:

• Concepts:

Component - a run-time entity which provides and requires services through ports.

Descriptor - an entity which describes the structure and the behavior of a particular kind of

components in terms of declaration and definition of the external contract and the inter-

nal architecture.

Port - a named communication and connection point; described by a name and a list of service

signatures.

Service - a unit of behavior definition.

Connection - describes a binding from one to another port.

• Mechanisms:

Component creation (instantiation) - a mechanism for building new components according

to the description a descriptor defines. Such components are then called instances of the

descriptor.

Service invocation - a mechanism for run-time communication in between components

Composition mechanism - a mechanism for creating a new component by connecting off-

the-shelf components within the context of the new component

Substitution mechanism - a mechanism for replacing components

Having the definition of the core concepts and mechanisms, we define a component-oriented

language:

Definition 1 (Component-oriented language (COL)) A language used to design and implement soft-
ware components (development for reuse) with well defined external contracts; that can be stored in li-
braries (also called shelves) and, in the same time, to develop applications by assembling off-the-shelve
components, that is, to allow to describe software architectures in terms of connecting components se-
lected from libraries (development by reuse.)

The above paragraphs describe our intentions and desires we have in minds while designing

COMPO. In the rest we define all the core concepts and mechanisms we have described. For each

specification of a concept or a mechanism, we have adopted a constructive approach, that is, we

construct the specifications driven by the knowledge we have gained in Chapter 2. We believe that

this approach helps to fulfill the, so called, “COMPO’s philosophy”, which can be summarized into the

following:
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COMPO’s philosophy

Keep the language as simple, minimal and uniform as possible, while in the same time

incorporate all core concepts and mechanisms necessary for description and imple-

mentation of independent components and for description and implementation of

high-level component-based architectures.

3.2 Concepts

This section present the core component-based concepts. For each concept we present the general

motivation, definitions and design choices made for COMPO.

3.2.1 Components and Descriptors

Historically, the nowadays object-oriented languages went through the never-ending debate, when-

ever the languages should be class- or prototype- based [Lieberman, 1986a ; Abadi et Cardelli, 1996]. It

seems that the victory was claimed by the class-based languages, which are now very widespread, al-

though prototype-based languages dominate in specific domains, such as web and Javascript [Flana-

gan, 1998]. In the world of objects, the terms class (or descriptor) and instance denote the object

descriptions in the code and the objects themselves at run-time.

By analogy, one may ask whether a COL should be built on the descriptor basis 1 or on the proto-

type one.

Chapter 2 has shown that in opposite to the object world the component world has a problem with

terms for descriptors and instances. The ambiguity reflects in vocabulary differences in literature and

languages. For example, a descriptor is referred to as “component class” (keyword component class)

in ArchJava while the same concept is named “component” (keyword component) in ComponentJ.

Thus, when we speak about a “component”, we speak about an instance of a component class in

ArchJava and about a descriptor in ComponentJ.

Apart from this terminology problem, Chapter 2 has also shown that the majority of component-

based models is descriptor-based, not prototype-based. In fact, we are aware of only one prototype-

based COL proposed by [Zenger, 2002]. Component’s in that work have neither state nor identity

and they are created through refinement primitives of existing components. The bootstrap compo-

nent is called component and it provides and requires no service. The services of a component can

not be used directly and the latter must first be instantiated. Indeed, the language distinguishes the

notions of component and component instance. However, this proposal has the merit of raising the

question of whether a COL can be (or should be) prototype-based since most languages (ArchJava,

ComponentJ, etc..) are descriptor-based.

The arguments for or against the use of descriptors in the world of components seem similar to

those in the world of objects [Dony et al., 1992].

1We prefer to not use the “class” term to avoid ambiguity with the object world.



3.2. Concepts 71

The arguments in favor of prototype-based languages are:

• simplicity: this argument was not accepted in the world of objects as most object-oriented

languages are descriptor-based and does not seem to prevail in the world of components;

• independence - prototypes are not associated with a descriptor: this argument does not consti-

tute a limitation of descriptor-based approach in the component world since a component is

packaged as an archive containing a particular descriptor (cf. Chapter 2) to be easily deployed

or put on shelf.

In contrast, drawback of the prototype-based approach is the difficulty to find the right place

where to store all what is common to members of a given family and should not be duplicated, for

example a link to a given method. The global dynamic handling of what is store by a given family is still

a challenging issue. Although satisfactory solutions have been proposed, such as traits in SELF [Ungar

et Smith, 1987]. In order to make large applications, this lack of abstraction and thus structuring is a

strong limitation, therefore in COMPO, we chose the descriptor-based approach.

Choice 1 A component is a run-time entity, instance of a descriptor, which provides and requires ser-
vices via ports.

The choice to design COMPO as a descriptor-based language raises three questions.

The first question: Who do we put on the shelf and reuse later, the descriptors or components?
First, we recall that as a shelf we consider here an archive library (jar files, for example) containing

reusable software entities in different architectures (applications). In most of the component-based

approaches, the archive put on a shelf contains one or more descriptors. Indeed, a component is a

run-time entity and it can be hardly put on the shelf for reuse. However, the Javabeans model offers

the possibility to include a serialized Javabeans component (saved to disk) in an archive. This allows

to put on the shelf already initialized (with values) components. In other approaches, the initial values

can be specified in a configuration file included in the archive and read during the instantiation of the

descriptor. Both approaches therefore offer the same opportunities and in COMPO we chose to put

on the shelf only descriptors. If we had chosen the approach proposed by the Javabeans model we

would have had to deal with the archives containing descriptors and those containing components

differently.

Choice 2 The descriptors can be placed on the shelf.

The second question: Can we combine descriptors or not?

An assembly of components is a set of inter-connected components. There are basically two ways

how to describe an assembly: either we describe how components will be connected or we combine

descriptors [Lau et Wang, 2005b ; Lau et Wang, 2005a]. For example, while Javabeans and ArchJava

enable to describe an assembly of components only, ComponentJ and Scala [Odersky et Zenger, 2005]

can combine descriptors in order to define an assembly. In Scala, descriptors are classes and to create

an assembly of components is essentially a mechanism for combining classes based on mixins. It is
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typical for these approaches that the instantiation of a descriptor is possible only if all requirements

are satisfied. These models are generally safe, but prohibit late connections between components,

because requirements cannot be satisfied later. In contrast, in ArchJava, all requirements does not

have to be satisfied if only a part of its functionality is used in the application.

Moreover, it seems that combining descriptors is more the matter of static design then the matter

of run-time. For example, in object-oriented languages supporting multiple inheritance, a class (i.e.
a description) could be defined as a combination of multiple super-classes. In opposite,to create

an assembly of instances (i.e. components) is a matter of run-time and it offers better perspectives

considering the dynamical aspects of languages.

We believe that an ideal COL should offer a unified combination mechanism for both descriptors

and their instances. There is currently no language that integrates such a mechanism but it seems that

this goal could be addressed by a reflection approach, where descriptors would be just a special kind

of components. In this thesis we design a reflective language and based on the above observations

we have made the two following choices:

Choice 3 A component (not a descriptor) is a subject for connecting.

Choice 4 Descriptors cannot be combined.

The third question: Should architectures be separated from descriptors? Before we answer this

question, it is essential to present our understanding of the architecture of a component:

Definition 2 (The architecture of a component) The architecture of a component is a description of
an internal composition, i.e. a system of internal components and their inter-connections, according
to which the component will be initialized.

Indeed, two components could have the same architecture and a component could have more ar-

chitectures. For example, SOFA separates architectures and component-types (a component-type de-

fines the external contract, i.e. provided and required ports), thus, two architectures could implement

the same component-type, hence the type is reused, but an architecture cannot be reused for two

different component-types. For example, a pipeline architecture implementing a filter component-

type (with one input and one output port) cannot be used as an implementation of a dispatcher

component-type (with one input and two output ports.) In general, it seems that architectures are

coupled with “component-types” and their separation does allow for type reuse but not for archi-

tecture reuse. Moreover, the separation may cause incompatibilities in case one of the two (an ar-

chitecture and its component-type) evolves. We think that the reuse of architectures description

could be achieved differently, for example with inheritance. With COMPO we follow the majority of

component-based approaches and we chose the following:

Choice 5 The description of the architecture of a component is a part of a descriptor of the component
(i.e. it is not separated).
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By answering the three questions we are now ready to define a COMPO-descriptor:

Definition 3 (COMPO-descriptor) A descriptor defines the structure and behavior of its instances
called components. The behavior is defined by a set of services definitions. The structure is defined by
description of ports and by description of the architecture of its instances. Descriptions of external (resp.
internal) ports define an external contract (resp. an internal contract) of instances of the descriptor.

The definition was described in MOF [OMG, 2011a]2 and it is visualized in the Figure 3.2.

A descriptor owns several PortDescription entities in order to describe the external and inter-

nal contract of its instances. It also owns zero or more ConnectionDescription entities in order to

capture the the architecture of its instances. Finally it owns zero or more Service entities to capture

the behavior of its instances.

In fact, the external and internal contract together with the architecture specification define an

Architecture Description Language, as it is shown in Figure 3.1. In the following we will show that

COMPO contains all concept necessary for architecture description. Later in Chapter 5 we will show

the descriptors can be used for generating code, as it is done by standard ADLs like WRIGHT or Fractal

ADL. Descriptors facilitate the modeling aspect of COMPO language.

Figure 3.1 : A parallel between descriptors and ADLs.

When it is declared that an instance of a descriptor offers a service, but the service is not defined,

then the descriptor is considered as an abstract component descriptor. Abstract descriptors cannot be

instantiated and they are present for code factorization and reuse purposes.

2MOF is a graphic language, the core of UML, used for definition of Domain Specific Languages
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Ports and connections between them are created according to the PortDescriptions and

ConnectionDescriptions, i.e. they realize3 them. More about ports and connections between them

can be found in Sections 3.2.2 and 3.2.4

3In UML modeling, a realization relationship is a relationship between two model elements, in which one model ele-

ment realizes the behavior that the other model element specifies
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Definitions 2 and 3 together with the Choice 1 imply that a component might be composed of

other components called internal components. Such a component is than called a composite and we

will discuss them in detail in Section 3.3.3.

The HTTPServer example

At a glance, the Listing 3.1 shows a definition of a descriptor named HTTPServermodeling very simple

HTTP servers. It defines a default provided port through which it provides the services run and

status. It states that a server is composed of two internal components, an instance of FrontEnd
accessible via the internal required port fE, and an instance of BackEnd accessible via the internal

required port bE. These internal components are connected together so that the front-end can invoke

services of the back-end. The HTTPServer descriptor explicitly defines the implementation of the

status service. The provided service run is implemented by a delegation connection to the provided

port default of the front-end. Figure 3.3 shows a diagram that represents a component, instance of

the HTTPServer descriptor.

Descriptor HTTPServer {
provides {
default : { run(); status() }

}
internally requires {
fE : FrontEnd;
bE : BackEnd;

}
architecture {
connect fE to default@(FrontEnd.new());
connect bE to default@(BackEnd.new());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status() {
if(fE.isListening())
{
return name.printString() + ’ is running’

}
else
{
return name.printString() + ’ is stopped’

}
}

}

LISTING 3.1 : The HTTPServer descriptor.

Let’s look at each point more precisely. A descriptor defines the structure and behavior of its in-

stances. The behavior is given a set of services definitions, for example a part of an HTTPServer’s

behavior is defined with the status service. The structure is given by descriptions of ports and con-

nections. Descriptions of external (resp. internal) ports define an external contract (resp. an internal
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contract). For example the external contract of HTTPServer instances is defined by the declaration

of the provided port default and its internal contract is defined by the declaration of the fE and bE
internal required ports .

A component may be composed of (internal) components (e.g. a HTTPServer is composed of

an instance of FrontEnd connected to an instance of BackEnd) and it is then called a composite. A

composite is connected to its internal components via its internal required ports. The services of

a composite can then invoke the services of its internal components through such ports. The sys-

tem composed of internal components and their connections is called the internal architecture of a

composite. An example is given in the architecture section in Listing 3.1.
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Figure 3.3 : The diagram shows a logical representation of an instance of the HTTPSERVER descriptor

presented in Listing 3.1, after it has been created and initialized.

3.2.2 Ports

In the beginning of this chapter we have defined ports as named communication and connection

points described by lists of service signatures. In this section, we will try to determine the nature of

these communication and connection points and their exact role in the world of components.

The original idea behind ports was to strengthen the encapsulation of components. A component

is seen as a capsule which cannot be acceded otherwise than by one of its ports (or interfaces).

“a component can only be accessed through well defined interfaces” [Szyperski, 2002]

This explicit description of component’s contract increase the independence of components from

their environment (other components) because limits the number of connections and also restricts

the communication by stating which services are provided and required.

The terms port and component interface are often confused with the term interface in the litera-

ture. In the following, we understand the terms port and component interface as labels for the concept
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of connection and communication point. While the interface term represents the concept of the con-

tract description (syntactic, behavioral, quality) of a port, often used for assembly verification or for

validating the use of a component.

The study of existing approaches has shown that ports might be classified as unidirectional
and bidirectional. Through unidirectional ports a component either provide services or require ser-

vices, such a port is than called provided or required port. ComponentJ or Fractal are representing

the unidirectional understanding of ports. By contrast ArchJava or UML represent the bidirectional

approach where services might be both provided and required through a port.

In both cases, a port defines a view-point and a security policy for a component. Required ports

define the views that the component may have on external components while provided ports define

views that external components can have on this component. Similarly, when a component is ac-

cessed via one of its ports, the port is the guarantor of a security policy, i.e. the client components may

only use the services available through this port. By allowing to mix required and provided services

within the same port, the bidirectional approach can describe more accurately the dependencies and

collaboration (in the sense of UML) between components.

Although this may seem restrictive at first, we chose to integrate unidirectional ports for COMPO.

This choice is essentially motivated by the non-anticipation politics of our predecessor SCL. Indeed,

using two ports, one required and one provided, instead of a single bidirectional port in the design

of a component seems to be redundant, but it lets the architect to decide whether the component

that will use the provided services provided is the same that the one that will provide the required

services. By declaring a bidirectional port, it is imposed that both required and provided services will

be provided and required by one client. That could be considered as a unnecessary restriction for

usage contexts. Our idea is to provide simple and as little as possible constrained components, so

that they can be adapted and reused in different contexts. The unidirectional ports are also easier to

understand and use in practice. In addition, if necessary, it is still possible to emulate bidirectional

ports with two unidirectional ports.

Choice 6 A component has unidirectional ports.

Following this choice, the definition 4 sets up the vocabulary we use.

Definition 4 (Required (resp. provided) port) Required (resp. provided) port of a component is a
named connection and communication point through which the component requires (resp. provides)
a set of services.

The definition raises a new question: How should we describe the concrete contract of a compo-
nent? In general, interfaces are used to specify how components can be assembled or used in an

architecture. interfaces are defined either at a local level (associated with a port) at a global level (as-

sociated with a component). According to [Beugnard et al., 1999] interfaces for contracts definition

are generally classified into four levels

Syntax : These contracts specify the signatures of the provided and required services (name, param-

eters, result, exceptions).
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Behavioral : These contracts specify how a set of services can be used .

Synchronization : These contracts are required in a distributed and/or concurrent context to specify

the behavior of components in terms of synchronization between service invocations.

Quality of service (QoS) : These contracts are usually crucial in the field of embedded or real-time

systems to ensure quality constraints in an overall architecture.

Component-based approaches offer formal or informal notations tailored to their needs to de-

scribe contracts at these levels. Syntactic contracts are simpler and can be defined using an interface

definition language, such as Interface Definition Language (IDL), or directly with the notion of inter-
face in the object-oriented languages, e.g. interfaces in Java. Moreover, the mature component-based

languages like Fractal, ArchJava or ComponentJ are generally limited to the syntactic contract level.

In ArchJava, an interface specifies for each service if it is provided or required, because each port is

bidirectional and is described by a single interface. SOFA supports behavioral contracts with a for-

malism based on regular expressions to be able to describe the sequences of invocations of valid

services (protocols.) Such a formalism has also been used to describe web services protocols [Trem-

blay et Chae, 2005]. For example, a component dedicated for networking provide the following three

services: open(adr) (opens a network connection for the address specified by the addr), send(data)
(sends data data through the connection) and close (close the connection). A protocol for such a

component used to describe the order of invocation of these three services for a valid use is: open
(invoked only once), then send (as many times as necessary ) then close (once) which can be ex-

pressed as open;send*;close. Other formalisms can be used to express behavioral contracts as state

machines of UML, automata languages [de Alfaro et Henzinger, 2001] or symbolic protocols [Pavel et
al., 2005]. The synchronization and QoS contracts are poorly supported in the existing component-

oriented languages and component frameworks. These kinds of contracts are addressed in ADLs,

which are dedicated to the specification and not to directly produce an executable application.

From the syntactic point of view, we see that the compliance between interfaces is often deter-

mined by the compatibility of the types that have been associated with them. When two components

are connected via their ports, it implies that the types of their interfaces are compatible. For exam-

ple, a required port typed by a I1 interface and connected to a provided port typed by a I2 interface

supposes that the type defined by I1 is a super-type of the type defined by I2. There are generally two

kinds of type systems: those based on names (named type systems), e.g. Java, and those based on the

structure (structure type systems), e.g. Objective CAML [E. Chailloux et B. Pagano, 2004]. The use of

names makes it easier to capture the semantics [Büchi et Weck, 1998]

“ [...] types stand for semantical specification. While the conformance of an implemen-
tation to a behavioral specification cannot be easily checked by current compilers, type
conformance is checkable. By simply comparing names, compilers can check that several
parties refer to the same standard specification. ”

The structure type systems [Cardelli, 1997] are less expressive but offer better decoupling between

entities because the sub-typing relation is derived from the structure of interfaces and not from a

common name. For example, to specify that “a component requires a stack” is more semantic than
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“a component requires two services push and pop.” However, in the first case, there must be a stack

interface (global) defined and the component may not be connected to any component but only

to components providing the same stack interface or one of its sub-types. In the second case, an

interface may be a sub-type of another even if there is not a direct relationship, because the sub-

typing relation is derived from the structure.

In COMPO, we chose to integrate a simple model regarding the descriptors. Thus, an interface is

local and attached to a port.

Choice 7 A interface is associated with a port.

We restrict ourselves to check the syntactic level of contracts.

Choice 8 A interface specifies a set of signatures of services. The interface compatibility is based on
sub-typing relationship between their types which is based on the inclusion of sets of signature services.

An interface does not need a name in COMPO and sub-typing relationship is structural. This deci-

sion is motivated by our desire to decouple components. Indeed, with a type system based on names,

two components can only be connected if the types of their interfaces are directly related. A struc-

tural approach seems to offer greater independence components in their definition at the expense of

semantics as we have seen. This view is sometimes called the “Duck typing” [Anantharam, 2001]

“ This method . . . [of] . . . just relying on what methods it supports is known as “Duck Typ-
ing”, as in “if it walks like a duck and quacks like a duck . . . ”. The benefit of this is that it
doesn’t unnecessarily restrict the types of variables that are supported. If someone comes
up with a new kind of list class, as long as it implements the join method with the same
semantics as other lists, everything will work as planned.”

However, for the reuse purposes, we support the global named interfaces in COMPO. The users

can define named interfaces by use of interface statement. These interfaces can be associated with

ports. The interface compatibility rules apply also for named interfaces, i.e. their conformance is

derived from their structure.

In COMPO, ports realize port descriptions (similarly to slots realizing classes’ attributes in

UML [OMG, 2011c]). A port description define the name, interface, role (provided or required) and

visibility (external or internal) of a port. A port description also define whenever a port is a collection

port or not. In the following we describe each of these aspects in detail.

Names The name of a port is a standard identifier conforming to the following regular expression

[a-z][a-zA-Z_0-9]*. In COMPO, the ports names are unique identifications used to refer to a par-

ticular port. The uniqueness means that in the definition of a descriptor it is not possible to define

two ports with the same name.
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Interfaces The interface of a port is a set of service signatures which could be given in three forms:

• as an explicit list (we call such a list an anonymous interface), for example the default port

declaration in Listing 3.1

• as a named interface, e.g. printer : IPrinting where the interface IPrinting was created

with the statement: interface IPrinting {print(text); ....};

• as a descriptor name (e.g. cd); in this case, the list is the list of signatures of services associated

to cd’s default provided port (the fE port declaration in Listing 3.1 is an example).

A special case of a named interface is the universal interface *which we introduce by the following

definition:

Definition 5 (Universal interface *) In case of provided ports, the universal interface * means that a
port offers all services already provided by the descriptor of a component that owns the port. In case of
required ports, it means that any service could be invoked through such a port.

Visibility The visibility of a port specifies whenever the port can or cannot be accessed from the

outside environment of the component which owns the port. There are two basic visibilities of ports:

external and internal. External ports are visible from the outside environment and are used for com-

municating with neighboring components in the environment. Internal ports of a composite are used

for communication with internal components, see Section 3.3.3 for more details. Internal ports and

the internal architecture of the owner are not accessible from the outside environment. If the visibility

of a port is not specified, then the port is by default external.

Roles Since we choose to use unidirectional ports in COMPO, we have to impose port roles to be

able to distinguish ports directions. The role provided (resp. required) specifies the direction of a port,

i.e. it represents the fact that the port offers services to (resp. demands services from) the environ-

ment. Unfortunately, there is no consensus in the literature on which terms should be used for roles.

For example Fractal use “server” (aka provided) and “client” (aka required) role names while SADL

“input” (aka provided) and “output” (aka required) role names. Required ports are communication

points through which a component invokes services it requires. fE.isListening() is an example

of a service invocation expression in the code of the status() service defined in the HTTPServer
(cf. Listing 3.1) descriptor, made through the fE required port. These required services are provided

by components connected to required ports. A component provide services through provided ports

making them accessible from outside.

Collection port Collection ports address the problem of multiple relationships between compo-

nents. For example, the relationship between a Bank component and Client components, where a

bank may have many clients. Support for multiple relationships between components make it possi-

ble to design dynamic architectures where the number of connections between component vary dur-

ing application lifetime. For example, the BackEnd of the HTTPServer component shown in Figure 3.3

may need to dynamically create new requests-handler components, one for each HTTP request.
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Two approaches described in Section 2 address the question of the multiple relationships:

• SOFA (see Section 2.2.2) and Fractal (see Section 2.2.2) allow to set a multiple cardinality for an

interface of a component. The cardinality is constant value during computation. When the

code for such an interface is generated, an attribute of type table or list is created.

• ArchJava (see Section 2.2.4) allows for dynamic addition of ports through the notions of port
interface and connect pattern. Thus, for each new component Client , the component Bank is

automatically equipped with a port for the link to the new component.

The solution we propose for COMPO represents a compromise between these two.

Choice 9 A component can have collection ports.

Definition 6 (Collection port) A named and ordered collection of required or provided ports. Each
port of the collection can be accessed by an index.

By this choice 9 and the definition 6 we state that a COMPO component can own collection ports.

Collections ports are declared by putting empty square brackets after the name of a port. For example,

the statement marshalling[] : {serialize(); materialize();} defines a collection port named

marshalling through which services serialize and materialize are accessible. However, the size

of these collections (cardinality) is not set by the programmer unlike SOFA and an COMPO interpreter

may decide to adopt the on demand allocation policy, such as ArchJava. In the following we use the

term collection port to denote a collection of ports. This is a misnomer because a collection of ports

is not a port. However, this term is intuitive and it makes reading easier.

In general, collection ports resemble arrays in standard programming languages. In theses lan-

guages the developers often use other kinds of collections, for example unordered collections like

stacks and dictionaries. For these collections we do not have a component-based analogy. Never-

theless, our reflection level (presented in the Chapter 5) enables COMPO’s users to define new kinds

of ports and so, a new version of collection ports could be designed to simulate unordered behavior.

The question of unordered collection ports remains open as a perspective for the future development

of COMPO.

In OOP, it is very common to have a sizeof operator to determine a size of an object, array, type,

etc, for example sizeof in C# or PHP. In accordance, we provide sizeof operator to determine the

count of connection a collection port has. For example, suppose that items[] is a collection port

with 5 connections to 5 item components, then the expression sizeof(items) returns 5.

Definition 7 (The sizeof operator) The sizeof operator, when applied on a port, returns the count
of connections the port participate in.
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Default port By default, every component owns one externally provided port named default port
through which it offers its all services which have already been provided. This solution directly comes

from SCL and it unifies the vision of objects and components in our model [Fabresse, 2007]. Objects

are seen as primitive components equipped with a single external provided port through which they

provide their methods (called services.)

Choice 10 Every component has a port named default through which all services already provided
by the component are available. The instantiation mechanism of descriptors returns a reference to the
default port of the newly created component.

Since all components have the default port we usually omit it in our figures.

Graphic conventions Figure 3.4 presents the UML-like graphical conventions used in the rest.

Figure 3.4 : Overview of the UML-like graphic conventions used for COMPO

Example in COMPO

In the HTTPServer example (see Section 3.2.1) we have presented a HTTP server component which

receives HTTP requests from network, processes the requests and finally it create and send the re-

sponds. While the FrontEnd component of the server is responsible for receiving requests, the (
BackEnd) component process and creates responds for the requests. For each request, it creates a

RequestHandler component. The BACKEND descriptor represent an example of a dynamic architec-

ture, because for each HTTP request an instance of the REQUESTHANDLER descriptor is created.

Listing 3.2 shows the BACKEND descriptor. The descriptor specifies one provided port named

reqHa4, providing the handleReq(r) service. Internally, it defines three internal required ports. The

4The “reqHa” abbreviation stands for request handler.
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Descriptor BackEnd {
provides {
reqHa : { handleReq(httpRequest); }

}
internally requires {
analyzer : RequestAnalyzer;
logger : Logger;
handlers[] : RequestHandler

}
architecture {
delegate reqHa to inReqHa@analyzer;
connect logger to default@(Logger.new());
connect analyzer to default@(RequestAnalyzer.new());
connect logger@analyzer to logging@logger;

}

service addHandler() {
|i|
i := connect handlers to default@(RequestHandler.new());
connect outReqHa@analyzer to reqHa@handlers[i];

}
}

LISTING 3.2 : The BackEnd descriptor

Descriptor RequestAnalyzer {
provides {
inReqHa : { handleReq(req, index); }
}
requires {
logger : { log(str) };
outReqHa[] : { handleReq(httpRequest); };
}
...

}

LISTING 3.3 : The RequestAnalyzer descriptor
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first port is named analyzer and described by the interface of the default provided port (see Sec-

tion 10) of the REQUESTANALYZER. The second port is named logger and described by the interface

of the default provided port of the LOGGER. The third port is a collection port named handler and

described by the interface of the default provided port of the REQUESTHANDLER. In the architecture

section, we declare one delegation connection and three regular connections (see Section 3.2.4 for

more details about delegation and regular connections.) The delegation connection says that the

external provided port reqHa delegate service invocations to the inReqHa port of the internal com-

ponent connected to the analyzer internal required port. The first two regular connections connect

new instances of LOGGER and REQUESTANALYZER descriptors to the internal required ports logger and

analyzer respectively. The last regular connection defines that the two internal components are inter-

connected between the logger and logging ports. Finally we can see the implementation of the ser-

vice addHandler service which dynamically adds and connects new instances of the REQUESTHANDLER

descriptor. The newly created components are connected to the handlers internal required collec-

tion port and then each newly created component is connected to the outReqHa external required

collection port of the analyzer component, which is an instance of the REQUESTANALYZER shown in

Listing 3.3.

Figure 3.5 : An example of a dynamic architecture with a collection port in an instance of BackEnd

3.2.3 Services

The services are units of behavior (functionalities) which a component may provide, for example a

simple math component may provide services for addition, subtraction, multiplication and division.

In some systems, a component has only one functionality. For example, a Unix process can be con-

sidered as a component performing operations on input (stdin), output (stdout) and error ( stderr)

streams. Two processes can be combined by redirecting the output stream of the first to the stan-

dard input stream of the second. Such an architectural style is often called pipes and filters [Shaw et

Garland, 1996].

However, in the majority of component-based models, a component has several functionalities

that are represented by services. A service is generally a function (or an operation) defined by a com-

ponent that has a name, parameters5 and a result. In some models, a service is defined as a set of

5The term “parameter” (or “formal parameter”) can refer to a variable bound in a lexical closure, e.g. x is a parameter in
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functions. For example, a service account management can be divided into three “sub-services”:

consultation, withdrawal and deposit.

The service invocation is the term used in this thesis to describe the mechanism (presented in a

more comprehensive and detailed way in Section 3.3.2) of a component to run a service as an effect

of receiving an invocation and to emit invocations of services to other connected components. This

mechanism should not be confused with the message sending mechanism in the the world of objects.

As we will see later, the difference with the message sending is related to the specific assembling

mechanism in the world of components. The following definition captures the consensus made by

the majority of the current models:

Definition 8 (Provided service) a functionality defined in the source code of a component, which is
offered to other components through ports, so they can invoke it later.

In general, provided services resemble public methods from the object-oriented world. A descrip-

tor introduces services to specify functionality of its instances. When a service is listed in the interface

description of one of its provided ports, then the service is public. The descriptor may also define ser-

vices which are not provided through ports in order to factorize its implementation. Such services

then resemble protected methods from the object-oriented world.

Definition 9 (Internal service) a service which is not offered trough any provided port of the compo-
nent (that defines it) is not accessible from outside of the component.

A descriptor also expresses, via required ports, the services that its instances require from other

components. These required services are not defined by the descriptor of the component, but they

may be invoked in its code, i.e. the provided and internal services may invoke required services.

Definition 10 (Required service) a service which is necessary for implementation of the behavior of a
component X (invoked in the code of its services), provided by an external component connected to the
required port of the component X.

In COMPO, services are defined inside descriptors. Each service has a signature given by the

following template: <selector> (<parameter1-name>, <parameter2-name>, ... ). A definition of a

service consist of the service keyword followed by the service signature and a source code written in

brackets after the signature, for example, see the service add in Listing 3.4.

Definition 11 (Service signature) Each service has a signature given by the following template:
<selector> (<parameter1-name>, <parameter2-name>, ... ). Two service signatures are compati-
ble if they have the same selector and the same count of parameters.

the following function definition f (x) ..., while the term “argument” (or “real parameter”) represents the value substituted

for a parameter when such a function is used, e.g. 3 is an argument in the following function call f(3).
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At run-time, services have access to ports and architecture of an instance of the descriptor (com-

ponent) they are associated with and thereby they are able to control the state of the instance.

The syntax of COMPO is mainly a java-like syntax with a few Smalltalk syntax constructs which

we kept alive of SCL (the predecessor of COMPO). To describe the desired functionality, the body

of services can be composed from the temporal variables definition like |temp, sum|; the stan-

dard program flow control structures like if-else, for, etc.; the service invocation expression like

calc.add(1,1) or the connection statement connect-to. The complete grammar can be found in

Appendix A We have chosen the java-like syntax, because we consider it more readable and expres-

sive for structural descriptions, and hence more suitable for architecture descriptions.

Example in COMPO

In the following example (see Listing 3.4) we present the descriptor CALC of a very simple calculator
component providing three arithmetic services and one probability service. calculator provides

these services through ports arithmetic and probability. To fulfill its commitment to provide the

probability service rand, the component requires a random generator via required port randGen. The

definitions of services add and mul show the use of arithmetic operators and value return. Service

pow shows program flow control structure for, assignment and a service invocation. An example of a

required service invocation is captured in the definition of the rand service. Listing 3.5 and Figure 3.6

show an example of how the calculator component can be instantiated and used.

3.2.4 Connections

Connections represent the central concept for binding in the component world (see Section 2) and

they are present in various forms in the existing component-based proposals. In general, a compo-

nent has ports in order to be able to establish connections to ports of other components. In COMPO,

there is not other way how to bind two components than to establish a connection between their

ports. In the following, when we say that two components are connected, then it is an admitted

shortcut to say that a port of the former component is connected to a port of the later component.

The literature presents two basic approaches to bind components: n-ary and binary connections.

For example, ArchJava offers primitive n-ary connect statement to bind a set of ports directly, while

Fractal offers primitive binary bindFc that binds a required port to a provided port. Although these

approaches include respectively bidirectional and unidirectional ports, they raise the following ques-

tion: Should connections be binary or n-ary?

In COMPO, we chose to provide binary connections, because they are less prone to ambiguity

existing when n-ary connection are present, as it is for example in ArchJava where there might be

more provided service candidates for one required service. Furthermore, the n-ary connections can

be factorized into binary connections in most cases. The only cases when this is not possible are

those where it is needed to combine services provided by different provided ports to connect them

to a single required port. These cases can be easily treated with adapter components [Gamma et al.,
1995a]. Moreover, in the case of binary connections, the validity of a connection between ports is easy

to verify in opposite to the n-ary case, since it is based only on the compatibility of two interfaces that

are associated with them.
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Descriptor Calc {
provides {
arithmetic : { add(x, y); mul(x, y); pow(base, exp) };
probability : { rand() };

}
requires {
randGen : { getRandVal(seed); }

}
service add(x, y) { return x + y }
service mul(x, y) { return x * y }
service pow(base, exp) {
| res i |
res := 1;
/* the exp times multiply the base */
for(i := 0; i < exp; i := i + 1)
{
res := self.mul(res, base);

}
return res;

}
service rand() {
return randGen.getRandVal(101);

}
}

LISTING 3.4 : The Calc descriptor. The self is an internal provided port referencing the current

context (it resemble this in Java.)

c := Calc.new();
connect randGen@c to default@(SomeRandomGenerator.new());
c.add(c.rand(),1);
c.mul(3,c.pow(2,3));

LISTING 3.5 : Using an instance (a component) of the Calc descriptor. The invocations of the add,

mul, pow and rand services are made through the default port of the component (see Definition 10

and Section 3.3.1)
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Choice 11 A required port can be connected to a single provided port by a regular connection if their
interfaces are compatible.

Connections allow for the invocation of required services through a port leading to the execution

of provided services via another port. A required port can be connected to a single port provided.

In COMPO, connections are oriented in the sense of service invocations. Invocations are sent from

required ports to provided ports, while computation results (return values) are sent from provided

ports to required ports. Currently, the contracts defined by the interfaces of ports are verified only

on the syntactic basis and compatibility between interfaces is based on set inclusion as indicated by

the choice 8. Figure 3.6 shows a connection between the port required randGen of an instance of the

CALC (see Listing 3.4) and the provided port default of a random numbers generator component.

The graphical notation is based on the UML notation [OMG, 2011b].

Figure 3.6 : A connection example, the connection we created by the connect statement in the second

line of Listing 3.5

Until now, we have been talking about connections from required to provided ports, i.e. ports

having different roles. These connections are sometimes called “assembly connections” in the litera-

ture, for example [OMG, 2011b]. When the connections have first-class status, then the literature talks

about “assembling connectors”. From time to time, software architects need to bind port of the same

role. For example, when the facade pattern [Arnout, 2004] is used in the component-based context,

then it is needed to pass invocations from provided ports of a facade component to provided ports

of its internal components. To bind ports of the same role, i.e. provided to provided or required to

required, the “delegation connections” [OMG, 2011b] link the external contract of a component (as

specified by its ports) to the realization of that behavior. Delegation connections represent the for-

warding of invocations. A delegation connection is a declaration that behavior that is available on a

component instance is not actually realized by that component itself, but by its internal components

Delegation can be used to model the hierarchical decomposition of behavior, where services pro-

vided by a component may ultimately be realized by one that is nested multiple levels deep within it.

Required-to-required delegation can be used to export requirements of an internal component of a

component to required ports of the component.

Choice 12 A port can be delegated to another port with the same role by a delegation connection if
their interfaces are compatible.
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In COMPO, a regular (resp. delegation) connection is specified by the expression as follows:

(connect | delegate) <port-address> to <port-address>.

Definition 12 (Port-address) The port-address expression is written in the following form
<port-name-A>@<port-name-B> and returns a reference to the <port-name-A> port of a compo-
nent connected (the target) to the <port-name-B> port. If, the <port-name-B> port is the self port
then the <port-name-A> port can be either external or internal else the <port-name-A> port can only
be a name of an external port.

For example the last connection connect backEnd@fE to default@bE; from the architecture sec-

tion of Listing 3.1 connects the backEnd port (of the component connected to the fE internal required

port) to the default port (of the component connected to the bE internal required port.)

The <port-name-B> part of the port-address expression can be substituted by any expression re-

turning a port. For example the following port-address expression arithmetic@(Calc.new()) returns

the arithmeticport of a newly created instance of the CALC descriptor, where the instantiation mech-

anism (see Section 3.3.1) returns the default port of the created instance.

In case of collection ports it is sometimes needed to address a specific port of a collection. In such

case, the <port-name-A> and <port-name-B> parts of the port-address expression can be written

with an integer index specified within brackets. For example the following port-address expression

default@regHa[2] returns the default port of the second component connected to the collection

port reqHa. An error occurs when brackets are used for a single (not collection) port and when the

specified index does not exist.

With COMPO we address the problem of capturing dynamic architectures. When an architecture

changes in the time, e.g. a component is substituted with another compatible component, it is of-

ten needed to disconnect a connection between components. Therefore we provide the disconnect
statement. The statement is specified by the template as follows: disconnect <port-address> from

<port-address> and it simply removes the connection between the specified ports. As we will see

in Chapter on inheritance (Chapter 4), the disconnect statement can be used for specialization of

inherited architectures.

3.3 Mechanisms

Similarly to the previous section, here we present in detail the core component-based mechanisms.

For each mechanism we present the general motivation, definitions and design choices made for

COMPO in order to provide a suitable solution.

3.3.1 Component instantiation

An instance, in object-oriented programming, is a specific realization of any object. An object may

be varied in a number of ways and each realized variation of that object is an instance. The cre-

ation of an instance is called instantiation. In languages that create objects from classes, an object

is an instantiation of a class. That is, it is a member of a given class that has specified values rather
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than variables. Similarly, instantiation in descriptor based COLs is a mechanism for building new

components according to the specification a descriptor defines. Such components are then called

instances of the descriptor. For example in ComponentJ [Seco et al., 2008], instances (called “objects”

in ComponentJ’s terminology) are created by applying the instantiation operator new on a component

definition (called “component” in ComponentJ’s terminology.)

In general, the majority of current programming languages use a form of the instantiation opera-

tor. As pointed by [Cointe, 1987] the instantiation mechanism has two phases: to allocate a memory

for the new instance and to give an initial value to each instance slot6 described in the descriptor of

the instance.

In COMPO, descriptors define the structure of components (their instances). In the allocation

phase of the instantiation mechanism, we analyze descriptor’s external and internal contract, i.e. the

ports it defines, and for each port the mechanism allocates a memory space. The structure and the

amount of the memory needed for each port depends on a COMPO’s interpreter implementation. The

initialization phase happens in two steps. During the first step we set the references associating each

port with its corresponding port description. These references can later be used to query the inter-

face, the name, etc. of each port. The second step works with the architecture section of descriptors

which describe connections between ports of the created component and ports of internal compo-

nents. We process each connection description, i.e. evaluate both port-address expressions and then

we set the binding reference between ports. The above lines are captured in the Algorithm 1.

Algorithm 1: Instantiation pseudo-algorithm

Data:

d : a descriptor

forall the pd ports declarations in d do
allocate memory space for a new port;

set reference from the port to pd

forall the c connection declarations in d do
process c

class X {
private Point p;
public X(Point x) { p = x }

}
Point mp = new Point();
X x = new X(mp)

LISTING 3.6 : Breaking encapsulation with parameterized constructor in Java. After the last line was

executed, the mp reference should be invalid, otherwise someone has a reference to the object which

should be private for the new instance of X

In fact, the architecture section of descriptors resemble the constructors in the object-oriented

world. The resemblance raises new questions: Should we allow for multiple architecture sections

6Here we follow the UML terminology, where slots realize class attributes
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within a descriptor? and Should be the architecture section parameterized? In fact, the answer to the

second question answers the first question, because the usual practice is to use overloading [Meyer,

2001 ; Beugnard et Sadou, 2007] and dynamic dispatch [Lippman, 1996] to distinguish multiple con-

structors by their parameters count and types. The answer for the second question is related to the

encapsulation of instances. Consider the Java example in Listing 3.6 where the x argument passed to

the constructor of X is assigned to the private slot of the new object. Hence the encapsulation of the

new object is broken because someone else is able to manipulate with the object (via the mp refer-

ence) that should be private for the instance of X. The encapsulation could be preserved by invoking

the X’s constructor with the following expression: X x = new X(new Point()). Unfortunately it is not

easy to ensure that such constructors will be always invoked in the same fashion. Therefore, in the

current version of COMPO, we have made the following choice:

Choice 13 The architecture section of descriptors could not be parameterized.

3.3.2 Service invocation

The service invocation mechanism requires the following data:

• a port through which the invocation is sent,

• a name of the service to be invoked (similar to selector in the object world )

• a set of arguments

For example: aPort.selector(arg1, arg2)

The emitting port The service invocations are made in the source code of services . Syntactically, a

service invocation is similar to sending a message but it is done through a port called emitting port.

On other words, service invocations are not sent to the actual implementor of the behavior (as it is in

OOP, for example) but they are send to the ports.

Choice 14 A service invocation is always made via a port of a component.

The Choice 14 is motivated by the need to ensure the communication integrity in software archi-

tectures [Luckham et al., 1995b ; Aldrich, 2003] which say that any communication between compo-

nents must happen through a well described connection.

Definition 13 (Communication integrity) Each component in the implementation may only com-
municate directly with the components to which it is connected in the architecture

Because connections are established between the ports, it is imposed that the service invocations

are also performed via ports making explicit all the dependencies they induce. Indeed, it was possible

to directly invoke a service of component from another component, but it would introduce a “hidden
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dependency in the code” between these two components which is not described by any connection.

In addition, for invocations made through a required port, as shown in Figure 3.7, the receiver is

unknown for the pm component in the implementation and therefore it cannot be referenced directly.

When one assemble an application, he select and connect the receiver component through ports.

Invocations of services through a required port then cause the execution of services of the component

that receives them.

Figure 3.7 : Invocation of the required service getRandomNumber made through the port randomizer
of component pm

Invocations via the required ports allow for better decoupling since the establishment or removal

of connections permits to set the receiving component which then effectively treats the service in-

vocations. In this context another question raises: Do we need to invoke services through provided
ports? Unlike invocations made through required ports, provided ports do not promote decoupling

as the emitting port referenced in the code is a provided port and therefore it belongs to the receiver

component that actually process the invocation. Although they do not promote decoupling and fix

receiver’s component in the code, the service invocations made through provided ports seems to be

necessary for two reasons: (i) to invoke internal services and (ii) to invoke services provided by inter-

nal components of a composite.

Because service invocations are always made through a port and, in the same time, there can

be services which are not provided through any port (internal services), how is it possible to invoke

an internal service? Is surprising, that this problem is addressed weakly by existing COLs. In Julia

and ArchJava the components are implemented by a Java class and therefore it is possible to invoke

an internal service by sending a message using the pseudo-variable this . In COMPO, we make the

following choices:

Choice 15 Any component possesses an internal provided port named self through which all services
defined in the component are available.

The self port provide an integrated and uniform solution for the invocation of internal services.

Any component has the internal self port and this is why we usually omit it in our figures .
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Parameters The parameters of services and arguments passing raises many questions when invok-

ing services: What is a parameter? Do we really need parameters or would it be possible to use con-

nections instead? If yes, what happen when we pass arguments? These questions were well addressed

in SCL and therefore we take over the following choices made for SCL:

Choice 16 The parameters of the service invocations are references to ports .

The Choice 16 answers the initial question because it determines the nature of the parameters. It

helps to overcome the problem of violating the communication integrity [Léger et al., 2006], because

service invocations sent to arguments are made through ports. If the parameters are references to

ports, then what is the difference between a parameter and a required port? SCL’s answer is: The

difference between the parameters of the required services and ports is, apart from the syntax, the

scope of the identifier and its lifetime (extent). Parameter’s scope is the context of a single service,

while the scope of a required port is the context of a component. Moreover, parameters live only for

the time of the service’s execution, but required ports exist as long as the component that owns them

exist. SCL and COMPO integrate the following solution:

Choice 17 Arguments passing is made by the automatic establishment and removal of connections.
Any component has a required collection port named args. During a service invocation, the argu-
ments, i.e. ports, ha1, a2, ..., ani are each respectively connected to har g s[1], ar g s[2], ..., ar g s[n]i. The
identifiers of the parameters are actually alias identifiers of ports args . At the end of the execution of
the service, all connections to args ports are removed. In the case when a service invocation is dele-
gated, because the receiving port is delegated, the appropriate delegation connection for the args port
is also automatically established and removed.

This choice propose a uniform mechanism respecting the communication integrity since it is

impossible for components to communicate otherwise than though connected ports.

Figure 3.8 shows an example of using this service invocation mechanism processing steps as fol-

lows:

1. Emitting a service invocation through a port. In Figure 3.8 component calculator emits

through its port randGen a service invocation for service getRandVal with a sole argument be-

ing a reference to the default port of an instance of some SEED descriptor.

2. The receiver (component gen in our example) receives and processes the invocation. We will

return to the way a component processes a service invocation later in this Section.

3. The ports passed as an argument to the invocation are connected to the args ports of the re-

ceiver component (see Figure 3.8).

4. Then the service is executed. A mechanism for transparent aliasing (managed by an COMPO’s

interpret) allows the programmer to use names specified for the parameters in the implemen-

tation and does not require him to use the args ports directly. In our example, the source code

of the service getRandVal of gen component uses the identifier seed as parameter name and

not args[1].
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5. At the end of the execution of the service, all connections to the args ports are removed.

Figure 3.8 : Illustration of service invocations treatment in COMPO

There are two last questions to be answered: How return values are treated? and How one can
store an argument of a service invocation or a return value? When a service foo invokes (through a

port) another service bar and bar returns a value, the value is (in the code of foo) either passed as

an argument for another service invocation (then it is treated as usual) or the value is about to be

stored7. First, it is important to note that a value is always a reference to a provided port. In the

case of arguments an argument value is the reference to a provided port which is connected to the

appropriate args port. In the case of return value the following code snippet show four basic cases:

return 1; /* Case 1 */
return Calc.new(); /* Case 2 */
return providedPort; /* Case 3 */
return requiredPort; /* Case 4 */

As we will see in the chapter about reflection (cf. Chapter 5), numbers, strings, symbols, etc....

are also components, thus Case 1 actually means that a reference to the default port of component

7Indeed, there is the third option that nothing is done, in that case the return value is simply destroyed.
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representing number 1 is returned. Case 2 is an example of instantiation, as we will in the section

about instantiation mechanism (cf. Section 3.3.1), the mechanism returns a reference to the default
port of the new instance. Case 3 already returns a reference to a provided port. In Case 4, we return

a reference to the provided port to which the required port is connected. Or there is an error if the

required port is not connected.

There are two options for storing or referencing a value in COMPO: connections (regular or dele-

gation) and assignment operator :=. Both options may lead to many dangerous situations (see List-

ing 3.7) when internals of the component owning the port representing return or argument value

might be exposed, referenced and potentially abused. Therefore to preserve the encapsulation of

components, we make the following two choices:

Choice 18 It is forbidden to use, in the code of a service, a value of a service parameter (argument) to
build a regular or delegation connection.

Choice 19 Assignment operator always stores a clone of the value being on the left side of the assign-
ment expression.

/* suppose existence of:
- an internal required port ’irp’
- an internal provided port ’ipp’
suppose that:
- invocation x.bar() returns a reference to the provided port

of an internal component of the component connected to x

*/
service foo(x) {
|temp|
/* connect ’irp’ to the default port of a component connected to x */
connnect irp to default@x;

/* connect required port reqPort of a component connected to x to the ’ipp’ */
connnect reqPort@x to ipp;

/* connect ’irp’ to the default port of an internal
component of the component connected to x */

connect irp to default@(x.bar());

/* storing a reference to a foreign internal component */
temp := x.bar();

}

LISTING 3.7 : Dangerous behavior when referencing or storing return values and invocation argu-

ments.

In the following we define two basic algorithms of the service invocation mechanism in COMPO.

The two algorithms concern:
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• emitting a service invocation through a required port

• receiving a service invocation through a provided port

Algorithm 2 captures the treatment of a service invocation in a required port. This algorithm

consists of three cases. The first (see Fgure 3.9 case 1) corresponds to a regular connection between a

required port and a provided port. The invocation in this case is forwarded to the specified connected

provided port and treated according to the algorithm 3 (described below after). The second case (see
Fgure 3.9 case 2 ) corresponds to a delegation connection. The invocation is then transmitted to the

delegated required port which treats the invocation by the same algorithm 2. The third and last case

corresponds to a unsatisfied dependency when the required port is not connected at all. Such case

produces an error. The treatment of this error should result in an exception being thrown. However,

this is beyond the scope of this thesis because it would require to introduce a exception handling

system for COMPO which should be adapted to the component-based context at it has been studied

in [Souchon, 2005].

Algorithm 2: Sending a service invocation through a required port

Data:

i : a service invocation

r1 : the required port through which i is emitted

if r1 is connected to a provided port p2 then /* case 1 */
transmit i through p2;

else
if r1 is delegated to a required port r2 then /* case 2 */

delegate i through r2;

else /* r1 not connected */
error case;

Algorithm 3 captures the treatment of a service invocation in a provided port. This algorithm

consists of four cases. The first (see Fgure 3.10 case 1) is to delegate the service invocation to another

provided port that deals with it by the same algorithm. This happens only if the requested service is

not implemented by the current component. In the second case (see Fgure 3.10 case 2), the requested

service is performed as defined by the component to which the receiver port belongs. In the third case

(see Fgure 3.10 case 3), the component to which the port belongs does not implement the requested

service and so the lookup mechanism specified in Chapter 4 has to be executed. The last case is an

error case where the receiving port is not connect, nor delegated and the demanded service is not

implemented by the current component.

These algorithms have been designed to take into account issues or cases requiring special at-

tention, such as the one shown in Figure 3.11. Where a service invocation is transmitted through the

port r1 of the internal component c1 in the code of the service foo . The treatment of this invocation

according to algorithm 2 resulted in error. There is not a rule to automatically run the service bar of

the composite. Such a rule would be problematic when providing various services for two internal

components that require a service named bar . In our example, the service invocation of bar service
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Figure 3.9 : The basic cases concerning service invocations through required ports
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Figure 3.10 : The basic cases concerning service invocations through provided ports

through r1 in component lead c1 to the execution of the service bar of composite c2, the architect

must establish a connection between the port r1 of the internal component c1 and port self of the

composite c2.
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Algorithm 3: Receiving a service invocation via a provided port

Data:

i : a service invocation

p1 : the provided port through which i was received

if selector(i)2 interface(p1) then
if p1 is delegated to a provided port p2 then /* case 1 */

delegate i through p2;

else
if descriptor(component(p1)) possesses the service demanded in i then /* case 2 */

execute s

else
if descriptor(component(p1)) does not implement
the service demanded in i then /* case 3 */

lookup s

else /* p1 not connected */
error case;

else /* service is not listed in the interface */
error case;

3.3.3 Composition mechanism

The composition mechanism represent one of the core ideas behind components. It permits users

to create a new component by connecting off-the-shelf components within the context of the new

component, i.e. to achieve (“development by reuse” [Fabresse et al., 2012]). These new components

are then called composite because they are themselves made of more elementary components called

internal components. Internal components are sometimes referenced as sub-components in the liter-

ature. We chose to not use the sub-component terminology, because it might confuse COMPO’s users,

in case they use inheritance to define sub-descriptors (see Chapter 4.) Composition is comparable to

the composition relationship between UML classes.

Naturally, the first question which comes to one’s mind is: Do we need composites? To answer this

question, we recall the decoupling aspect of required ports which increases the potential for reuse.

This technique for extracting dependencies from the source code in the form of required services is

sometimes called factoring out [Seco et Caires, 2000]. In the example of Figure 3.6, an instance of

CALC can be used with any component providing a service for generating random numbers. Although

this factoring out technique allows for a better decoupling, it also poses problems of transition to the

scale and reuse. Indeed, it is currently impossible to directly reuse an assembly of components, e.g.
an instance of CALC connected to an instance of SOMERANDOMGENERATOR Figure 3.6. This means that

for every application where the architect wants to integrate an instance of CALC, it must include an

instance of SOMERANDOMGENERATOR again and establish the necessary connection between these two

components. Composites include a response to these needs, namely:

• encapsulate an assembly of several components to hide certain details in a software architec-
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Figure 3.11 : An example of a problematic case of service invocations

ture,

• directly reuse assemblies of components.

The ADLs were the forerunners in providing the concept of configuration. In WRIGHT for exam-

ple, configuration is a set of components connected through connectors. Unlike a configuration, a

composite is component. The models such as Fractal and ArchJava propose the concept of compos-
ite to represent assemblies of components. These models are called hierarchical as a composite can

be decomposed into a collection of interconnected sub-components, each sub-component may be a

composite or a simple component. We chose to incorporate a similar approach.

Choice 20 A composite is a component having one or more internal components.

Considering composites as components (cf. Choice 20) allows :

• to put on the shelf and reuse;

• to create partially configurable architectures by use of required ports;

• to make them more understandable, since complex architectures can be examined at different

levels of granularity depending on whether or not we detailed the content of a composite.

Before going further, it seems necessary to present a problem — often overlooked in existing ap-

proaches — regarding the design of composites requiring to not apply the factoring out principle. In-

deed, when a programmer develops a composite, it selects and sets the internal components it uses.
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This necessarily leads to a coupling between a composite and its internal components. The design of

a composite thus requires a choice between what needs to be outsourced (via required ports) to keep

a high potential for reuse and what needs to be made using internal components to hide details. The

systematic use of composites without outsourcing does not define reusable components. However, it

is impossible to prevent this in a COL. We can limit the adverse effect of the composition by requiring

that each descriptor is defined separately (cf. choice 21).

Choice 21 A composite does not contain the descriptors of its internal components, but possess refer-
ences to them.

By this Choice 21, we prohibit nesting of descriptors (the parallel in Java would be to prohibit inner
classes). Our goal is that all descriptors are placed on the shelf to be reused. This choice is motivated

by the fact that a component should not just be seen as an encapsulated set of internal components

but as a composite component to be putted on the shelf and possibly used as an internal component

in another context. Figure 3.12 empathizes the difference between an assembly of components and a

composite.

Figure 3.12 : Empathizing the difference between an assembly of components and a composite. The

COMPILER can be easily putted on the shelf and reused later.

To preserve the communication integrity [Léger et al., 2006], i.e. the fact that components com-

municate uniquely via ports and each communication channel has to be described by a connection,

we have to answer the following question: How should we communicate with internal components?
It is surprising that this question is not addressed by existing COLs. For example, the communication

integrity is strictly abide in ArchJava, but there is no description of a communication channel (a con-

nection) between a composite and its internal component. Internal required ports are the COMPO’s

answer to this question. The architect of a composite has to define an internal required port (in a

descriptor of the composite) for every internal component he/she wants to reference.

Choice 22 A composite communicates with its internal components through internal required ports,
one per an internal component.
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The Choice 21 preserves the communication integrity and simplifies COMPO’s design because

there now only one communication protocol.

3.3.4 Substitution mechanism

One of the main difficulties of software evolution is that all artifacts produced and used during the

entire software life-cycle are subject to changes, ranging from early requirements over analysis and

design documents, to source code and executable code [Mens, 2008]. Updating the executable code

is the last step to reflect the changes required by the new requirements. The substitution mechanism

focus only on this last step: how to change a component in the running system.

Run-time change seems to the stimulus for many component-based approaches, as for example

Kevoree, ArchJava, OpenCOM, Fractal, Darwin, WRIGHT, SOFA, ACME, MetaORB, DynamicTAO, ...

Besides, some approaches provide languages for dynamic update description like Fractal’s FScript or

SOFA’s DCUP. It is surprising that instead of the usual heterogeneity in terminology, etc., there is a

certain consensus in the case of component’s substitution. The widely accepted criterion to deter-

mine whenever a component can or cannot be change to another component in an architecture is

that these two components has to be substitutable, i.e. their external contracts have to be compati-

ble. For example ACOEL, ArchJava and CompJava define the subtitutability constraint and sub-type

relation as defined by Liskov substitution principle:

“In a computer program, if S is a sub-type of T, then objects of type T may be replaced
with objects of type S (i.e., objects of type S may be substituted for objects of type T) with-
out altering any of the desirable properties of that program (correctness, task performed,
etc.)” [Liskov et Zilles, 1974].

In general, a component type is a sub-type of another one if it provides at least the same and re-

quires at most the same. One solution to avoid the problem is to forbid substitutability [?]. However

substitutability is important; most of reuse design patterns [Gamma et al., 1995b] use it and more

globally it the mechanism represent the heart of many frameworks and of the product line technolo-

gies. With respect to others, we consider the choice to constraint substitutions with such sub-type

relation as a unnecessary limitation. In stead of saying that a component a is substitutable with a

component b if b provides at least the same and requires at most the same as a, we chose the follow-

ing:

Definition 14 (Substitutability) A component a is substitutable with a component b if the descriptor
of a is compatible with the descriptor of a and all requirements of component b will be satisfied after
the substitution.

Such a non-restrictive system delegates responsibility for requirements satisfaction to the users.

To define the compatibility relation between descriptors the external contract is used. An exter-
nal contract is defined by a descriptor and computed as a set of tuples, each tuple being a triplet

portname-interface-role. For example, the contract for descriptor CALC from Listing 3.4 is:
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{
{arithmetic-{add(x, y); mul(x, y); pow(base, exp)}-provides},
{probability-{rand()}-provides},
{randGen-{getRandVal(seed)}-requires}

}

A contract cannot be computed as a set of all provided and required interfaces, because infor-

mation about interfaces’ roles (provided or required) is missing [Seco et Caires, 2000]. For example a

component providing the service compile and a component with a required service compile will be

then indistinguishable. Also port structure has to be respected, component providing a run service

via a port a and a component providing a service run via a port B, are structurally different.

External contracts permit us to define compatibility relationship between descriptors:

Definition 15 (Descriptors’ compatibility) Component descriptor A is compatible with descriptor B

if for each tuple of the external contract of A there is at least one unique unused tuple in the external
contract of B having a compatible interface and the same role.

Very important is the word “unused” in the Definiton 15, it empathizes the fact that once a tuple

of the external contract of B is matched with a tuple of the external contract of A, it cannot be matched

again. The interface compatibility were already defined in Choice 8.

Every time when a user tries to substitute components, he/she uses the replace routine imple-

menting the substitution mechanism. The replace routine, in first step, checks if a descriptor of the

new component is compatible with descriptor of the original component and, in second step, if all

requirements of a new component will be satisfied after the substitution. If everything is OK, the rou-

tine performs the substitution, i.e. is disconnects the original component from an architecture and

connects the new component to the architecture. The replace routine performs each substitution as

an atomic operation, which means that no service invocation can be emitted or received during this

operation. If the routine fails an error occurs and the substitution is not performed. The syntax and

semantics of the replace routine is as follows: replace <portA> with <portB>. Where <portA> is a

port to which the original component (that should be replaced) is connected. <portB> is a port to

which the new component (that should replace the original component) is connected.

Figure 3.13 shows an example where the replace routine is used to substitute an instance of the

CALC (defined in Listing 3.4) with an instance of the EXTCALC (defined in Listing 3.8).
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Descriptor ExtCalc {
provides {
arithmetic : { add(x, y); mul(x, y); pow(base, exp) };
probability : { rand() };
combinatoric : { fib(x); }

}
requires {
randGen : { getRandVal(seed); };
stack : { push(val); pop(); empty(); }

}
service add(x, y) { return x + y }
service mul(x, y) { return x * y }
service pow(base, exp) {
| res i |
res := 1;
/* the exp times multiply the base */
for(i := 0; i < exp; i := i + 1)
{
res := self.mul(res, base);

}
return res;

}
service rand() {
return randGen.getRandVal(101);

}
service fib(x) {
| tot a |
tot := 0 ;
while(stack.empty() == false) {
a := stack.pop()
if(a < 1) { tot := tot + 1; }
else {

stack.push(a - 1);
stack.push(a - 2);

}
}
return tot;

}
}

LISTING 3.8 : The EXTCALC descriptor.
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Figure 3.13 : An example of a substitution. The replace routine is used to substitute an instance of the

CALC (defined in Listing 3.4) with an instance of the EXTCALC (defined in Listing 3.8.) The compatibility

of the descriptors is illustrated by the tuples checking in the bottom of the figure.

3.4 Recapitulation

In this section we repeat the definitions and the choices that we have made in this chapter.
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3.4.1 Definitions

Component-oriented language (COL) A language used to design and implement software compo-

nents (development for reuse) with well defined external contracts; that can be stored in libraries

(also called components on shelves) and, in the same time, to develop applications by assem-

bling off-the-shelve software components, that is, to allow to describe software architectures in

terms of connecting components selected from libraries (development by reuse.) (cf. 1)

The architecture of a component The architecture of a component is a description of an internal

composition, i.e. a system of internal components and their inter-connections, according to

which the component will be initialized. (cf. 2)

COMPO-descriptor A descriptor defines the structure and behavior of its instances called compo-

nents. The behavior is given as a set of services definitions. The structure is given by description

of ports and by description of the architecture. Descriptions of external (resp. internal) ports

define an external contract (resp. an internal contract) of instances of the descriptor. (cf. 3)

Required (resp. provided) port Required (resp. provided) port of a component is a named connec-

tion and communication point through which the component requires (resp. provides) a set of

services. (cf. 4)

Universal interface * In case of provided ports, the universal interface * means that a port offers

all services already provided by the descriptor of a component that owns the port. In case of

required ports, it means that any service could be invoked through such a port. (cf. 5)

Collection port A named and ordered collection of required or provided ports. Each port of the col-

lection can be accessed by an index. (cf. 6)

The sizeof operator The sizeof operator, when applied on a port, returns the count of connections

the port participate in. (cf. 7)

Provided service a functionality defined in the source code of a component, which is offered to other

components through ports, so they can invoke it later. (cf. 8)

Internal service a service which is not offered trough any provided port of the component (that de-

fines it) is not accessible from outside of the component. (cf. 9)

Required service a service which is necessary for implementation of the behavior of a component

X (invoked in the code of its services), provided by an external component connected to the

required port of the component X. (cf. 10)

Service signature Each service has a signature given by the following template: <selector>

(<parameter1-name>, <parameter2-name>, ... ). Two service signatures are compatible if

they have the same selector and the same count of parameters. (cf. 11)

Port-address The port-address expression is written in the following form

<port-name-A>@<port-name-B> and returns a reference to the <port-name-A> port of a

component connected (the target) to the <port-name-B> port. If, the <port-name-B> port
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is the self port then the <port-name-A> port can be either external or internal else the

<port-name-A> port can only be a name of an external port. (cf. 12)

Communication integrity Each component in the implementation may only communicate directly

with the components to which it is connected in the architecture (cf. 13)

Substitutability A component a is substitutable with a component b if the descriptor of a is com-

patible with the descriptor of a and all requirements of component b will be satisfied after the

substitution. (cf. 14)

Descriptors’ compatibility Component descriptor A is compatible with descriptor B if for each tuple

of the external contract of A there is at least one unique unused tuple in the external contract

of B having a compatible interface and the same role. (cf. 15)

3.4.2 Choices

Choice 1 A component is a run-time entity, instance of a descriptor, which provides and requires services

through ports.

Choice 2 The component descriptors are placed on the shelf.

Choice 3 A component (not a descriptor) is a subject for assembling.

Choice 4 Descriptors cannot be combined.

Choice 5 The description of the architecture of a component is a part of a descriptor of the component.

Choice 6 A component has unidirectional ports.

Choice 7 A interface is associated with a port.

Choice 8 A interface specifies a set of signatures of services. The interface compatibility is based on sub-

typing relationship between their types which is based on the inclusion of sets of signature

services.

Choice 9 A component can have collection ports.

Choice 10 Every component has a port named default through which all services provided by the com-

ponent are available. The instantiation mechanism of descriptors returns a reference to the

default port of the newly created component.

Choice 11 A required port can be connected to a single provided port by a regular connection if their in-

terfaces are compatible.

Choice 12 A port can be delegated to another port with the same role by a delegation connection if their

interfaces are compatible.

Choice 13 The architecture section of descriptors could not be parameterized.

Choice 14 A service invocation is always made via a port of a component.
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Choice 15 Any component possesses an internal provided port named self through which all services

defined in the component are available.

Choice 16 The parameters of the service invocations are references to ports .

Choice 17 Arguments passing is made by the automatic establishment and removal of connec-

tions. Any component has a required collection port named args. During a service

invocation, the arguments, i.e. ports, ha1, a2, ..., ani are each respectively connected to

har g s[1], ar g s[2], ..., ar g s[n]i. The identifiers of the parameters are actually alias identifiers

of ports args . At the end of the execution of the service, all connections to args ports are

removed. In the case when a service invocation is delegated, because the receiving port is dele-

gated, the appropriate delegation connection for the argsport is also automatically established

and removed.

Choice 18 It is forbidden to use, in the code of a service, a value of a service parameter (argument) to build

a regular or delegation connection.

Choice 19 Assignment operator always stores a clone of the value being on the left side of the assignment

expression.

Choice 20 A composite is a component having one or more internal components.

Choice 21 A composite does not contain the descriptors of its internal components, but possess refer-

ences to them.

Choice 22 A composite communicates with its internal components through internal required ports, one

per an internal component.

3.5 Related work

The COMPO language builds on diverse fields of related work, including architecture description lan-

guages, component frameworks, module systems or modeling tools. COMPO integrates ideas from

many of these areas in order to provide a rich architecture specification language and a practical pro-

gramming language.

Among the component-based approaches, only some are consistent with Definition 1, for exam-

ple: ArchJava ComponentJ Piccola or Lagoona. Indeed, all these languages allow for component-

based development and offer, even if called differently, the core concepts and mechanisms of the

component-based approach, unlike the proposals that primarily use standard languages to design

frameworks for creating component-based solutions, such as Fractal’s Java implementation called

Julia.

COMPO shares with SCL (the predecessor of COMPO) many features like unique communica-

tion protocol, unplanned connections support or services’ arguments passing. With respect to SCL,

COMPO tries to push further in modeling aspect, its explicit architectures support, meta-model and

inheritance system (described in next sections) boots modeling power of the language and provide

basis for Model Driven Development.
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In opposite to COMPO, some COLs, like ArchJava or CLIC model are not implementation indepen-

dent. For example, CLIC focus on symbiosis between CLIC and Smalltalk plus it enables to benefit

from modularity and reusability of components without sacrifice performance. Compared to COMPO,

modeling powers of CLIC are limited, the model allows components to have only one provided port.

The authors argue that it is hard to split component functionality over multiple ports, because de-

velopers do not know beforehand, which services will be specified by each required port of client

component. ArchJava is an extension of the Java language to express application architecture directly

in the source code and ensure the adequacy of the architectural descriptions and implementation.

The framework family focus primarily on practical issues such as deployment, packaging or non-

functional services. They are lacking some concepts of pure component models, as for example ex-

plicit internal composition description. With the CCM model, the OMG aims in building a bridge

between the pragmatic problems and concepts of architecture description. Fractal is a component

model which highlights the concepts of composites and sharing. SOFA focuses on the dynamic nature

with the dynamic replacement of component or to the connectors that are reification of connections

between components.

Except from COM, Javabeans and EJB approaches, the composition mechanism is a central

mechanism in the most of approaches. It is based on different types of connections between ports

(or interfaces for models without ports). The majority of approaches distinguishes delegation links

between a composite and one of its internal components and the “normal” connections between two

components. CCM also distinguishes connections types required/provided (for synchronous com-

munication) and event connections (for asynchronous communication). ArchJava also proposed in

its first the concept of service versions released (broadcast) that resembles the event links.

Verification of connections between components is, as in COMPO, based on the sub-typing rela-

tionship between the interfaces for syntax compliance. ArchJava also offers the most advanced typing

system more complete control of the communication integrity between components.

In the generative family, a number of architecture description languages (ADLs) have been de-

fined to describe, model, check, and implement software architectures. Many of these languages

support sophisticated analysis and reasoning. For example, WRIGHT allows architects to specify tem-

poral communication protocols and check properties such as deadlock freedom. SADL formalizes

architectures in terms of theories, shows how generic refinement operations can be proved correct,

and describes a number of flexible refinement patterns. The SADL system formalizes architectures

in terms of theories, providing a framework for proving that communication integrity is maintained

when refining an abstract architecture into a concrete one. However, the system did not provide au-

tomated support for enforcing communication integrity. While SADL and WRIGHT are pure design

languages, other ADLs have supported implementation in a number of ways. UniCon’s tools use an

architectural specification to generate connector code that links components together. 2̧ provides

run-time libraries in C++ and Java that implement 2̧ connectors. Darwin provides infrastructure sup-

port for implementing distributed systems specified in the Darwin. Although the code generation

tools are convenient to programmers, they do not automatically enforce communication integrity.

Furthermore, these tools support a limited number of built-in connector types, and developers can-

not easily define connectors with custom semantics. Architectures in Rapide can be filled in with im-

plementations in an executable sub-language or in languages such as C++ or Ada. The Rapide system
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includes a tool that dynamically monitors the execution of a program, checking for communication

integrity violations. The Rapide papers also suggest that integrity could be enforced statically if sys-

tem implementers follow style guidelines, such as never sharing mutable data between components.

However, the guideline forbidding shared data prohibits many useful programs, and the guidelines

are not enforced automatically.

3.6 Summary

In this chapter, we presented the heart of this thesis, a component-oriented programming and mod-

eling language named COMPO. We began by the philosophy of the language where we have defined

the core concepts and mechanisms the component-based approach. Then in each section we have

detailed the concepts and mechanisms, one by one. For each concept or mechanism we have pre-

sented COMPO’s realization and design choices together with the reasons which led us to incorporate

this particular solution.

Thus, we believe that COMPO offers a reasonable solution for all the core concepts and mech-

anisms and thus it is suitable for component-based development, which is not always the case of

languages like Julia, ArchJava or ComponentJ as we have tried to show throughout the chapter. Sec-

tion 3.4 is a recapitulation of the definitions and the choices that we have made for COMPO yet. How-

ever, remember the points that make the COMPO language specific:

• the service invocation mechanism and in particular the arguments passing in terms of tempo-

rary connections and preserving the integrity of communications,

• the internal port named self to make self-references using the standard service invocation,

• the internal required ports used for communication with internal component of a composite.
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Integrating inheritance

Every piece of knowledge must have a single, unambiguous,

authoritative representation within a system.

Don’t Repeat Yourself Principle

Preamble

In this chapter, we present an original and complete inheritance system for our component-based pro-
gramming and modeling language. We first motivate the need for an inheritance system by showing
cases where an inheritance mechanism is inevitable for reusing the structural definition of descriptors.
Then we identify the subjects for inheritance in a component-oriented programming language and for
each subject we present (section by section) our solution for extending descriptors and specializing in-
herited subjects. Finally, this chapter ends with a summary.
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4.1 Introduction: Do we need inheritance?

ALOWER development time/cost and an elimination of bugs are the main advantages and mo-

tivations for achieving code-reuse in software development. Despite its well-known patholo-

gies [Taenzer et al., 1989 ; Hürsch, 1994 ; Boyland et Castagna, 1996], class-based inheritance is and

has been the essential mechanisms for code-reuse in object-oriented programming (OOP). To over-

come the problems of inheritance, new code-reuse techniques1 like mixins [Bracha et Cook, 1990],

traits [Curry et al., 1982] or aspects [Kiczales et al., 2001] have been invented.

Inheritance is indeed not mandatory; many efficient languages do not integrate it (C for exam-

ple). Inheritance also introduces some complexity in language implementation and in programmers

code. However, the success of the object-oriented paradigm do demonstrate that its advantages are

greater than its drawbacks, especially if we take into account the fact that better specifications and

implementations continue to be developed [Ducournau, 2011]. Therefore we see inheritance as the

major cornerstone of code-reuse in OOP for the tow following reasons:

1. For the ability it gives developers to organize their ideas on the base of an incremental concept

classification (a list is a kind of collection, such an architecture is a kind of visitor, ...) which is

itself one key of human abstraction power.

2. For the calculus model that makes it possible to not only reuse but adapt software, by executing

an inherited code in a new context (the receiver environment).

Even if it has been successful in the world of objects, inheritance as a reuse mechanism has

been underrated and considered to be controversial by the component community [Szyperski, 2002 ;

Oplu⇤til, 2003 ; Lahire et al., 2004]. In ECOOP’96, Weck and Szyperski presented a contribution [Weck

et Szyperski, 1996] entitled: “Do we need inheritance?”. In their work, they argue in favor of composi-

tion as a code-reuse mechanism and say that inheritance should rather be used as a modeling aid to

express relationships between different classes. Indeed, composition is already a present code-reuse

mechanism in the component world (see Section 3.3.3) and introducing an inheritance mechanism

seems to be redundant in this perspective. In this section we try to show that sole composition is

not enough and that it is worth to integrate an inheritance mechanism into a component-oriented

language.

There are also some approaches proposing component sharing to improve software reuse (black-

box reuse type) as in Fractal [Bruneton et al., 2006] or Ernie [Outhred et Potter, 1998]. The developer

can specify an internal component that is accessible from multiple composite components. Although

sharing may save resources, it breaks the encapsulation of the composite components, which is as

dangerous as for example when two instances of different classes hold a private reference to a unique

object in OOP.

It is true that inheritance causes problems ranging against the decoupling and encapsulation

principles of the component-based approach. Before explaining these problems, remember that

in OOP, a class has two types of customers: (i) those who instantiate (instantiating customer); and

1See for a good survey [Lahire et Quintian, 2006]
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(ii) those who inherit (inheriting customer). These are the customers of the second category that

are both powerful and problematic. Problematic, because a sub-class is a privileged customer of its

super-class and thus it can access the internal details and therefore it makes the encapsulation of the

super-class “fragile” [Snyder, 1987 ; Mikhajlov et Sekerinski, 1998]. Figure 4.1 illustrates this problem.

Assume the existence of a class Set whose instances represent sets. This class owns methods add to

add an item and addAll to import all the elements of another set. Suppose we want to write a class

CountingSet inheriting class Set and adding the code to count elements. To do so, the programmer

of the class CountingSet must be aware of the implementation of the two methods add and addAll
defined in the class Set. Indeed, if the add method is invoked in the code of addAll method, the class

CountingSet should redefine the addmethod (see Figure 4.1 case (a)). In opposite, if the implementa-

tion of the addAll method does not use the add method and imports items directly, the CountingSet
must override both methods add and addAll (see Figure 4.1 case (b)). This example shows that in

many cases, the implementation of a super-class has to be known to make a sub-class, hence, the

internals are exposed.

Figure 4.1 : Illustration of the fragile base class problem

The fragile base class problem shows that inheritance is in contradiction with the encapsulation

and decoupling principles of the component-based approach on at least the following two points:

• it requires having access to the source code (i.e. to have a detailed description of the imple-

mentation)

• induces an implicit coupling between a class and all its super-classes (direct and indirect) as

the modification of a super-class changes all its sub-classes.

The white box nature of inheritance goes against the black box nature of components. It seems

that it would be better [Stein, 1987] to use composition which is a black box reuse mechanism to
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Figure 4.2 : Analogies between inheritance and composition

achieve incremental description and specialization. Such a solution was, for example, proposed by

the authors of ComponentJ [Seco et Caires, 2000]. Figure 4.2 illustrates the composition solution for

the following two cases:

Case (a) Building a subclass by adding new properties can be achieved by creating a composite that

exports all the features of its internal components (see Fgure 4.2 case (a)).

Case (b) A class with abstract methods can be likened to a component with the required services (see
Figure 4.2 case (b)).

A Java example in Listing 4.1 illustrates a class Parent which defines two methods named bar and

foo. In the body of the foo method the bar method is invoked. Class Child inherits class Parent and

it specializes its method bar. When the foo method is invoked on an instance of Child, the Parents’s

code of foo is executed. Because the pseudo-variable this represents the current receiver, i.e. the

instance of Child, method bar of class Child is executed.

However the same inheritance scenario realized with composition causes the “initial receiver lost”

problem [Lieberman, 1986b], as it is shown in Listing 4.22. In this example class Child emulates in-

heritance by the attribute p of type Parent to which it assigns a reference to an instance of Parent.

Then Child defines a method foowhich invokes foo on p, i.e. the Parent’s implementation of foo. In

fact, the foo method of class Child implements a delegation of invocations similar to delegation con-

nection defined in Section 3.2.4. When the foo method is invoked on an instance of Child, the foo’s

2In fact, the example uses aggregation (the private attribute p of class Child) which is a kind of internal composi-

tion [OMG, 2011b]
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class Parent {
public String foo() { return this.bar(); }
public String bar() { return "bar() of Parent"; }

}

class Child extends Parent { // inheritance
public String bar() { return "bar() of Child"; }

}

public class Example{
public static void main(String[] args){
Parent p = new Child();
System.out.println(p.foo()); // prints "bar() of Child"

}
}

LISTING 4.1 : Executing an inherited code in a new context (the receiver environment), a Java example.

code is executed and invokes method foo on the p instance of class Parent. Because the pseudo-

variable this represents the current receiver, i.e. the instance of Parent, method bar defined in class

Parent is executed instead of the expected method bar of Child.

class Parent {
public String foo() { return this.bar(); }
public String bar() { return "bar() of Parent"; }

}

class Child {
private Parent p = new Parent(); // composition
public String foo() { return p.foo(); } // message forwarding
public String bar() { return "bar() of Child"; }

}

public class Example{
public static void main(String[] args){
Child c = new Child();
System.out.println(c.foo()); // ERROR: prints "bar() of Parent"

// instead of "bar() of Child"
}

}

LISTING 4.2 : Composition and message forwarding to avoid inheritance leads to the “initial receiver
lost” problem.

The same problem exists in the component context, where the child is a composite and the par-

ent is its internal component, as we show in the top of Figure 4.3. ComponentJ proposes a solution

for this problem in the component world. The solution (see the bottom of Figure 4.3) is based on ad-

ditional required ports, delegations, a wrapping component and a feedback connection. Even if the

ComponentJ’s solution produces correct results its practical applicability is clumsy and requires a lot
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of additional work.

Figure 4.3 : An example of the initial receiver lose in case of composition and it possible solution as

proposed in ComponentJ

It is the additional work needed (delegations3 and interface repetition) when emulating inheri-

tance with composition that makes its use difficult in practice. This stems from the fact that a com-

posite is not necessarily a sub-type of types of all its internal components. In the component world,

where descriptors define external contracts, the additional work contains redefinition of contracts,

i.e. the descriptor of a child component has to define the same contract as the descriptor of a par-

ent component. For example in Figure 4.3, a component c (an instance of a descriptor CHILD) has to

provide the same as it is defined by the descriptor PARENT. In opposite to inheritance, the external

contract of descriptors is not reused in case of composition.

This problem of composition can be generalized for the all cases when a structural definition,

i.e. ports declarations or architecture, should be reused. We can say that structural reuse cannot be

achieved with composition. Figure 4.4 shows an example of architecture reuse. The original archi-

tecture defined in the HTTPSERVER were reused and specialized by QUEUEDHTTPSERVER which adds a

buffer component in between front-end and back-end internal components.

The above shows that inheritance is useful in case of descriptors, where it is advantageous and

desired to be able to reuse definitions they contain. Our opinion is that composition and inheri-

3or redirecting, or forwarding
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Figure 4.4 : An example of architecture reuse.

tance are complementary and that their combination is significantly more efficient especially when

structural reuse is to be considered. We have thus designed an inheritance mechanism for COMPO in

conjunction with composition to maximize software reuse capabilities and the language expressive

power.

Moreover, in the component-based development context, as pointed by [Gamma et al., 1995b], a

set of available (off-the-shelf) components cannot cover all possible scenarios of usage, and therefore

an adaptation mechanism is needed. Inheritance can be the mechanism, which enables program-

mers to easily extend or specialize such components.

As we have seen in Chapter 2, there are component-based approaches which somehow propose

inheritance or inheritance-like [McVeigh et al., 2006] mechanisms, but they have various limitations

like: limitation to the architecture description side, limitation to the implementation side which is

frequently not achieved with component-based languages or limitation to some part of components

descriptions.

This chapter aims at contributing to that question by showing the interest of a specification and

an operational integration of a full inheritance system, in the context of a component-oriented pro-

gramming language (COL) that supports reuse of components’ structure and behavior. By “structure”,

we mean descriptions of interfaces, ports and architectures; and by “behavior”, we mean implemen-

tations of services that make them executable. Our language, COMPO, ranges in this category and
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proposes components as run-time entities, instances of descriptors, as defined in Section 3.2.1. We

introduce an inheritance link between descriptors on which we base an operational system to reuse,

i.e. to inherit, extend and specialize descriptions.

In the rest of this chapter we address the specific questions of stating what, among port declara-

tions, architectures and services definitions, can be inherited, extended or specialized, and how. We

notably discuss the interest of enabling requirements extension or specialization, because required

ports make dependencies explicit, reducing coupling between components and promoting under-

standing of components in isolation. We will consider various solutions, but will develop an answer

to that question which goes in the direction of enabling covariant specialization [Boyland et Castagna,

1996], because it corresponds to the way human naturally think about concept classification [Ducour-

nau, 2002] and it promotes modeling power.

4.2 Inheritance for structural and behavioral reuse

This section presents the rationale and the operational description of our descriptor-based inheri-

tance embedded in COMPO. The inheritance mechanism of COMPO enables users to achieve struc-
tural and behavioral reuse that is:

1. to reuse the structure definition (external & internal contracts and architectures) captured in

descriptors. In the rest we call this case structural inheritance.

2. to reuse the behavior definition (services implementations) captured in descriptors. In the rest

we call this case behavioral inheritance.

In OOP, there is a structural (attributes and method declarations) inheritance and behavioral one

(method bodies). All these declarations are subjects of the structure and behavior inheritance.

In a COMPO descriptor the behavior is given as a set of services definitions and the structure is

given by port descriptions and by description of the architecture, i.e. the set of connection descrip-

tions. We see no reason why these should not be subjects for the inheritance mechanism in COMPO.

Therefore we chose the following:

Choice 23 Port descriptions, architectures (connection descriptions sets) and services are subjects of
COMPO inheritance

As in OOP, where a sub-class may extend and specialize its super-class. We desire to be able to

extend and specialize component descriptors. The “extends” operation means adding new subjects

to the parent’s definition. The “specialize” operation means the modification of subjects previously

defined without introducing new subjects. These operations can be separated into the two following

categories:

1. The operations affecting the external contract of a descriptor, i.e. addition and specialization

of ports.
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2. The operations affecting the architecture of a descriptor, i.e. addition and specialization of

internal components and connections.

In case of architecture, the extension and specialization are sometimes related. For example

adding new internal component usually requires some re-connections, i.e. specialization of origi-

nal connections.

The incremental (extend) description philosophy of inheritance does not provide means for re-

moving subjects, although an inheritance-like mechanism called resemblance [McVeigh et al., 2006]

has been proposed in the component context. We believe that the philosophy of removing does not

match well with the way people usually think of and design hierarchies of concepts.

4.2.1 Multiple inheritance, yes or no?

We argue that integrating multiple inheritance into COMPO is undesirable for the following reasons:

1. In the world of objects, different languages actually have different expectations for how mul-

tiple inheritance (MI) works. For example, how conflicts are resolved and whether duplicate

bases are merged or redundant. Before we can even think about MI for a COL, we have to do a

survey of all the OOP languages, figure out the common concepts, and decide how to express

them in a language-neutral manner. Then we would have to transfer these concepts from the

object world into the world of components, where even more conflicts may occur, because the

contracts of components are richer than contracts of objects.

2. The number of places where MI is truly appropriate is actually quite small. In many cases, it

is possible to use encapsulation and delegation. Moreover, the alternatives for MI like mix-

ins [Bracha et Cook, 1990] or traits [Curry et al., 1982] should also be considered.

3. Multiple inheritance implementation injects a lot of complexity into the implementation. This

complexity impacts dispatch, port access, identity comparisons, reflection and probably lots of

other places.

The amount of work needed to integrated multiple inheritance into a COL seems to be inadequate

compared to the value added, thus, we chose the following.

Choice 24 The inheritance mechanism in COMPO is single inheritance.

In fact, this choice is very usual in the world of components. We are aware of few component-

based approaches integrating multiple inheritance. For example, SOFA model has chosen concatena-

tion inheritance mechanism for its frames [Oplustil, 2002] to solve name conflicts related to multiple

inheritance. UML also allow multiple inheritance, but it provides no explicit solution or recommen-

dations for well known issues and ambiguities, such as the diamond problem [Boyland et Castagna,

1996].
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4.3 Descriptors and basic inheritance

In this section we introduce the inheritance link between descriptors. In parallel to OOP, where the

inheritance link between classes organizes them into a hierarchy of sub-classes and super-classes,

we define sub-descriptors and super-descriptors. In this chapter we also use terms child and parent
which are nothing more than aliases for terms sub-descriptor and super-descriptor respectively.

Definition 16 (Sub-descriptor) A descriptor may extend and specialize another descriptor, such a de-
scriptor is then called a sub-descriptor.

Definition 17 (Super-descriptor) If a descriptor C is defined as a sub-descriptor of a descriptor D, then
we say that D is a super-descriptor of C.

Having the terminology set and in accordance with the arguments we have presented in Sec-

tion 4.2 we make the following choice:

Choice 25 A sub-descriptor inherits all subjects of its super-descriptor (its parent), i.e. all ports descrip-
tions, the architecture and all services definitions.

The natural consequence of the Choice 25 is that we do have common problems of inheritance,

such as the fragile base class problem (see Section 4.1). The intent of this chapter is not to speak

about these problems, but discuss the new issues, which arise when using inheritance as the reuse

mechanism for a COL.

In COMPO, a new sub-descriptor is defined by the extends operator. For example, to create

a descriptor of an extended calculator component, we define a new descriptor EXTCALC as a sub-

descriptor of an existing descriptor CALC by the following declaration: Descriptor ExtCalc extends

Calc {...}.

For code factorization and reuse purposes we enable to create abstract descriptors

Definition 18 (Abstract descriptor) When it is declared that an instance of a descriptor offers a ser-
vice, but the service is not defined, then the descriptor is considered as an abstract component descriptor.

Although, an abstract descriptor cannot be instantiated its sub-descriptor may provide imple-

mentation of the missing service and thus make itself instantiable, i.e. non-abstract.

4.3.1 The ExtCalc Example

In the previous chapter in Section 3.3.4, we presented the substitution mechanism of COMPO on the

example of the calculator component which is substituted by the extended calculator component.

The components were instances of descriptors CALC (see Listing 3.4) and EXTCALC (see Listing 3.8)

respectively. Both components are shown in Figure 4.5.
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Figure 4.5 : The instances of the CALC (defined in Listing 3.4) and the EXTCALC (defined without inher-

itance in Listing 3.8 and with inheritance in Listing 4.3.)

The descriptor CALC defines a very simple calculator component providing three arithmetic ser-

vices and one service for generating random numbers. calculator provides these services through

ports arithmetic and probability. To fulfill its commitment to provide the probability service rand,

the component requires a random generator via required port randGen. The definitions of services

add and mul show the use of arithmetic operators and the returned value. Service pow shows a pro-

gram flow control structure for, an assignment and a service invocation. An example of a required

service invocation is captured in the definition of the rand service. Listing 3.5 and Figure 3.6 show an

example of how the calculator component can be instantiated and used.

The EXTCALC descriptor defines the same as descriptor CALC and through a new port

combinatoric it provides a new service fib to calculate Fibonacci numbers. In order to calculate

the Fibonacci numbers, services push, pop and empty of a stack component are required through

port stack.

It is obvious that EXTCALC descriptor should be defined as a sub-descriptor of descriptor CALC.

In Listing 4.3 we present descriptor EXTCALC2 which uses the inheritance mechanism of COMPO to
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extend descriptor CALC with declaration of ports combinatoric and stack and with the definition of

service fib.

Descriptor ExtCalc extends Calc {
provides {
combinatoric : { fib(x); }

}
requires {
stack : { push(val); pop(); empty(); }

}
service fib(x) {
| tot a |
tot := 0 ;
while(stack.empty() == false) {
a := stack.pop()
if(a < 1) { tot := tot + 1; }
else {

stack.push(a - 1);
stack.push(a - 2);

}
}
return tot;

}
}

LISTING 4.3 : The EXTCALC2 descriptor is defined as a sub-descriptor of descriptor CALC (defined in

Listing 3.4).

4.4 Addition & specialization of services

The services are units of behavior which a component provides. For example, the calculator com-

ponent provides services for addition, subtraction, multiplication and division. The services are sub-

jects of behavioral inheritance similarly to methods being subjects of behavioral inheritance in OOP.

Behavioral inheritance means the ability to access and modify the implementation of the parent.

To be able to inherit, extend and specialize the behavior defined by a component descriptor we make

the following choice:

Choice 26 A sub-descriptor can introduce new services and its instances can invoke, redefine and spe-
cialize services defined by its super-descriptor.

This gives us the ability to define behavior the that is specific to a particular sub-descriptor, i.e.
achieve polymorphism of descriptors. A new service can be introduced in a sub-descriptor as it is

illustrated in Listing 4.4 where the descriptor B extends descriptor A with a new service bar.

An inherited service can be redefined or specialized in a sub-descriptor. The difference between

redefinition and specialization is that in case of specialization, the super-descriptor’s implementation
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Descriptor A {
provides { default : { foo(); } }
service foo() { return 0.0; };

}
Descriptor B extends A {

service foo() { super.foo(); return 0; } /* specialization */
service bar() { ... } /* addition */

}

LISTING 4.4 : Specialization and addition of services.

of the service being specialized is invoked (manually by user) in the code of the new implementation

of the service.

Services specialization raises a new question: How to invoke services of super-descriptors? An

inspiration for answering this question can be found in Java’s inheritance mechanism. Suppose that

we have defined two Java classes A and B, where class B is a sub-class of class A and B specialize an

inherited method foo. In the code of B’s foomethod we need to invoke method foo of A. To do so, Java

uses the super pseudo-variable of Java. In Java, the pseudo-variable super is statically computed and

represents a super-class of the class in which the method using super is defined. Back to the ArchJava

example, we can use super.foo() in the code of B’s foo to invoke foo of A.

In the previous chapter, we have made the Choice 14 saying that all service invocations are al-

ways made via ports. Consequently, the invocations of services of a super-descriptor should be made

through a port. The following choice captures this consequence:

Choice 27 Every sub-descriptor has, by default, the super internal provided port. Service invocations
sent through this port are looked up starting from the super-descriptor of the descriptor owning the
service in which code the service invocation is emitted.

For example, the descriptor B (in Listing 4.4) extends descriptor A and specializes A’s service foo
by use of the super port. The Choice 27 mentions the service lookup mechanism which handles ser-

vice invocations of services which are not defined by a receiver component. We detail this mechanism

in the following sub-section.

4.4.1 The service lookup mechanism

Service invocations in COMPO resembles message sending in OOP. Objects in OOP communicate by

sending messages. But, what exactly happens when an object receives a message? First, there is

not a universal answer to that question, because there is not a universal object-oriented language.

Therefore, to answer this question we have take a look on a language which is considered to be a pure

object-oriented language, such as SMALLTALK [Ingalls, 1981].

“When a SMALLTALK object receives a message, the class of the receiver looks up the method
to use to handle the message. If this class does not implement the method, it asks its
super-class, and so on, up the inheritance chain, as shown in Figure 4.6. When the method
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is found, the arguments are bound to the parameters of the method, and the virtual
machine executes it.

It is as simple as that, but there is a question that needs some care to answer: What

happens if the method we are looking for is not found? Suppose we send the message
foo to our ellipse. First the normal method lookup would go through the inheritance
chain all the way up to class Object looking for this method. When this method is not
found, the virtual machine will cause the object to send itself the doesNotUnderstand:
#foo message. So the lookup starts again from the class EllipseMorph, but this time
searching for the method doesNotUnderstand:. As it turns out, class Object imple-
ments doesNotUnderstand:4. This convoluted path offers developers an easy way to
intercept such errors and take alternative action. One could easily override the method
doesNotUnderstand: in any sub-class of Object and provide a different way of handling
the error5.” [Black et al., 2009].

Figure 4.6 : An example of the method lookup mechanism in SMALLTALK. The mechanism follows the

inheritance hierarchy.

Inspired by the method lookup mechanism of SMALLTALK we define the service lookup mecha-

nism of COMPO as follows:

4This method will create a new MessageNotUnderstood object which is capable of starting a Debugger in the current

execution context.
5In fact, this can be an easy way to implement automatic delegation of messages from one object to another. A Delega-

tor object could simply delegate all messages it does not understand to another object whose responsibility it is to handle

them, or raise an error itself!
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Definition 19 (The service lookup mechanism) When a provided port receives a service invocation, it
treats the invocation according to the Algorithm 3. In the case of lookup, the port looks up the requested
service in the descriptor of the component that owns the port. If this descriptor does not implement
the service, the port asks its super-descriptor, and so on, up the inheritance chain. When the services is
found, the arguments are connected to the parameters ports of the service, and the service is executed.
When the service is not found, then the doesNotUnderstand service of the port is executed.

Algorithm 4 is a modification of the Algorithm 3 (see Section 3.3.2 of the previous Chapter) taking

into account the service lookup mechanism as it is defined in Definition 19. As we will see in the next

chapter, ports are also components having their own services and the doesNotUnderstand service is

one of them. It actually enables the users to customize the method lookup, because it is possible to

design new kinds of ports. In fact, the possibility to customize the method lookup was inspired by the

method lookup objects technique [Vran� et al., 2012].

Algorithm 4: Taking into account the service lookup mechanisms when receiving a service in-

vocation via a provided port

Data:

i : a service invocation

p1 : the provided port through which i was received

if selector(i)2 interface(p1) then
if p1 is delegated to a provided port p2 then /* case 1 */

delegate i through p2;

else
if descriptor(component(p1)) possesses the service demanded in i then /* case 2 */

execute s

else
if descriptor(component(p1)) does not implement
the service demanded in i then /* case 3 */

d := descriptor(component(p1));

while super-descriptor(d) does not implement the service demanded in i do
d := super-descriptor(d);

if d != null then
execute s of d ;

else /* does not understand error */
execute does °not °under st and of p1;

else /* p1 not connected */
error case;

else /* service is not listed in the interface */
error case;
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4.5 Addition & specialization of provided port descriptions

The ability to add a new port declaration into a sub-descriptor improves modeling power of the lan-

guage. For example, sub-descriptors are able to export an internal behavior via newly added ports.

Such an export does not break the encapsulation of the internal component, because it exports be-

havior which has already been made public (i.e. provided via external port). We show an example of

such an export in Listing 4.5. The descriptor CONTROLABLEFRONTEND extends a FRONTEND descriptor

with a new description of port control and a delegation connection which delegates service invoca-

tion sent via the port to the control port of the internal component regRecv (instance of descriptor

REQUESTRECEIVER.) The example is shown in Figure 4.7. With the Choice 28, we allow for addition of

new provided ports in sub-descriptors.

Choice 28 A sub-descriptor can introduce a new provided port description.

Descriptor ControlableFrontEnd extends FrontEnd
{

provides {
control : {start(); isRunning(); stop()}

}
architecture {

delegate control@self to control@regRecv;
}

}

LISTING 4.5 : The CONTROLABLEFRONTEND descriptor. Extends a FRONTEND descriptor with a new pro-

vided port named control. Instances of the both descriptors are shown in Figure 4.7

Similarly to OOP, where the name of a new attribute cannot clash with the names of super-class

attributes, the majority of component-based approaches with inheritance support does not allow for

port-names clashing. In accordance with that, we chose the following:

Choice 29 A name of a newly added port of a sub-descriptor cannot clash with existing port names
(inclusive inherited port names).

If a sub-descriptor introduces a port description with a clashing name, then it means that the

sub-descriptor specializes the inherited port description with that name. In the previous chapter

in Section 3.2.2, we have defined that ports are described by the names, a visibility, a role and an

interfaces. The question of port specializations has then the three following sub-questions:

1. Does it make sense to specialize the role?

2. Does it make sense to specialize the visibility?

3. How do we specialize interfaces?
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Figure 4.7 : Descriptor CONTOLABLEFRONTEND (cf. Listing 4.5) exports the controlling behavior of the

inherited internal component reqRecv via the newly added port control and a delegation connec-

tion. Greyed parts denote inherited subjects.

The specialization of port roles comes into consideration in two directions. A change from the

provided role to the required role does not make sense. It could make sense in the opposite direction,

i.e. from the required role to the provided role. Indeed, this kind of role specialization means that a

sub-descriptor does no longer require the services exported via this port and therefore it is equivalent

to removing that port, which is in contradiction to the incremental (extend) description philosophy

of inheritance. Thus, there is no reason for allowing specialization of the roles of ports.

The specialization of the visibility contains two cases: (i) change from the external to the internal

visibility; and (ii) change from the internal to the external visibility. In fact, the first case is compa-

rable to removing a port, because it removes the description of the port from the external contract

definition of a sub-descriptor, which is also in contradiction to the incremental (extend) description

philosophy of inheritance. The second case affects the internal contract of a sub-descriptor. The ar-

chitecture of the super-descriptor is designed on the basis of the internal contract and a change to the

contract may cause internal incompatibilities. Therefore, we forbid the visibility specialization and

we make the following choice.
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Choice 30 It is not possible to specialize the visibility nor the role of an inherited port description in a
sub-descriptor.

In opposite to the role and visibility specialization, the specialization of interfaces is desired and

needed, because it makes possible to publish new services via existing (inherited) ports. Therefore,

we make the following choice:

Choice 31 A sub-descriptor can specialize the list of service signatures (the interface) of an inherited
port description.

We remind (cf. Section 3.2.2) that the interface of a port is a set of service signatures which could

be given in three forms:

• as an explicit list (we call such a list an anonymous interface), for example the default port

declaration in Listing 3.1

• as a named interface, e.g. printer : IPrinting where the interface IPrinting was created

with the statement: interface IPrinting {print(text); ....};

• as a descriptor name; in this case, the list is the list of signatures of services associated to default

provided port of the descriptor. For example, the fE port declaration in Listing 3.1.

There are three scenarios how to specialize the list of service signatures of an inherited port:

1. a specialization by adding new service signatures to its list of service signatures (i.e. extending

an anonymous inherited interface). The RESTARTABLEFRONTEND descriptor in the example in

Listing 4.6 shows the specialization of the control port defined by the CONTROLABLEFRONTEND

super-descriptor. The specialization is used in order to provide the restart service defined by

the descriptor RESTARTABLEFRONTEND.

2. a specialization using a named interface. In this case the set of service signatures defined in the
named interface has to be a super-set of the set of service signatures used to describe the origi-
nal port. A specialization of a port named portA looks like: provides { portA : Ispec2}. In
the super-descriptor, portA could have been declared by the two following statements:

provides { portA : { ser1(); ser2() }} /* anonymous interface */

or

provides { portA : Ispec1 } /* named interface */

The Ispec1 interface was defined with the statement interface Ispec1 { ser1(); ser2(); }

and the Ispec2 interface extends Ispec1with a service signature: interface Ispec2 extends

Ispec1 { ser3() }. The named interface Ispec2defines the set of service signatures, which is a

super-set of a set representing the anonymous interface or the set given by the Ispec1 interface

of the original portA port. Therefore it can be used for the specialization.
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3. a specialization using an anonymous interface. This case is very similar to the previous one, i.e.
the set of service signatures defined in an anonymous interface has to be a super-set of the set

of service signatures used to describe the original port.

Descriptor RestartableFrontEnd extends ControlableFrontEnd
{

provides {
control : { restart(); }

}
service restart() {

reqRecv.stop();
reqRecv.start();

}
}

LISTING 4.6 : The RESTARTABLEFRONTEND descriptor. Specializes the control port of CONTROLABLE-

FRONTEND descriptor (cf. Listing 4.5).

The addition and specialization of ports descriptions changes the external contract of a super-

descriptor. From the substitutability perspective, any changes made on the external contract are risky.

Luckily changes on the provided part of the external contract are not critical, simply because of the

nature of provisions. Changes on the required part of the external contract modify dependencies of

descriptors. Therefore extension and specialization of required ports is considered as a risky opera-

tion, as we will detail in the next section.

4.6 Addition & specialization of external required ports descriptions

In general the rules about addition and specialization of external required ports descriptions are sim-

ilar to those we present in the previous section about provided ports. But, in opposite to provided

ports, the question whenever we allow or not for addition and specialization of external required

ports descriptions needs some care to answer.

The usual practice with differential descriptions is incrementation. A colored circle is like a circle

and, in addition, it has a color. The reverse perspective saying that a circle is a colored circle without

a color does not conform to the way people usually think. To have a color assigned is a requirement

for a colored circle. To make requirements explicit is one characteristic of the component-based ap-

proach. In the object-oriented world, it is common to define an additional attribute in a sub-class. It

is however an issue to know whether it is allowed to define a new required port on a sub-descriptor.

In fact it raises the same issue in both worlds: it possibly breaks child-parent substitutability [Spacek

et al., 2012]. More precisely, it may lead to incorrect substitutions.

In OOP, substitutability between instances of classes and instances of their sub-classes is guar-

anteed. To be more precise, interface compatibility is guaranteed, behavior compatibility is still not

guaranteed, as pointed by [Martin, 2002]. However the situation is different in case of components,

where requirements are explicit.
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Figure 4.8 : An example of an extension and specialization of required ports. Grayed parts of the figure

illustrate inherited parts.

In CompJava, a component type inherits all ports of its super-type and it may extend the interfaces

of inherited provided ports or may add provided ports. Addition of required ports is not allowed due

to the substitutability policy of the CompJava model (cf. Section 3.3.4).

Port specialization achieved using interface redefinition is implemented in SOFA model by the

following statement

frame ComponentName inherits InheritedCompName changes
InterfaceIntance1:: OriginalInterfaceType1 => NewInterfaceType1

SOFA constraints the above statement by saying that the interface type NewInterfaceType1 is a

sub-type of the OriginalInterfaceType1 interface type.

The problem of addition and specialization of external required ports has in fact three possible

solutions:

1. Forbid extension of sub-descriptor with additional requirements. But, requirements have been

made explicit in components and they are considered as important entities to make it possible

to introduce new connections. Therefore it is undesirable to limit expressive power of modeling

by forbidding extension and specialization of requirements. For example, without possibility to

add a required port it is complicated to design the Emailer example shown in Figure 4.8.

2. Constrain substitutions - define a rule saying that an original component can be substituted by

a new one, only if the new one provides at least the same and requires at most the same as the

original one, i.e. to follow the Liskov substitution principle [Liskov et Zilles, 1974].

3. Allow additional requirements and delegate responsibility for additional requirements satisfac-

tion to the language users, while providing verification support for substitutions.
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With COMPO all alternatives could have been implemented, but since the language is oriented to-

ward modeling flexibility, we have experimented with the third alternative. We will thus support co-

variant specialization if and when needed, because it corresponds to the way human naturally think

differential description [Ducournau, 2002]. For the sake of expressive power, we choose to enable

declaration of new required ports in sub-descriptors. For the same reason we enable the covariant

specialization of required ports in sub-descriptors.

Choice 32 A sub-descriptor can introduce a new external required port description or it may specialize
the interface of an inherited description of an external required port.

The Choice 32 prevent static checking of the correctness of substitutions and of course a different

choice could be made. But, without such capabilities, the modeling power of the language would be

limited. For example, we would not be able to extend the EMAILER descriptor shown in Figure 4.8 with

a new required port semanticsChecker or specialize its required port syntaxChecker with a new

required service signature grammarChecking(). In order to combine additional requirements and

substitutability we propose an alternative approach with a dynamic checking of substitution correct-

ness.

Substitutions in COMPO are supported by the replace routine which were detailed in Section 3.3.4.

Here we remind the substitutability definition (see Definition 14). A component a is substitutable

with a component b if the descriptor of a is compatible with the descriptor of a and all requirements

of component b will be satisfied after the substitution.

Our inheritance mechanism does not apply any restrictions to implicitly guarantee substitutabil-

ity. However, we are providing a support service newCompatible to return a component compat-

ible with the super-descriptor. The service is automatically created for each sub-descriptor which

extends its parent with additional requirements. The service has a unique parameter, an array of

pairs port-component and it is able to create an instance, which is substitutable with instances of

the super-descriptor. That is, all additional requirements are satisfied by connections to components

given in the array argument. The service shows a little bit from the reflection features of COMPO. As

we will see in the next chapter, descriptors are also components having their own services and the

newCompatible service is one of them. The following example shows an application of the replace

routine and the newCompatible service.

4.6.1 The DynamicHTTPServer example

The dynamic http server example presents an application of the replace routine (cf. Section 3.3.4)

and the newCompatible service presented above. In this example, we create a sub-descriptor

of the QUEUEDHTTPSERVER descriptor (see Listing 4.8) called DYNAMICHTTPSERVER. The DY-

NAMICHTTPSERVER descriptor (see Listing 4.7) extends the QUEUEDHTTPSERVER descriptor with two

new services switchToStandardQueue and switchToRandomQueue, in order to be able to dynami-

cally substitute the queue internal component in server instances. The switchToRandomQueue ser-

vice causes that the instance of the REQUESTQUEUE descriptor (connected to the internal required

port queue of the server) is substituted with an instance of the RANDOMREQUESTSQUEUE descriptor.

The switchToStandardQueue switches the queues back. The substitution is illustrated in Figure 4.9.
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Figure 4.9 : Dynamic substitution with a sub-descriptor having additional required port may lead to

unsatisfied requirement in the architecture. Grayed parts of the figure illustrate inherited parts.

It is important to note that the RANDOMREQUESTSQUEUE descriptor is a sub-descriptor of the

REQUESTSQUEUE descriptor, which has an additional required port to connect a random generator

component (instance of the RANDOMGENERATOR descriptor shown in Listing 4.7.) This additional

requirement makes the substitution complicated because the original architecture of the QUEUED-

HTTPSERVER descriptor was not designed for this kind of queue.

In order to make substitutions possible, the switchToRandomQueue service uses the

newCompatible service of the RANDOMREQUESTSQUEUE descriptor to create an instance of RAN-

DOMREQUESTSQUEUE compatible with instances of the REQUESTSQUEUE descriptor and thus easily

substitutable in the architecture. The newCompatible takes as an argument an array of pairs port-
component, in our case the array contains only one pair: randomGen-RandomGenerator.new().

The pairs in the array are used to satisfy the additional requirements of the RANDOMREQUESTSQUEUE

descriptor. To perform the substitution the service uses the replace routine.
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Descriptor RequestsQueue
{

provides { in : { handleReq(httpRequest); }
requires { out : { handleReq(httpRequest); }
...

}

Descriptor RandomRequestsQueue extends RequestsQueue
{

requires { randomGen : { getNextInt(); }
...

}

Descriptor RandomGenerator {
provides { generator : { getNextInt(); }
...

}

Descriptor DynamicHTTPServer extends QueuedHTTPServer
{

service switchToRandomQueue()
{

| pair randomQueue |
pair := Pair.new(’randomGen’,(RandomGenerator.new()));
randomQueue := RandomRequestsQueue.newCompatible(Array.newWith(pair));
replace queue with randomQueue;

}

service switchToStandardQueue()
{

replace queue with RequestsQueue.new();
}

}

LISTING 4.7 : An example of unsatisfied required port problem and its solution using the replace
routine and newCompatible service. The DYNAMICHTTPSERVER descriptor can dynamically substitute

the queue internal component in its instances. The RANDOMREQUESTSQUEUE descriptor extends the

REQUESTQUEUE descriptor with an additional required port to which an instance of the RANDOMGEN-

ERATOR descriptor should be connected.
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4.7 Extension & specialization of architectures

In case of the internal architecture description (architecture in short), the extension and specializa-

tion are usually related. For example, addition of a new internal component very often requires some

re-connections, i.e. specialization of original connections, as we show in Figure 4.9. In the example,

an instance QUEUEDHTTPSERVER descriptor is like an instance of HTTPSERVER descriptor, but instead

of having a direct connection between the fE component (instance of FRONTEND descriptor) and the

bE component (instance of BACKEND descriptor), an adaptor, here a queue, is inserted in between fE
and bE and the original bE-fE connection is replaced by two connections to and from the queue.

In software evolution, architectures often need to be reused and the used description language

should support such a feature [Cioch et al., 2000]. This observation is based on general experience

with building object-oriented applications, where it is common that a class describes objects, which

are composed of many objects communicating together. Such classes are often sub-classed. The sub-

classes modify and extend original composition and communication system of their parent. This also

applies in the component world and we can think of many situations in which a new architecture will

be based on an existing one.

Although useful, architectures reuse by extension and specialization of internal components and

connections has to be used carefully. These operations carry certain risks because they may destroy

an internal architecture defined by a super-descriptor. For example a missing connection or usage of

an incompatible internal component may make the composite in-operational, as we have detailed in

Section 3.3.4. The extension and specialization of architectures involves the following operations:

• addition of new internal components

• replacement of inherited internal components

• replacement of connection descriptions

To be able to achieve these operations, a sub-descriptor has to have access to the architecture

specification of its super-descriptor. For that reason, we make the following choice:

Choice 33 A sub-descriptor inherits the architecture of its super-descriptor. It may introduce new in-
ternal required ports descriptions and new connection descriptions. It may specialize the inherited
connection descriptions and the interfaces of inherited internal required ports descriptions.

In the previous chapter in Section 3.3.3 we made the Choice 21 saying that: a composite commu-

nicates with its internal components through internal required ports, one per an internal component.

Therefore, the addition of new internal components is realized by addition of new internal required

ports which follow the same rules which apply for external required ports (see the previous section.)

Specialization of an inherited internal component in a sub-descriptor can be achieved by modify-

ing the interface description of the internal required port associated with the internal component.

The descriptor of PriorityQueuedServer in Listing 4.8 specializes an inherited internal component

queue by describing it with the PriorityRequestsQueue descriptor.
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Figure 4.10 : Specialization and extension of an internal architecture. Grayed parts of this figure illus-

trate inherited parts.

Newly added connection description cannot clash with inherited connections, for this case a spe-

cialization of connection descriptions is used. When specializing connection descriptions, it is some-

times hard for the architects to determine if a new connection description replaces the inherited one

or if it just defines a new connection. For that reason we use the combination of the connect-to and

disconnect-from statements to specialize inherited internal connections. The disconnections clearly

specify the connections to be replaced making the specialization well defined. The statements have

the following syntax: disconnect <port-address> from <port-address> and connect <port-address>

to <port-address> (disconnections and connections were explained in Section 3.2.4.) Every time the

disconnect statement is used, the removed connection has to be superseded by a new connection.

Extension and specialization of internals is illustrated in Figure 4.10 with COMPO code in Listing 4.8.
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Descriptor QueuedHTTPServer extends HTTPServer
{

internally requires {
queue : RequestsQueue

}
architecture {

connect queue@self to default@(RequestsQueue.new());
disconnect backEnd@fE from default@bE;
connect backEnd@fE to in@queue;
connect out@queue to default@bE;

}
}

Descriptor PriorityQueuedServer extends QueuedHTTPServer
{

internally requires {
queue : RandomRequestsQueue;

}
architecture {

connect queue@self to default@(RequestsQueue.new());
connect queue@self to default@(RandomRequestsQueue.new());

}
}

LISTING 4.8 : Specialization and extension of an internal architecture.

4.8 Related work

The study made in Chapter 2 shows that if (at all) inheritance is present the it is interpreted differ-

ently by each component-based approach. For example, the meta-model of UML defines that class

Component inherits from class Class, giving the possibility to participate in generalization relation-

ships to class Component, i.e. to inherit all properties (attributes and methods) and all parts (internal

components) defined in another class Component or even a class Class. The possibility to inherit all

properties from classes exists also in ArchJava where a component class can inherit a standard Java

class or another component class.

The situation is different in ADLs, since specification languages inherently do not contain imple-

mentations, behavioral inheritance cannot be used. Thus, the inheritance can usually be used only

for two purposes: creating conceptually specialized hierarchies (then inheritance is typically equiva-

lent to the sub-typing) and for the structure reuse. This limited use of inheritance in ADLs is the main

reason why it is implemented either insufficiently or not at all [Oplu⇤til, 2003].

For example, Rapide allows its interface types to inherit from other types by using OO methods,

resulting in structural sub-typing. ACME also supports structural sub-typing via its extends feature.

Fractal ADL enables users to define new component type as an extension of an existing type and to

override a component definition, but not to specialize inherited bindings.



4.8. Related work 137

SOFA CDL6 uses the frame term for component types. One frame can inherit from another frame

and then port declarations are reused. To compose several frames, SOFA introduce architecture con-

struct, where an architecture implements a frame and may inherits from an another architecture.

In this way, internal components and connections are reused. Ports are specialized using inter-

face redefinition i.e. by the following statement frame ComponentName inherits InheritedCompName

changes InterfaceInstance1:: OriginalInterfaceType1 => NewInterfaceType1. Specialization of

inherited connections is supported by the statement: newTie1, newTie2 replacing originalTie

subsume subcompInstName:intInstName to intInstName exempt: subcompInstName:intInstName.

Other ADLs do not specify inheritance between descriptors, they usually use inheritance uniquely

for creation of sub-interfaces. In UML, the component entity inherits from the structured class entity

and therefore they can participate in generalization relationship in the same way as classes do. In

C2 [Medvidovic et al., 1997] it is possible to define subtypes of all internal building blocks. Darwin
[Magee et al., 1995] can derivation descendants from one or more interface types. Rapide [Luckham

et al., 1995a] and its sublanguage for types allows deriving a new interface type by inheritance, includ-

ing the capability of dynamic substituting of sub-types for super-types; inheritance of higher levels

(Architecture, ...) is not supported. In xADL 2.0 [Dashofy et al., 2001] provides single inheritance

for type extensions, and introduces some artificial dependencies among schemas. Wright [Allen et

Garlan, 1994] use connector as composition patterns among components.

If we exclude component frameworks which implement components by use of OOP and its class-

based inheritance, there only component-oriented languages support behavioral inheritance. In the

rest of this section we compare how related COLs integrate inheritance aspects such as: the structure

inheritance , the behavior inheritance and abilities to extend and specialize particular definitions in

a component descriptor (i.e. ports, internal components and connections.)

As related COLs we consider ACOEL [Sreedhar, 2002], ArchJava [Aldrich et al., 2002],

CLIC [Bouraqadi et Fabresse, 2009] and CompJava [Schmid et Pfeifer, 2008], because these languages

combine implementation and architecture specification. We do not compare with ComponentJ [Seco

et Caires, 2000 ; Seco et al., 2008] and Bichon [Xu et Ren, 2010].

ComponentJ is an inheritance-free language where authors prefer to avoid inheritance in favor

of object composition. ComponentJ emulates standard object-oriented implementation inheritance

by feedback connection to the component itself and method calls forwarding. Authors show that the

initial receiver lose problem can be solved using additional required port (“self” port) and feedback

connections to handle the context. This solution increases rapidly the complexity of the system. In

larger systems, where hierarchical concept modeling is used, code becomes difficult to maintain.

Bichon defines composition-oriented components for reuse. The authors analyze interaction be-

tween classes, which occurs via inheritance. Their reuse system is based on the observation that

super-class needs to provide declarations, which sub-class requires and its consequence saying that

when overriding occurs, a sub-class provides declarations which a super-class requires. This bi-

directional interaction is performed via the Bichon’s mixinner interface. Rather then seeing inher-

itance as a bi-directional interaction between classes describing components, we try to apply the

widely accepted semantics of inheritance in the component description context

6CDL means Component Definition Language
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Structure inheritance is partially supported in all related COLs. We say partially, because Comp-

Java do not allow the reuse of internal components and connections specification. Ports declarations

can be reused via component type definition. Except that they use a different terminology, the lan-

guages define component type as a set of port names including interface references and roles speci-

fication. And then a component type can be defined as an extension of an existing component type

Behavior inheritance is fully supported only in CLIC and ArchJava languages. ACOEL model sup-

ports implementation inheritance by the extend statement, but a child cannot access any of the in-

ternals (implementation classes, methods) of a parent, except via the input ports of the parent, i.e.
this.<portname>.<servicename> (composition-like approach). The advantage of this black-box

approach is that it preserve encapsulation of parent components. We support white-box approach to

be able to specialize services implementations which are not provided by a parent.

Ports specialization is not supported in ArchJava, because adding new provided methods to an

existing port might cause ambiguities if these provided methods were required by a connected com-

ponent, and provided by a different component. There would then be two components providing the

same required method, breaking ArchJava’s connection rules. Adding required methods to an exist-

ing port would make the component class non-substitutable for the component super-class, because

connections made to the super-class might not provide the sub-class’s required methods. Required

methods in a new port are also problematic, because the new port might not be connected at all.

Ports extension is well supported. CLIC model does not support additional provided port, because

this model allows components to have only one provided port. The idea of a single provided port is

based on the observation that developers do not know beforehand, which services will be specified

by each required port of a client component. Therefore it is hard to split component functionality

over multiple ports. We see this as a unnecessary limitation of modeling power.

On the other hand, in the CompJava, a component type may extend another component type and

it inherits all ports. It may extend the interface of inherited provided ports or may add provided ports.

Extension of required ports is not allowed due to the substitutability policy of the CompJava model.

Architecture extension and specialization. ACOEL and ArchJava treat internal components as reg-

ular instance variables of classes and therefore there is no way to specialize inherited internal com-

ponents. CompJava supports inheritance of component types only. Component types do not involve

internal components and connections declarations, therefore architecture cannot be reused.

Substitutions. ACOEL, ArchJava and CompJava define sub-type relation as defined by

Liskov [Liskov et Zilles, 1974]. In general, a component type is a sub-type of another one if it pro-

vides at least the same and requires at most the same. To ensure ACOEL use a type system checking.

CompJava and ArchJava forbid additional requirements (in inherited types) and then they restrict

substitutability by the sub-type relation.

In Table 4.1, we make a summary of this comparison.
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CBPLs

criterium/model ACOEL ArchJava CLIC CompJava COMPO

Structure inheritance yes yes yes yes yes

Behavior inheritance yes yes yes no yes

Addition of:

Provided ports yes yes no yes yes

Required ports yes yes yes no yes

Internal components yes yes yes no yes

Connections yes yes yes no yes

Specialization of:

Provided ports yes no yes yes yes

Required ports yes no yes no yes

Internal components no no yes no yes

Connections no no yes no yes

Substitution

with additional requirements no no yes no yes

Table 4.1 : Comparative table of inheritance in related COLs

4.9 Summary

In this chapter, we have proposed an original and complete inheritance system for a component-

based programming language. In the beginning, we have motivated the need for an inheritance

system in a COL by showing cases where an inheritance mechanism is inevitable for reusing struc-

tural definition of descriptors. Then we have specified what are the subjects for inheritance in case

a component-oriented language. For each identified subject we discussed the impact of extending

descriptors and specializing inherited subjects together with the reasons which led us to incorporate

this particular solution.

We believe that COMPO inheritance mechanism offers a reasonable solution for structural and be-

havior reuse, because our solution does not make separation of modeling (designing architectures)

and implementation (designing behavior). The system promotes reuse over type-safe substitution,

and thus enables developers to create new component descriptors by specializing and extending ex-

isting descriptors without a lot of constraints. Existing object-oriented programming languages that

succeeded in the few last decades, prove the inheritance usefulness and practicalness, because it has

been used extensively in existing applications. Indeed, developers are much more interested in spe-

cializing and extending at the same time provisions and requirements of a component, and less on

substitutability, which they can manage manually (by satisfying additional requirements, if needed).

We have shown that descriptor-based inheritance is useful for both development-for-reuse and

development-by-reuse. Indeed, on the one hand, it allows developers to build new component de-

scriptors, to be put in component libraries, by inheritance links between descriptors. On the other

hand, developers can build their applications by extending or specializing existing component de-

scriptors. They can thus inherit existing architectures and capitalize on good designs where well-
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established architecture styles or patterns are applied.

We conclude this chapter by recalling the definitions and the choices that we have made in this

chapter.

4.9.1 Definitions made

Sub-descriptor A descriptor may extend and specialize another descriptor, such a descriptor is then

called a sub-descriptor. (cf. 16)

Super-descriptor If a descriptor C is defined as a sub-descriptor of a descriptor D, then we say that

D is a super-descriptor of C. (cf. 17)

The service lookup mechanism When a provided port receives a service invocation, it treats the in-

vocation according to the Algorithm 3. In the case of lookup, the port looks up the requested

service in the descriptor of the component that owns the port. If this descriptor does not imple-

ment the service, the port asks its super-descriptor, and so on, up the inheritance chain. When

the services is found, the arguments are connected to the parameters ports of the service, and

the service is executed. When the service is not found, then the doesNotUnderstand service of

the port is executed. (cf. 19)

4.9.2 Choices made

Choice 23 Port descriptions, architectures (connection descriptions sets) and services are subjects of

COMPO inheritance

Choice 24 The inheritance mechanism in COMPO is single inheritance.

Choice 25 A sub-descriptor inherits all subjects of its super-descriptor (its parent), i.e. all ports descrip-

tions, the architecture and all services definitions.

Choice 26 A sub-descriptor can introduce new services and its instances can invoke, redefine and special-

ize services defined by its super-descriptor.

Choice 27 Every sub-descriptor has, by default, the super internal provided port. Service invocations sent

through this port are looked up starting from the super-descriptor of the descriptor owning the

service in which code the service invocation are emitted.

Choice 28 A sub-descriptor can introduce a new provided port description.

Choice 29 A name of a newly added port of a sub-descriptor cannot clash with existing port names (inclu-

sive inherited port names).

Choice 30 It is not possible to specialize the visibility nor the role of an inherited port description in a

sub-descriptor.

Choice 31 A sub-descriptor can specialize the list of service signatures (the interface) of an inherited port

description.
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Choice 32 A sub-descriptor can introduce a new external required port description or it may specialize

the interface of an inherited description of an external required port.

Choice 33 A sub-descriptor inherits the architecture of its super-descriptor. It may introduce new internal

required ports descriptions and new connection descriptions. It may specialize the inherited

connection descriptions and the interfaces of inherited internal required ports descriptions.
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Integrating reflection

One can and should "open languages up," allowing users to
adjust the design and implementation to suit their particular

needs.
Gregor KICZALES.

Preamble

In this chapter we describe a meta-model which equips COMPO with reflection capabilities making it
possible to achieve architecture reasoning, and static or run-time model and program transformations,
all within the context of one language. In sections 5.3 and 5.4, we propose the meta-model architecture.
Sections 5.5, 5.6 and 5.7 describe how we have reified concepts: component, descriptor, port and ser-

vice in order to make them accessible in COMPO programs. In the end of the chapter we discuss related
work.
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5.1 MDE, the motivation for reflection

MODEL Driven Engineering (MDE) raises the level of abstraction of artifacts in the development

life cycle by shifting its emphasis from code to models and model transformations. Accord-

ing to the separation of concerns principle, MDE advocates the isolation of business concerns from

their technical achievement. The idea is that the business concerns can be modeled independently

from any platform concerns. Therefore, business models are not corrupted by technical concerns.

In this way, the main part of the development becomes an activity upstream, dedicated to business

aspects through the elaboration of the application model that abstracts away technical details [Blanc

et al., 2007]. These primary models are then enhanced into final software products by a chain of

transformations. MDE provides a method for developers to master these complexities by both sepa-

rating concerns and systematically describing the design, implementation and validation processes

of development [Terrier et Gérard, 2006].

However, when applying an MDE process, different languages have to be learned and mas-

tered to design and develop a final solution, e.g. an ADL for the architecture design, a pro-

gramming language for the implementation (model transformations only generate skeleton imple-

mentations), a language for expressing architecture constraints (such as OCL) and possibly a lan-

guage for model transformations. This problem of a missing conceptual continuum, similar to the

continuum that exists between object-oriented design and implementation [Muller et al., 2005 ;

OMG, 2011c], makes it difficult to apply MDE techniques and processes in a straightforward way, be-

cause it requires the experts from different domains (constraints, transformations, etc.) to cooperate,

which is not always an easy task.

Indeed, the continuum encompasses the activity of writing all kinds of meta-programs. This glob-

ally means to allow software engineers to achieve, using the same language defined by a unique

component-based meta-level M, not only applications (architectures and code) but also all those

meta-programs, e.g. constraint-checking or model transformation or program transformation pro-

grams, that use or manipulate M constitutive elements and their instances, either statically or at run-

time.

It appears that a reflective component-oriented programming and modeling language is a pos-

sible original solution to such a requirement. A reflective language or system provides a principled

(as opposed to ad hoc) means of achieving open engineering [Blair et al., 1998]. We believe that a

reflective component-oriented language is a way to do MDE in the context of component, similarly

to reflective OOP languages make it possible to do MDE for object-oriented designs and programs.

Reflection enables language users to reason about architectures, to perform model transformations,

to examine and modify the structure and behavior of entities (components, in our case) at run-time.

Such a language contributes to solve the above issues by having the same description of architectures

at design and run-time.

In this chapter we present entities involved in the component-based development integrating

reflection capabilities. In the core of this chapter, we reify, following the idea of “everything is a com-
ponent”, the core component concepts to build up an executable meta-model, allowing introspection

and intercession on programs elements and their instances. The meta-model can be used at all stages

of component development to manipulate standard and “meta”-components as first-class entities.
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Using such a language opens the possibility that architectures, implementations and transformation

can all be written at the component level and possibly (but not mandatorily) using a unique language.

5.2 Reflection & Reification

Because some readers may not be aware of the field and vocabulary, this section provides a short

introduction. Experts can omit it.

Reflection is a concept arised from the artificial intelligence field, as the ability of a system

to reason about and act upon itself. Reflection is about meta-computation, i.e. computation

about computation. This was considered as an emergent property responsible for intelligent be-

havior [Costa Soria, 2011]. More then 30 years passed since Smith introduced the reflection con-

cept in his doctoral dissertation [Smith, 1982]. Meanwhile, reflection become popular and spread

to other fields, such as object-oriented systems [Cazzola, 1998], middleware [Kon et al., 2000 ;

Costa et al., 2006], software architectures [Cuesta et al., 2002] or dynamic petri nets [Capra et Cazzola,

2009]. This was mainly thanks to the contributions of Pattie Maes, who contributed to summarize the

existing notions about reflection:

“Computational Reflection is the activity performed by a computational system when
doing computation about (and by that possibly affecting) its own computation.

A reflective system is a computational system which is about itself in a causally con-
nected way. ” [Maes, 1987]

Reflective systems are generally structured in two levels: the base-level and the meta-
level [Costa Soria, 2011].

The base-level provides the system’s functionality. It defines a computational system (i.e. a set

of computational elements) that reasons about and acts upon some part of the world, usually called

the domain of the system. This level incorporates internal structures representing the domain and a

program prescribing how these structures may be manipulated.

On the other hand, the meta-level1 provides the reflective capability. It defines a computational

system that reasons about and acts upon another computational system, i.e. the defined in the base-

level (the base-system). Thus, it incorporates structures representing the base-level and a program

that manipulates and changes such structures.

Both levels, the meta-level and the base-level, are causally connected: the structures defined in

the meta-level and the domain they represent (i.e. the base-level) are linked in such a way that if one

of them changes, this leads to a corresponding effect upon the other [Maes, 1987]. In other words, the

changes performed by the meta-level on its data structures are reflected somehow in the real system,

i.e. the base-level. In order to observe or change something, this must be represented in a way that a

program can manipulate it.

1In general, the term meta- refers to an artifact that reasons and acts upon another artifact. For instance: a meta-

component is a component that acts upon components.
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This is addressed in the notion of reification, which is the action of exposing the internal repre-

sentation of a system in terms of programming entities that can be manipulated at run-time. The

opposite process is called reflection2, which effects the changes made to the reified entities into the

system. There are many definitions of reification, like [Malenfant et al., 1996], but these definitions

may induce to confusion since they do not refer to the base-level and meta-level a reflective system

is characterized by. This is taken into account in the definition from Carlos E. Cuesta:

“Reification is the process that shifts-up an artifact from the base-level to the meta-level,
where this artifact will be manipulated. Reflection is then the inverse process that shifts-
down the artifact from the meta-level to the base-level. Thus, the reification and re-
flection processes implement the causal connection among the base-level and the meta-
level.” [Cuesta et al., 2002]

Finally, there are two kinds of operations that can be performed at the meta-level: introspection
and intercession. Introspection is the ability of a program to observe, and thus reason, about itself.

That is, it comprises the operations of a program defined at the meta-level which examines the data

structures and program operations of the base-level. Intercession is the ability of a program to modify

its execution state. That is, it comprises the operations of a meta-level program which change the data

structures and program operations of the base-level (see Figure 5.1).

2Some authors prefer not to use the term reflection to define the action of reflecting changes on the base-level, and use

the term absorption instead. The reason is to avoid confusions with the global term of Reflection. However, we prefer the

use of this term to preserve the symmetry of operations, in accordance with [Cuesta et al., 2002].
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Figure 5.1 : Reflection of software systems [Costa Soria, 2011]

5.3 Requirements for the meta-model architecture

In accordance with COMPO’s philosophy (see Section 3.1), which states that COMPO should be simple,

minimal and uniform as much as possible we need a meta-model architecture with the following

requirements:

Everything is a component to access the reified concepts of COMPO (descriptors, ports , connection

and services) from COMPO itself. This will make it possible to write transformations and verifi-

cations of COMPO applications in COMPO. For example, our previous work [Tibermacine et al.,
2011] shows that architectural constraints can be successfully realized as components. The idea

is attractive when it comes to verification of architectures quality attributes, especially, after an

evolution was performed. In COMPO, a descriptor describes the architecture of its instances

and therefore constraints should be evaluated on descriptors. If we want to apply constraints

realized as COMPO components on an architecture, we need to be able to connect a descriptor

to a constraint component. Consequently, because connections are connecting components

(i.e. instances of descriptors), descriptors should be reified (realized) as components.

Explicit meta-descriptors to model new kinds of descriptors, ports or constraint components. The

ability to design new meta-descriptors opens up the language. The language can be then

adapted to ones needs because it is possible to extend and customize the core concepts of the

language. For example a new communication protocol can be designed by creating a new kind

of port, as we show in Section 5.6.
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Among reflective class-based object-oriented languages (like SMALLTALK [Goldberg et Robson,

1989] or CLOS [Bobrow et al., 1986]), ObjVlisp [Cointe, 1987] provides minimal (only two classes) self-

described definition of its reflective architecture which makes it possible to satisfy these requirements

(in the OO context). The architecture is based on only five postulates (listed below) and is really

minimal, because there is only one kind of object: a class is an object and a meta-class is a class that

creates classes. In other words, there is no distinction between classes and instances. The only sole

difference is the ability to respond to the creation message: new. Only a class knows how to deal with

it. A meta-class is only a class that can create new classes.

ObjVlisp in 5 postulates [Cointe, 1987]

P1 : object = <data, behavior>

P2 : Message passing is the only means to activate an object

P3 : Every object belongs to a class that specifies its data (slots or instance variables)

and its behavior. Objects are created dynamically from their class

P4 : Following P3, a class is also an object therefore instance of another class its meta-

class (that describes the behavior of a class).

P5 : A class can be defined as a sub-class of one or many other classes.

The postulates introduce an infinite recursion: A class is an object and therefore it is
an instance of another class (its meta-class) that is an object too (instance of a meta-
meta-class) that is an object too (instance of another meta-meta-meta-class), etc. To

stop this infinite recursion, ObjVlisp defines Class as both the initial class and meta-

class. Class is an instance of itself and all other meta-class are its instances, as shown

in Figure 5.2.

We adopt the reflection architecture of ObjVlisp for the component-based context and we build

our meta-model by reifying descriptors, ports and services as components. In the following, we refer

this as the component-oriented reification.

Choice 34 Descriptors, ports and services are true components, instances of descriptors DESCRIPTOR,
PORT and SERVICE respectively.

The reason why we do not reify connections is given in Section 5.6 .
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Figure 5.2 : ObjVlisp Class is an instance of itself to solve the infinite recursion of the 5 ObjVlisp

postulates.

5.4 The meta-model

This section introduces an adaptation and extension of COMPO’s model presented in Chapters 3 and 4

to allow for structural reflection, i.e. “to provide a complete reification of both a program currently
executed as well as a complete reification of its abstract data types” [Demers et Malenfant, 1995]. At

this point we do not deal with behavioral reflection, although, our global solution makes it possible

to define new kind of ports (see the example later on in this chapter) in which service invocation can

be modified. This is a very limited kind of behavioral reflection.

The MOF model presented in Figure 5.3 describes how its elements, representing the component-

level concepts introduced in COMPO, are organized (inheritance and instance-of relations), as we reify

them as first-class entities accessible in COMPO’s programs. To keep our contextual component-level

terminology: all elements in Figure 5.3 are descriptors. Our reflective architecture is based on the two

following choices:

Choice 35 Descriptor COMPONENT is a basic descriptor and the root of inheritance tree, all descriptors
inherit it

Choice 36 Descriptor DESCRIPTOR is a sub-descriptor of descriptor COMPONENT. It describes descriptors
(it is a meta-descriptor) and is the instance of itself.

Descriptor is the descriptor of descriptors (it resembles to class Class of ObjVlisp), all descriptors

are instances of it. All descriptors inherit from Component, except Component itself which is the root
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of the inheritance tree. All descriptors are components. Descriptor is instance of itself, it is its own

descriptor. This solves at the model level the infinite regression on descriptions (similar to the one of

ObjVlisp 5 postulates).

Our modeling scheme to represent descriptors as components conforms to the MOF solution for

reflection:

“Reflection introduces Object as a super-type of Element in order to be able to have a Type
that represents both elements and data values. Object represents ’any’ value and is the
equivalent of java.lang.Object in Java.” [OMG, 2011a].

Component in Figure 5.3 conforms to MOF::Reflection::Object. Descriptor conforms to

UML::Classes::Kernel::Classifier.

The following sections describe the COMPO’s reflective implementation of the main meta-model

elements of in Figure 5.3. The sections present the associated language constructs and give some

primary examples of their use. Each element of our meta-model is implemented as a COMPO de-

scriptor. The inheritance relations in the meta-model are directly implemented in COMPO using its

descriptor-level inheritance system and its ability to create sub-descriptors of descriptors.

5.5 First-class descriptors and components

The conceptual meta-model in Figure 5.3 and its simplified excerpt in Figure 5.4 show the two ba-

sic concepts: component and descriptor. The component-oriented reifications of those concepts are

represented by descriptors COMPONENT and DESCRIPTOR. The descriptor DESCRIPTOR inherits from the

descriptor COMPONENT, which makes any descriptor a component, and where DESCRIPTOR and COM-

PONENT are descriptors. The fact that DESCRIPTOR is an instance of itself solves the potential infinite

regression induced by the need for anything to have a descriptor.

Figure 5.4 : Excerpt of the meta-model (see Figure 5.3) showing the two basic elements: component
and descriptor with their relations.

COMPONENT defines the basic structure and behavior shared by all components. Definition in

Listing 5.1 shows that all have an external provided port named default described by the univer-
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Descriptor Component {
provides {
default : { getPorts(); getPortNamed(name);

getDescriptor(); getOwner();
getIdentityHash();
}

}
requires { args[] : * }
internally requires {
super : * ofKind SuperPort;
self : * ofKind SelfPort;

}
service getPorts() {...}
service getPortNamed(name) {...}
service getDescriptor() {...}
service getOwner() {...}
service getIdentityHash() {...}

}

LISTING 5.1 : The COMPONENT descriptor.

sal interface * (see Definition 5), an external required collection port args[] to connect arguments

(see Section 3.3.2) and two internal provided ports named self and super. The self port allows a

component to invoke its own services. Service invocations sent through the super port are looked

up starting from the super-descriptor of the descriptor owning the service in which code the service

invocation is emitted (see Chhoice 27).

Our meta-model enables users to define new kinds of ports by creating sub-descriptors of de-

scriptor PORT (see Listing 5.5). In order to be able to define the type of a port in its declaration in a

descriptor, we choose (cf. Choice 37) to provide an operator ofKind.

Choice 37 A port declaration can be made more specific by putting the following statement ofKind
<descriptor> after interface specification. The statement specifies that a port will be created as an
instance of the specified descriptor <descriptor>.

For example, in case of the self and super ports, the ofKind SelfPort and ofKind SuperPort
statements specify that these ports will be created as instances of descriptors SELFPORT and SUPER-

PORT respectively.

Descriptor COMPONENT defines the four following services:

• services getPorts() and getPortNamed(name) return all (external and internal) ports (resp. a

particular port) owned by the receiver. When these services are invoked via the super port, they

return port(s) owned by a component, which are defined by the super-descriptor of the descrip-

tor of the component. For example for a component defined with the following descriptor:

Descriptor A { requires { reqA : { ser1() } } }
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An invocation of service getPorts() sent through port default returns a collection compo-

nent referencing ports default, self, super and reqA of an instance of descriptor A. The ser-

vice return the same result if it is invoked through port self. In case of invocation via port

super the service returns only references to ports default, self and super, because only those

are defined by the super-descriptor (COMPONENT) of descriptor A.

• service getDescriptor() returns the receiver’s descriptor.

• service getIdentityHash() returns the primitive (VM) identity hash of components.

• service getOwner() returns the owning component of the receiver or null if the receiver is not

an internal component

Descriptor Descriptor extends Component
{
internally requires {
name : Symbol; /* an identifier string */
ports[] : PortDescription;
architecture[] : ConnectionDescription;
services[] : Service;

}
service getPorts() {...}
service getPortNamed(name) {...}
service getDescriptor() {...}
service getOwner() {...}
service getDescribedPorts() {...}
service getDescribedConns() {...}
service getService(selector, arity) {...}

service new() {...}
service newNamed(name,superDesc) {...}

service addService() {...}
service removeService(selector,arity) {...}

service addPortDescription(pd) {...}
service removePortDescription(pd) {...}

service addConnDescription(cd) {...}
service removeConnDescription(cd) {...}

}

LISTING 5.2 : The DESCRIPTOR descriptor.

Listing 5.2 shows COMPO definition of DESCRIPTOR. Its definition states (cf. Listing 5.2) that all

descriptors have, in addition to what is defined in COMPONENT, four internal required ports:

• name,
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• ports[], a descriptor has a collection of port’s descriptions (instances of PORTDESCRIPTION, see
Listing 5.3) according to which ports of its instances will be realized.

• architecture[], a descriptor has a description of its instances internal architecture in the

form of a collection of connection’s descriptions (instances of CONNECTIONDESCRIPTION, see
Listing 5.4) according to which connections will be realized.

• services[] to store the collection of services of its instances.

DESCRIPTOR defines services for instance creation. The service new implements the instantiation

mechanism (cf. Section 3.3.1) of COMPO and the newNamed(name, superDesc) service makes it pos-

sible to create new descriptors. There are several services for introspection (various read-accessors

such as getDescribedPorts()) and for intercession (such as addService(service) ). These ser-

vices, together with those inherited from COMPONENT set the basis for creating more complex reflec-

tive operations.

Descriptor PortDescription extends Component{
provides {
default : { setName(name); getName(); setRole(role); getRole();

setKind(kind); getKind(); setInterface(intf);
getInterface(); setVisibility(vis); getVisibility();
isCollection(); setIsCollection(bool);

}
}
internally requires {
name : Symbol;
role : Symbol;
visibility : Symbol;
interface : Interface;
kind : Symbol;
isCollectionPort : Bool;

}
}

LISTING 5.3 : The PORTDESCRIPTION descriptor.

Meta-descriptors provide a definition of the descriptors. An important benefit of first-class status

of descriptors is customization of the descriptors behavior [Ledoux et Cointe, 1996], i.e. the ability

to assign properties to descriptors (e.g. being abstract, being safely-substitutable, supporting mul-

tiple inheritance), independently from the base-level code. Because descriptors have the ability to

manipulate their own structures, they can implement a program introspection. Consequently, meta-

descriptors support a circular definition of the system reducing the boundary between users and im-

plementors. In the rest of this section we present basic examples of using introspection, intercession

and an example of a new kind of meta-descriptor.

Figures 5.5 and 5.6 show diagrams of component-based reifications of the component and de-

scriptor concepts.
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Descriptor ConnectionDescription extends Component {
provides {
default : { getSourceComponent(); getSourcePort(); getDestinationComponent();

getDestinationPort(); getKind(); setSourceComponent(scd);
setSourcePort(spd); setDestinationComponent(sdc);
setDestinationPort(sdp); isDisconnection();
setIsDisconnection(bool);

}
}
internally requires {
sourceComponent : Symbol;
sourcePort : Symbol;
destinationComponent : Symbol;
destinationPort : Symbol;
isDisconnection : Bool;

}
}

LISTING 5.4 : The CONNECTIONDESCRIPTION descriptor.
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Figure 5.5 : A diagram of a component-based reification of the component concept. Greyed parts

denote inherited parts.
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Figure 5.6 : A diagram of a component-based reification of the descriptor concept. Greyed parts

denote inherited parts.
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An introspection example The following code snippet shows a basic use of introspection. The ex-

pression returns the descriptions (i.e. instances of descriptor PORTDESCRIPTION, see Listing 5.3) of

ports default, self and super, which are defined by the descriptor COMPONENT, see Listing 5.1.

Component.getPortNamed(’default’).getDescribedPorts();

An intercession example The following code snippet shows the descriptor (named SERVICEMOVER)

of a refactoring component, which combines get, remove and add services to move a service from

one descriptor to another.

Descriptor ServiceMover {
requires {

srcDesc : Descriptor;
destDesc : Descriptor

}
service move(selector) {

|srv|
srv := srcDesc.getService(selector);
destDesc.addService(srv);
srcDesc.removeService(selector);

}
}

An example of defining a meta-descriptor DESCRIPTOR is a meta-descriptor. A new meta-descriptor

can be defined by extending it. As an example, consider the following issue. Having an inheritance

system, it is possible for a sub-descriptor SD to define new required ports, thus adding requirements

to the contract defined by its super-descriptor D. In such a case, the substitution of an instance of D

by an instance of SD needs specific checking (child-parent incompatibility problem 4.6 of inheritance

systems in the component-based context). It may be wanted to define some descriptors that do not

allow their sub-descriptors to add new requirements. Such a semantics is achieved by the DESCRIP-

TORFORSAFESUBSTITUTION definition shown in the following code snippet. The meta-descriptor ex-

tends the descriptor DESCRIPTOR and specializes its service addPortDescription, which implements

the capability to add a port description. The service is redefined in a way that it signals an exception

each time it is tried to add a description of an external required port.
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Descriptor DescriptorForSafeSubstitution extends Descriptor
{
service addPortDescription(portDesc) {

| req ext |
req := portDesc.isRequired();
ext := portDesc.isExternal();
if (reg & ext)
{ error(’no new reqs. allowed’); }
else { super.addPortDescription(portDesc); }

}
...

}

An instance (a new descriptor) of the DESCRIPTORFORSAFESUBSTITUTION meta-descriptor named

TESTDESCRIPTOR extending descriptor COMPONENT could then be created by the following expressions:

• Run-time creation

DescriptorForSafeSubstitution.newNamed(‘TestDescriptor’, Component);

• Static creation

DescriptorForSafeSubstitution TestDescriptor extends Component
{ ... }

To conclude this part on components and descriptors, let us show the PORTDESCRIPTION and CON-

NECTIONDESCRIPTION descriptors, see Listings 5.3 and 5.4 respectively. They simply declare a single

provided port through which they offer getter and setter services for accessing the descriptor level

descriptions of ports and connections. Such descriptions are useful to achieve static or dynamic

architecture checking or transformation. In the case of a run-time transformation, a COMPO’s im-

plementation should ensure that these descriptor level descriptions and the internal representation

of descriptor instances are causally connected. When the description changes, all instances should

automatically be updated.

5.6 First-class ports

Generally the “port” concept is a higher-level abstraction of references known from OOP. Ports con-

cern connections between components and communication, i.e. service invocations sent through

them. They explicitly represent connection points and implicitly represent references. Their first-

class status opens, in an explicit and simple way, the “door” to program-based manipulation of:

(i) connection points, (ii) connections and (iii) service invocations. Thus, they make it possible to

achieve scenarios similar to the ones in the object-oriented context, where first-class references are

introduced [Arnaud et al., 2010] or the ones where custom lookup objects are needed [Vran� et al.,
2012].



5.6. First-class ports 159

To reify ports are components is important for model verification and transformations and also

to allow for defining new kinds of ports introducing new communications protocols. For example, a

developer can create a new kind of port, which implements request/response protocol, i.e. for each

service invocation sent via such a port, there should be a confirmation that the invocation was well

received. It however induces two potential infinite regressions.

The first infinite regression is related to the definition: “a port is a component having ports”. To

solve the recursive nature of that definition we restrict the language capabilities by altering the def-

inition in the following way: “a port is a component having primitive ports”. The restrictions are

captured by Definition 20 and Choice 38 introducing primitive ports:

Choice 38 A port is a component and its ports are primitive ports.

Definition 20 (Primitive port) A primitive port behaves like a port but is not a component. Ports de-
clared in the PORT descriptor (or its sub-descriptors) are automatically made primitive to avoid infinite
regression.

The second infinite regression is related to the fact that if ports are components, a component and

one of its ports, should be connected via ports. To solve this, the attachment of a port to its owning

component has to be primitive and in conjunction a language special construct is needed to provide

access to a port seen as a component.

Similar issues would apply with first-class connections in the case where components are directly

connected via ports. Having a solution where components are connected via theirs ports, we can

consider connections between ports as primitive entities (references), and we do not need to reify
connections. This entails no limitation regarding the capability to experiment with various kinds of

connections [Mehta et al., 2000] because our model makes it possible to define new kinds of ports

and because of the capability it offers to put an adapter component in between any components.

The listing 5.5 shows the COMPO’s definitions of the PORT descriptor that implements the Port
concept and its sub-descriptor COLLECTIONPORT that implements collection ports. The descriptor

PORT states that each port has:

• an owner, any port is owned by a component. A port is connected to its owner through external

required port owner

• a set of connected ports (to which the port is connected) realized with external required collec-

tion port named connectedPorts[]

• a set of delegated ports (to which the port is delegated) realized with external required collection

port named delegatedPorts[]

• a name symbol-component connected to the internal required port name

• an interface connected to the internal required port interface
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PORT defines services for port introspection (e.g. getName(), ...) and port intercession (e.g.

connectTo(port), invoke(service), ...). The difference between descriptors PORT and COLLECTION-

PORT is the implementation of services connecTo, disconnect and invoke. Where COLLECTIONPORT

descriptor manages the multiplicity of connections while PORT descriptor implements the services so

that only one connection is possible.

Descriptor Port extends Component
{
requires {
owner : IComponent
connectedPorts[] : IPort
delegatedPorts[] : IPort

}
internally requires {
name : IString;
interface : IInterface

}
service getName(){...}
service getIterface(){...}
service invoke(service){...; <primitive_invoke>; ...}
service isConnected(){...}
service isDelegated(){...}
service connectTo(port){...; <primitive_connectTo>; ...}
service disconnect(){...}

}

Descriptor CollectionPort extends Port
{
service invoke(service,index){...}
service connectTo(port){...}
service disconnect(index){...}

}

LISTING 5.5 : The descriptors PORT and COLLECTIONPORT

Services invocations are made via ports, for example the expression

printingPort.print(’hello’), where printingPort is a port of a component c, will invoke

the service print of the component connected to c via printingPort. To use printingPort as a

component, to send it a service invocation for example, requires a correct way to reference it, i.e.
conforming to COMPO’s meta-model and semantics. Such a correct way is to have a required port

connected to the default provided port of printingPort seen as a component (see Figure 5.7.) To

achieve this, we have introduced the & operator, for any port p, &p is such a required port.

Definition 21 (The & operator) The & operator applied on a port, i.e. &<portName>, returns an on-
demand created primitive internal required port, which is automatically connected to the default
port of the component representing (reifying) port <portName>.

Because primitive ports are not reified, the application of the & operator on a primitive port re-
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turns itself, then a double application of the operator returns the same result as a single application,

i.e. &printingPort == &&printingPort.

In the previous example, it is possible to write:

&printingPort.isConnected();

&printingPort is a primitive internal required port which is created on-demand (for perfor-

mance reasons) and automatically connected to the default port (see Choice 10), itself a primitive

port, of the printingPort port seen as a component. Invocations sent through such a port are in-

vocations sent to the component representing the printingPort port. An example of use of the &

operator is given in the next paragraph.

Figure 5.7 : The & operator for accessing the component-oriented reification of the printingPort
port of an instance of descriptor TEXTEDITOR

Example: A new kind of port - an aspect port Listing 5.6 shows a toy integration of basic aspects

to serve as an illustrating example. Descriptor ASPECTPORT defines in COMPO a new kind of required

ports that have a special required port named aspectComp, to be connected to any component having

before and after services, let’s call such a component an aspect component. Descriptor ASPECTPORT

redefines the standard service invocation semantics of ports so that the before and after services of

the aspect component are invoked before and after the standard invocation.

The descriptor TEXTEDITOR shows (in Listing 5.7 a use of an aspect-port (note the ofKind operator

to specify that an aspect required port is used).

Finally, we create an application (described by descriptor APPLICATION) which assemble an in-

stance of TEXTEDITOR with a printer component, see Listing 5.7. The last connect statement in the

architecture section of APPLICATION descriptor says that the aspectComp port of the aspect-port, here

used as a first-class component accessed via internal required port &textEd, should be connected to

the default provided port of a MYASPECTCOMPONENT, see Figure 5.8.

Example: A new kind of port - a read-only port Listing 5.8 shows the READONLYPROVIDEDPORT de-

scriptor realizing a new kind of provided ports through which only services with no side effect on the

architecture, i.e. services not affecting the internals of the component, could be invoked. It redefines
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Figure 5.8 : The visualization of the use of an aspect-port

Descriptor AspectPort extends RequiredPort {
requires { aspectComp : {before(); after(); }}
service invoke(service) {
aspectComp.before();
super.invoke(service);
aspectComp.after();}

}

LISTING 5.6 : The example of creating an aspect-port

Descriptor MyAspectComponent {
provides { default : {before(); after()}}
service before(){...}
service after(){...}

}
Descriptor TextEditor {
requires { printer : {print()} ofKind AspectPort }
...

}
Descriptor Application {
internally requires {
textEd : TextEditor;
printer : Printer;

}
architecture {
connect textEd to default@(TextEditor.new());
connect printer to default@(Printer.new());
connect aspectComp@(&textEd) to default@(MyAspectComponent.new());

}
}

LISTING 5.7 : The example of using an aspect-port
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the standard service invocation to check whenever it is correct or not to invoke the requested service

and it also redefines the standard connecting service in a way that a provided port of kind read-only

can be delegated to only another read-only port.

Descriptor ReadOnlyProvidedPort extends ProvidedPort
{
service invoke(service) {
|bool1 bool2|
bool1 := owner.implements(service);
bool2 := owner.isConstantService(service);
if(bool1.and([bool2]))
{ super.invoke(service); }
else { ... }

}
service connectTo(port) {
if(port.getDescriptor().isKindOf(ReadOnlyPort))
{ super.connectTo(port); }

}
}

LISTING 5.8 : The example of creating and using an aspect-port

The explicit status of ports is a way to further control references between entities. For example,

the above case of aspect required ports represents a way to realize a join point defined for all the users

of a component having such a port. Or, the read-only example illustrates the fact that using different

kinds of provided ports can facilitate different view-points on a component, in this case the read-only

view-point.

5.7 First-class services

Services implement the behavior of components. Refactoring operations (add, remove, move), run-

time behavior modification, JIT compilation and other features are possible when services do have

first-class status. There are two aspects of services reflection: structural aspect and behavioral as-

pect. Structural reflection focus on reification of formal parts of services like name, parameters, etc.

Behavioral reflection focus on reification of concepts from which behavior description is composed,

i.e. assigments, invocations, etc. We only deal with structural reflection of services, we do not imple-

ment behavior reflection, because it may lead to inefficient programs [Malenfant et al., 1992].

The reification of services is based on the analysis of services’ structure. The Listing 5.9 shows an

example of a service which converts miles to kilometers. It has the following structure: temporary

variables (const and result), parameters (miles), context (calc, self, super) and body (code). A

component diagram showing this structure is shown in Figure 5.9. Taking into account the analysis

of the structure of services the milesToKms service from Listing 5.9 can be rewritten as shown in

Listing 5.10.

Listing 5.11 shows the COMPO implementation of the Service descriptor. Each service has a sig-

nature (port serviceSign to which an instance of ServiceSignature descriptor will be connected),

Temporary variables names and values (collection ports tempsN[] and tempsV[] ports), a program
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service milesToKms(miles) {
| const result |
const := 1.609;
result := calc.mul(miles, const);
return result;

}

LISTING 5.9 : Analysis of services structure, the milesToKms example.

service milesToKms(miles) {
tempsV[1].connectTo(1.609);
tempsV[2].connectTo(context.getPortNamed(’calc’).mul(paramsV[1], tempsV[1]));
return tempsV[2];

}

LISTING 5.10 : Analysis of services structure, the milesToKms example from Listing 5.9 in structural

perspective
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Figure 5.9 : Reification of services, the miles-to-kms example.
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text (port code), the inherited args[] collection port to connect invocation arguments, an execu-

tion context (port context, to be connected at run-time to a component representing an execution

context).

The service execute() checks if all requirements are satisfied (notice the use of the & operator),

i.e. if a context component and parameter values are connected. Then it performs a system primitive

to execute the code.

Descriptor Service extends Component
{
provides { default : {execute(); setSignature(sign); getSinature(); }}
requires {
context : Component;

}
internally requires {
serviceSign : ServiceSign;
tempsN[] : Symbol;
tempsV[] : *;
code : String;

}
architecture { ... }
service execute() {
|bool1 bool2|
bool1 := &context.isConnected();
bool2 := &paramsV.isConnected();
if( bool1 & bool2 )
{
return <primitive_execute>;

}
}

}

LISTING 5.11 : The SERVICE descriptor.

The SERVICESIGNATURE descriptor definition is in Listing 5.12, its instances are pretty simple, they

provide services to store and access selectors, and parameter names of services.

Descriptor ServiceSignature extends Component {
provides {
default : { setSelector(name); getSelector(); getParamsCount();

getParamName(index); setParamName(index); }
}
internally requires {
name : Symbol;
paramNames[] : Symbol;

}...
}

LISTING 5.12 : The PORTDESCRIPTION descriptor.

Standard services are created with statement having the following template: service
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<selector>(<param1>,<param2>,...,<paramN>) { <body> }. Having first-class ser-

vices opens a way to implement closures-like anonymous services. Although this

is an experimental feature of COMPO, it seems to be a step in a right direction.

Users can create anonymous services by the statement with the following template:

[:<param1>,:<param2>,...,:<paramN>|(|<temp1>,...,<tempN>|) <code>], for example:

[:x, :y | return x + y; ].

Since services are first-class citizens it is possible to pass them as arguments of services invoca-

tions. To preserve the safety of the context component of a service (representing the environment of

the service) we prevent invocations of internal services of the context component by automatic re-

connection of the required port context of a service being passed (as argument) to the default port

of its context component.

A (receiver) service which receives another service as an argument has to be able to connect values

to the args port of the argument. For example, suppose that the foreach service has been invoked

as follows: x.foreach([:e| self.add(e)]);, then the following code snippet shows the need for

connecting the args port:

service foreach(closure) {
|i|
for(i:=0;i<self.size();i:=i+1)
{

connect args@closure to default@(self.at(i));
closure.execute();

}
}

The standard semantics of connect-to statement (see Chhoice 18) forbids to use, in the code of a

service, a value of a service parameter (argument) to build a regular or delegation connection. As we

explain in Section 3.3.2, such a restrictive semantics preserves the communication integrity, because

it does not allow to make connections to a component (possible an internal component) which is

passed as an argument. But, in case of first-class services, we believe that the potential brought by

the ability to pass a component representing a service as an argument is a reasonable excuse for the

following choice:

Choice 39 As an experimental exception to the rule captured by Choice 18, we allow to use a service
being passed as an argument for building connections.

Example: invoking the milesToKms service In this example we show how does things go when a

map component requires and later invokes the milesToKms service of a convertor component. List-

ing 5.13 shows descriptors MAP and CONVERTOR of the map and convertor components respectively.

To make things more interesting, suppose that both the map and convertor components are each

wrapped in a different composite, i.e. each is an internal component of a composite, and these com-

posites are connected. Figures 5.10, 5.11 and 5.12 illustrate this situation and a scenario when the
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service foo of the map componet invokes the milesToKms service of the convertor component. We

divide the invocation scenario into 3 phases captured by the figures:

Phase 1 Figure 5.10 shows how the foo of map emits the milesToKms invocation through port conv
and the way how it is passed via delegation and regular connections to the default port of the

convertor. The invocation path conforms to the service invocation mechanism of COMPO (cf.
Section 3.3.2)

Phase 2 Figure 5.11 shows how the miles parameter of the milesToKms service is automatically con-

nected to the trckLen argument of the invocation. The argument passing conforms to argument

passing technique of COMPO (cf. Section 3.3.2)

Phase 3 Figure 5.12 show how the milesToKms service computes and returns the result. The return

value is passed back and its clone (thanks to the assignment operator :=) is connected to the

trckLen internal required port of map. This conforms to the Choices 18 and 19 that we have

made in Section 3.3.2.

Descriptor Map extends Component {
requires { conv : Convertor }
internally requires { trckLen : Number }
service foo() {
...
trckLen := 2;
trckLen := conv.milesToKms(trckLen);
...

}
}
Descriptor Convertor extends Component {
provides { default : { milesToKms(miles); } }
service milesToKms(miles) {
| const result |
const := 1.609;
result := calc.mul(miles, const);
return result;

}
}

LISTING 5.13 : The MAP and CONVERTOR descriptors
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5.8 Related work

This section discuss the reflection capabilities of the three families (cf. Section 2.2.1) of component-

based approaches.

The generative family The static nature of ADLs also do not match with reflection very well [Med-

vidovic et Taylor, 2000]. Reflection or at least introspection capabilities depend on code which is

generated from architectures that these ADLs describe. For example, reflection is partially supported

in C2 [Medvidovic et al., 1996] through context reflective interfaces. Each C2 connector is capable of

supporting arbitrary addition, removal, and re-connection of any number of C2 components. UML 2

provides support for CBSE. UML itself is not a reflective language, but its meta-model (defined with

MOF [OMG, 2011a]) is. Reflection capabilities (manipulation of properties, invoke method, instance

creation, etc.) provided by MOF are specifications only, i.e. there is no support for run-time reflection

capabilities (as we introduced in COMPO).

The framework family Existing middleware technologies and standards provide very limited sup-

port for platform openness, usually restricted to high-level services, while the underlying platform is

considered a black box. Recently, technologies such as interceptors, are a trend towards more open-

ness. Nevertheless, the kind of openness provided is still limited to a few aspects of the platform.

CORBA Component Model (CCM) [OMG, 2012], Enterprise Java Beans (EJBs) [Oracle, 2012] or

Component Object Model (COM) [Microsoft, 2012] do not provide support for explicit architecture

definition, the black-box approach they support does not fit with reflection very well. Introspection

interfaces, which can be used to discover the capabilities of components, are the only reflection ca-

pability they offer. For example CCM Navigation interface for discovering facets (provided ports) or

IUnknown interface in COM for discovering external (client and server) interfaces of a COM object.

The interface EJBContext defines methods to retrieve references to the bean’s EJB home and remote

interfaces classes, then normal Java reflection can be used to introspect the methods available to a

client.

Only very few solutions consider reflection as a general approach which can be used as an over-

all framework that encompasses platform customization and dynamic reconfiguration. These mod-

els try to overcome the limitations of black-box approach by providing components with meta-

information about their internal structure.

Projects OpenCORBA [Ledoux, 1999] and DynamicTAO [Kon et al., 2000] adopt reflection as a

principled way to build flexible middleware platforms.

OpenCORBA is based on the meta-class approach and on the idea of modifying the behavior of a

middleware service by replacing the meta-class of the class defining that service. This is mainly used

to dynamically adapt the behavior of remote invocations, by applying the above idea to the classes of

stubs and skeletons.

DynamicTAO is a CORBA compliant reflective ORB, which makes explicit the architectural struc-

ture of a system in a causally connected way. Component configurators keep the consistency of de-

pendencies as new components are added or removed from the system. Reflection capabilities are
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limited to coarse-grained components, without possibility to control more detailed structures of the

platform.

OpenCOM [Clarke et al., 2001] (a lightweight and efficient component model based on COM) en-

ables users to associate (dissociate) interceptor components with (from) some particular interface or

to obtain all current connections between the host components’ receptacles and external interfaces.

Many reflection capabilities are supported in Fractal [Bruneton et al., 2006] component model,

but the capabilities vary depending on kinds of Controllers (e.g. Attribute controller, Binding con-

troller, Content controller, ...) a Fractal component membrane contains. The Fractal specification

provides several examples of useful forms of controllers, which can be combined and extended to

yield components with different introspection and intercession features. An advanced example of

using controllers is FraSCAti [Seinturier et al., 2012] model for development of highly configurable

SCA solutions. In COMPO, reflection capabilities are the same for all components (an orthogonal

model). In addition, we go further in the reification of component-level concepts: services, ports and

descriptors are components.

Furthermore, middleware component models are often designed to be platform independent.

Then, for each platform, the tool support of these models generate code skeletons to be filled

later. Consequently run-time transformations on components and their internal structure are

performed through objects and not components. For example SOFA [Hnětynka et Plá⇤il, 2006 ;

Bures et al., 2006] reifies connectors. It is thus possible to specify high-level connectors within archi-

tecture descriptions. But finally, each primitive part of a connector specification has to be mapped

by developers to some (object-oriented) code. Then reflection can be used if it is provided by this

target (object-oriented) implementation language. In this case however, reflection does not address

component-level concepts as in COMPO.

Models@runtime [Blair et al., 2009] stream pushes the idea of reflection one step further by con-

sidering the reflection layer as a real model that can be uncoupled from the running architecture (e.g.

for reasoning, validation, and simulation purposes) and later automatically re-synchronized with its

running instance.

MetaORB [Costa et al., 2006] proposes the design time use of models to generate MetaORB config-

urations, and, at run-time, the use of these same models as the causally connected self-representation

of the middleware components that is maintained by the reflective meta-objects for the purposes of

dynamic adaptation. MetaORB provides the meta-information management with a principled re-

flective meta-level. This has the benefit of unifying the use of meta-information in the system (e.g.
preventing that different meta-object implementations use different meta-level representations), as

well as providing a basis to closely integrate the configuration and adaptation features of the plat-

form. In contrast to COMPO’s orthogonal model where a change to a descriptor is propagated to all its

instances, MetaORB reflection is based on per-object meta-objects, enabling to isolate the effects of

reflection.

All Kevoree concepts (Component, Channel, Node, Group) obey the object type design pattern to

separate deployment artifacts from running artifacts. In opposite to COMPO, where reflection capa-

bilities are similar to all entities, Kevoree’s adaptation capabilities depend on different types of nodes.

The adaptation engine relies on a model comparison between two Kevoree models to compute
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a script for a safe system reconfiguration; execution of this script brings the system from its current

configuration to the new selected configuration. Such adaptation scripts are written by designers,

or they can be generated by automated processes (e.g. within a control loop managing the Kevoree

system). In fact, the adaptation scripts are comparable to model transformations written in COMPO.

The above described component models provide many sophisticated means for creating adapt-

able dynamic component-oriented solutions, but, in opposite to component-based programming

languages like COMPO, they use object-oriented programming to implement component-based soft-

ware. Therefore there is no continuum to achieve the various stages of component-based software

development using the same conceptual model.

The Component-oriented languages family The big advantage of component-oriented languages

(COLs) is that they do not separate architectures from implementation and so they have potential to

manipulate reified concepts. In opposite to COMPO, component-level concepts are often reified as

objects, instead of components. This leads to a mixed use of component and object concepts. For

example reflection package of ArchJava [Aldrich et al., 2002] specifies class (not component class)

Port which represents a port instance. Very often the representations are not causally connected

to concepts they represent. In case of ArchJava, which relies on Java reflection, the reason is that

reflection in Java is mostly read-only, i.e. introspection support only.

Reflection is not explicitly advocated in ComponentJ [Seco et al., 2008]. It however appears that

a running system certainly has a partial representation of itself to allow for dynamic reconfiguration

of internal architectures of components as described in [Seco et al., 2008] but it seems to be a local-

ized and ad.hoc capability, the reification process being neither explicited nor generalized as in our

proposal.

5.9 Summary

In this chapter, we have described an original meta-model for a reflective component-based pro-

gramming language allowing for standard application development, and for static or run-time model

and program transformations. We have proposed concrete, adapted (first-class descriptors) or new

(first-class ports), dmd meta-level solutions for a component-based reification of concepts leading to

a “everything is a component” operational development paradigm.

Such a reflective language offers a continuum to achieve the various stages of component-based

software development in the context of one language. For example a programmer can design a

component-oriented architecture, then verify the architecture’s properties and then seamlessly fill

it in with code, all using COMPO. As a reflective language gives access (via meta-components) to ele-

ments of the component-based meta-model, COMPO also makes it possible to design and implement

new component-based constructs (as exemplified with achieving a new kind of ports).

A key issue is uniformity. We have described a full component-based meta-model and a reflective

description in COMPO of its main component descriptors made executable via a concrete implemen-

tation. This opens the essential possibility that architectures, implementations and transformations

can all be written at the component level and using a unique language. The final solution is thus

extensible and permits to achieve various applications and modeling scenarios.
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The following sub-section is a recapitulation of the definitions and the choices that we have made

for COMPO in this chapter.

5.9.1 Definitions made

Primitive port A primitive port is a rock-bottom entity that cannot be created by users and cannot

be used as a first-class entity. It implements the behavior of standard ports. Every port declared

within the PORT descriptor is automatically primitive. (cf. 20

The & operator The & operator applied on a port, i.e. &<portName>, returns on demand cre-

ated primitive internal required port, which is automatically connected to the default port

of the component representing (reifying) port <portName>. Is true that &<portName> ==
&&<portName> (double application returns the same result). (cf. 21)

5.9.2 Choices made

Choice 34 Descriptors, ports and services are true components, instances of descriptors DESCRIPTOR, PORT

and SERVICE respectively.

Choice 35 Descriptor COMPONENT is a basic descriptor and the root of inheritance tree, all descriptors in-

herit it

Choice 36 Descriptor DESCRIPTOR is a sub-descriptor of descriptor COMPONENT. It describes descriptors (it

is a meta-descriptor) and is the instance of itself.

Choice 38 A port is a component having primitive ports.

Choice 37 A port declaration can be made more specific by putting the following statement ofKind

<descriptor> after interface specification. The statement specifies that a port will be created

as an instance of the specified descriptor <descriptor>.

Choice 39 As an experimental exception to the rule captured by Choice 18, we allow to use a service being

passed as an argument for building connections.
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COMPO in Practice

If A is success in life, then A = x + y + z. Work is
x; y is play; and z is keeping your mouth shut.

Albert EINSTEIN.

Preamble

Smaller examples of using composition, inheritance, introspection, intercession and meta-modeling
have already been given in the previous chapters. In this chapter we present a complete architecture de-
sign of the HTTP server which was used previously in these examples. Then we present an example of hi-
erarchy modeling, where COMPO’s inheritance system plays the main role. We also benchmark COMPO’s
reflection capabilities and its meta-model in an example of architecture transformation and architec-
ture constraint verification. We show how architecture constraints can be executable and reusable.
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6.1 Designing an HTTP server

IN this example we present a descriptor named HTTPSERVER (cf. Listing 6.1) which models a simple

HTTP server that receives HTTP requests from network, processes these requests and finally cre-

ates and sends the responds. The intent of this example is to show the architecture description power

of COMPO.

The descriptor provides the services run and status through the default provided port. It states

that a server is composed of two internal components, an instance of FRONTEND accessible via the

internal required port fE, and an instance of BACKEND accessible via the internal required port bE.

These internal components are connected together so that the front-end can invoke services of the

back-end. The HTTPSERVER descriptor explicitly defines the implementation of the status service.

The provided service run is implemented by a delegation connection to the provided port default of

the front-end. Figure 6.1 shows a diagram that represents such a server component.
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Figure 6.1 : The diagram shows a logical representation of an instance of the HTTPSERVER descriptor

presented in Listing 3.1, after it has been created and initialized.

Listing 6.2 shows the FRONTEND descriptor. The descriptor specifies one provided port named

runnable providing the services run and isListening service. It also specifies one required port

named backEnd through which it requires the handleReq(r) service. Internally, it defines two inter-

nal required ports. The first port is named rR (request receiver) and described by the interface of the

default provided port (see Section 10) of the REQUESTRECEIVER descriptor. The second port is named

s and described by the interface of the default provided port of the TASKSCHEDULER descriptor. In the

architecture section, we declare two delegation connections and three regular connections (see Sec-

tion 3.2.4 for more details about delegation and regular connections.) The first delegation connection

says that the external provided port runnable delegates service invocations to the default port of the

internal component connected to the rR internal required port. The second delegation connection

says that the external required port handler of the internal component connected to the rR internal

required port delegates service invocations to the backEnd required port. The first two regular con-

nections connect new instances of TASKSCHEDULER and REQUESTRECEIVER descriptors to the internal
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Descriptor HTTPServer {
provides {
default : { run(); status() }

}
internally requires {
fE : FrontEnd;
bE : BackEnd;

}
architecture {
connect fE to default@(FrontEnd.new());
connect bE to default@(BackEnd.new());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status() {
if(fE.isListening())
{
return name.printString() + ’ is running’

}
else
{
return name.printString() + ’ is stopped’

}
}

}

LISTING 6.1 : The HTTPServer descriptor.

required ports s and rR respectively. The last regular connection defines that the two internal com-

ponents (request-receiver and task-scheduler) are interconnected. Finally the descriptor implements

services isListening and run. Diagram in Figure 6.2 shows an instance of the FRONTEND descriptor.
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Figure 6.2 : A diagram of an instance of the FRONTEND descriptor

The back-end component processes and creates responds for the requests. For each request, the

BACKEND descriptor creates an instances of REQUESTHANDLER descriptor. Listing 3.2 shows the BACK-
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Descriptor FrontEnd {
provides {

runnable : { run(); isListening(); }
}
requires {

backEnd : { handleRequest(r) }
}
internally requires {

rR : RequestReceiver;
s : TaskScheduler;

}
architecture {

delegate default@self to default@rR;
delegate handler@rR to backEnd@self;
connect s@self to default@(TaskScheduler.new());
connect rR@self to default@(RequestReceiver.new());
connect rR@self to schedule@self;

}
service isListening() {

return rR.isRunning();
}
service run() {

...
}

}

LISTING 6.2 : The FrontEnd descriptor

END descriptor. The descriptor specifies one provided port named reqHa (request handler), providing

the handleReq(r) service.

Internally, it defines three internal required ports. The first port is named analyzer and described

by the interface of the default provided port (see Section 10) of the REQUESTANALYZER. The second port

is named logger and described by the interface of the default provided port of the LOGGER. The third

port is a collection port named handler and described by the interface of the default provided port

of the REQUESTHANDLER.

In the architecture section, we declare one delegation connection and three regular connections

(see Section 3.2.4 for more details about delegation and regular connections.) The delegation con-

nection says that the external provided port reqHa delegates service invocations to the inReqHa port

of the internal component connected to the analyzer internal required port. The first two regu-

lar connections connect new instances of LOGGER and REQUESTANALYZER descriptors to the internal

required ports logger and analyzer respectively. The last regular connection defines that the two in-

ternal components are interconnected between the logger and logging ports. Finally we can see

the implementation of the service addHandler service which dynamically adds and connects new

instances of the REQUESTHANDLER descriptor. The newly created components are connected to the

handlers internal required collection port and then each newly created component is connected to

the outReqHa external required collection port of the analyzer component, which is an instance of
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Descriptor BackEnd {
provides {
reqHa : { handleReq(httpRequest); }

}
requires {
reqHa : { handleReq(r) }

}
internally requires {
analyzer : RequestAnalyzer;
logger : Logger;
handlers[] : RequestHandler

}
architecture {
delegate reqHa to inReqHa@analyzer;
connect logger to default@(Logger.new());
connect analyzer to default@(RequestAnalyzer.new());
connect logger@analyzer to logging@logger;

}
service addHandler() {
|i|
i := connect handlers to default@(RequestHandler.new());
connect outReqHa@analyzer to reqHa@handlers[i];

}
}

LISTING 6.3 : The BackEnd descriptor

the REQUESTANALYZER shown in Listing 6.4. Diagram in Figure 6.3 shows an instance of the BACKEND

descriptor.

Descriptor RequestAnalyzer {
provides {
inReqHa : { handleReq(req, index); }
}
requires {
logger : { log(str) };
outReqHa[] : { handleReq(httpRequest); };
}
...

}

LISTING 6.4 : The RequestAnalyzer descriptor



180 Chap 6. COMPO in Practice

���	�

�������

�������������������� ��

�����	�
������

���������
�

�����

�������

������	�

�������	������

���	�

�����������������������

�����������������������

�����������������������������������

�������	������

���	�

Figure 6.3 : A diagram of an instance of the BACKEND descriptor

6.2 Designing a collection hierarchy

The collection hierarchy example was inspired by group of classes that appears in the “Blue Book”

of SMALLTALK [Goldberg et Robson, 1989]. The group contains 17 sub-classes of Collection and has

already been redesigned several times before the SMALLTALK-80 system was released. This group of

classes is often considered to be a paradigmatic example of object-oriented design.

In the following, we redesign a part of the collections hierarchy in the component-based context

to present modeling capabilities provided by COMPO. We use COMPO inheritance mechanism and

abstract descriptors to build a three-level hierarchy having the following structure:

Collection /* level 0 */
|-- AbstractSet /* level 1 */
| |-- IdentitySet /* level 2 */
| |-- Set /* level 2 */
|
|-- Bag /* level 1 */
|-- SequenceableCollection /* level 1 */

|-- Stack /* level 2 */

We design the hierarchy starting from the level zero, i.e. we start with the root component de-

scribed by abstract descriptor COLLECTION, after that we will design the levels one and two. The main

purpose of this descriptor is to define the basic external contract common to all collections. The

descriptor defines that every collection will have 3 ports, each for a different protocol, the ports are

named: accessing, testing and enumerating. Even if the descriptor is abstract, some services like

addAll(coll) or isEmpty() can be implemented. The select service evaluates closure with each of
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the receiver’s elements as the argument and collects into a new collection like the receiver, only those

elements for which closure evaluates to true. We show the COLLECTION descriptor in Listing 6.5.

Descriptor Collection extends Component
{

provides {
accessing : { size(); add(item); addAll(coll); remove(item); removeAll(); };
testing : { isEmpty(); };
enumerating : { select(closure); foreachDo(closure)};

}
service isEmpty() {

return self.size() == 0;
}
service addAll(coll) {

coll.foreachDo([:each | self.add(each); ]);
}
service removeAll() {

self.foreachDo([:each | self.remove(each); ]);
}
service select(closure) {

|collCopy|
collCopy := self;
coll.removeAll();
self.foreachDo([:each|

connect args@closure to default@each;
if(closure.execute())
{ collCopy.add(each); }

]);
return collCopy;

}
}

LISTING 6.5 : The COLLECTION abstract descriptor

The next step is to create level one descriptors:

ABSTRACTSET (cf. Listing B.1 in Appendix B.1): represents an abstract descriptor of all sets. It de-

clares or implements services which are common for all sets. The descriptor implements the

foreachDo service and the not public service indexOf(item). It also declares new not public

services getItemAt(index) and areEqual(itemA, itemB) which its sub-descriptors should

implement. The not public services are not externally provided because users of sets should

not be able to access items by indexes.

BAG (cf. Listing B.2 in Appendix B.1): representing an unordered collection of possibly duplicate

elements.The BAG descriptor is very similar to the SET descriptor, but it allows to store the same

item multiple times. For that purposes it tracks (using internal required collection port tally)

the count of each item in the bag.

SEQUENCEABLECOLLECTION (cf. Listing B.3 in Appendix B.1): representing collections that have a well-

defined order associated with their elements. Thus each element is externally-named by inte-
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gers referred to as indices. The descriptor specializes interfaces of ports accessing, removing
and testing to provide new services related with mapping elements to indices.

Finally we implement the second level children, i.e. a sub-descriptor of SET and a sub-descriptor

of SEQUENCEABLECOLLECTION:

STACK (cf. Listing B.4 in Appendix B.1): representing stacks. The STACK descriptor extends SEQUENCE-

ABLECOLLECTION descriptor, with a new provided port stackable through which it provides ser-

vices push and pop. It specializes services of SEQUENCEABLECOLLECTION in a way that they throw

an error if the items of a stack are manipulated directly with an index.

SET (cf. Listing B.5 in Appendix B.1): representing a set of components without duplicates. The

descriptor has an additional internal required collection port items in order to store items and

manage duplicates. In opposite to the IDENTITYSET descriptor (described below), a set stores

clones (copies with a new identity) of items and therefore it is possible to connect the items to

the internal required port and thus encapsulate the items within the set. The cloning ensures

communication integrity, for example, an internal component of a composite can be stored

into a set without breaking the communication integrity because it is not possible to invoke

services of the internal component of the composite from the set (since the set contains clones).

IDENTITYSET (cf. Listing B.6 in Appendix B.1): representing the same as a Set, except that the stored

items are not clones of real components. To be able to store components to which a third party

component might be connected, we have to introduce a new external required port items, in

opposite to internal required port items of SET. Because items port is external, it would be

possible to break the integrity of sets by, for example, connecting items directly to the port, i.e.
not via service add. To solve this issue, we developed a new kind of collection port (descrip-

tor SETCOLLPORT, cf. Listing B.7), which specializes the connectTo and disconnect services

to keep the integrity of sets. These services are modified in a way they verify the identity of a

newly connected item (connectTo) and update the size of a set when items are connected and

disconnected. The items port is instance of SETCOLLPORT and thus it makes it possible to store

items externally and in the same time to preserve the integrity of identity sets.

6.3 Transformation to a bus-oriented architecture

Model transformations are a key issue for MDE [Carrière et al., 1999]. A wide range of model trans-

formation languages and tools exist. While transformation experts need to understand the trans-

formation language and the source and target domains, domain engineers understand the source

and target domains/languages but have no skills in the model transformation language. By putting

reflection into COMPO we have opened the possibility to write various kinds of model or program

transformations and verifications

The transformation scenario performed on COMPO’s implementation of the simple HTTP server,

described in Section 3.2.1 migrates its component-based architecture from a classic front-end/back-

end architecture into a bus-oriented architecture. The transformation (sketched in Figure 6.4) is mo-

tivated by a use-case when a customer (already running the server) needs to turn the server with
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Figure 6.4 : Simplified diagram illustrating the transformation from a classic front-end back-end ar-

chitecture into a bus-oriented one.

multiple fronts-ends and back-ends into a bus-oriented architecture which reduces the number of

point-to-point connections between communicating components. This, in turn, makes impact anal-

ysis for major software changes simpler and more straightforward. The tax to pay for the increased

flexibility coming with bus-oriented architecture is an increased overhead and a slower communica-

tion speed.

The transformation is modeled with a descriptor named TOBUSTRANSFORMER, see Listing 6.6. An

instance of the TOBUSTRANSFORMER descriptor can be connected to the HTTPSERVER descriptor (seen

as a component) (COMPO’s code in Listing 3.1) and the following transformation steps could be per-

formed:

Step 1 introduce a new internal required port named bus to which an instance of a Bus descriptor

(not specified here) will be connected;

Step 2 remove the original connection from front-end to back-end.

Step 3 extend the original architecture with new connections from front-end and back-end to bus;

The following code snippet shows the use of the transformation component. Let us suppose that

server represents a port connected to an instance of the HTTPSERVER descriptor

transformer := ToBusTransformer.new();
connect target@transformer to default@HTTPServer;
transformer.transform();
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Descriptor ToBusTransformer {
requires { target : IDescriptor }

service step1-AddBus() {
|pd cd|

pd := PortDescription.new();
pd.setName(’bus’);
pd.setRole(’required’);
pd.setVisibility(’internal’);
pd.setInterface(’IBus);

target.addPortDescription(pd);

cd := ConnectionDescription.new();
cd.setSourcePort(’bus’); /* bus@self */
cd.setSourceComponent(’self’);
cd.setDestinationPort(’default’); /* default@(bus.new()) */
cd.setDestinationComponent(’Bus.new()’);

target.addConnectionDescription(cd);
}

service step2-RemOldConns() {
|cd|
cd := DisconnectionDescription.new();

cd.setSourcePort(’backEnd’); /* backEnd@fE */
cd.setSourceComponent(’fE’);
cd.setDestinationPort(’default’); /* default@bE */
cd.setDestinationComponent(’bE’);

context.removeConnectionDescription(cd);
}

service step3-ConnectAllToBus() {
|cd|
cd := ConnectionDescription.new();
cd.setSourcePort(’backEnd’); /* backEnd@fE */
cd.setSourceComponent(’fE’);
cd.setDestinationPort(’inputs’); /* inputs@bus */
cd.setDestinationComponent(’bus’);

target.addConnectionDescription(cd);

cd := ConnectionDescription.new();
cd.setSourcePort(’default’); /* default@bE */
cd.setSourceComponent(’bE’);
cd.setDestinationPort(’outputs’); /* outputs@bus */
cd.setDestinationComponent(’bus’);

target.addConnectionDescription(cd);
}
}

LISTING 6.6 : The ToBusTransformer descriptor.
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6.4 Verifying architecture constraints

A part of architecture decision documentation [Tang et al., 2005 ; Kruchten et al., 2009] is composed of

architecture constraints. Examples of constraints include the verification of a particular architectural

style or pattern, like the layered style. This kind of documentation often includes some parts which

can be used individually for documenting parts of design decisions [Tibermacine et al., 2010b]. Un-

fortunately, there is no mean to specify these parts and to make them parametrized entities that can

be factorized and used in different reuse contexts.
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Figure 6.5 : The facade checker constraint component is connected to an instance of PASSWORDGEN-

ERATOR descriptor in order to verify the constraint.

In our previous work, we have also studied the idea of defining blocks of constraints as customiz-

able and reusable entities [Tibermacine et al., 2010a]. And we have proposed a way to build basic

constraints as checkable entities embedded in a special kind of software components, which can be

reused, assembled, composed into higher-level ones and customized using standard component-

based techniques. The purpose is to put reusable constraint-component on shelves and as well as to

produce new constraints by composition of existing ones [Tibermacine et al., 2011].

Descriptor Constraint extends Component
{

provides { default : {verify();} }
requires { context : * }

}

LISTING 6.7 : The CONSTRAINT descriptor

COMPO, thanks to the reflection, directly supports this idea by providing a uniform paradigm to

develop business and non-functional (constraint-) components. COMPO users may build constraint

components by creating sub-descriptors of the CONSTRAINT descriptor (see Listing 6.7), which is the

basic abstract descriptor for all constraint descriptors.

Every constraint must be assigned to an unambiguous context that defines the target for refer-

ences within the constraint. In COMPO, business components represent a context for constraint com-

ponents. The CONSTRAINT descriptor defines a required port context to which the users may connect
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their business components, as it is shown in Figure 6.5. The interface of the context port might be

specialized to specify the context more precisely.

By default, every constraint descriptor should provide a boolean service called verify to verify its

current context.

The following examples show: (i) a simple constraint component (VERIFYBUSARCH descriptor)

and; (ii) a composite constraint component (PIPEANDFILTER descriptor) built from reusable compo-

nents.

6.4.1 Verifying the bus-oriented architecture

In this example, we design a constraint descriptor VERIFYBUSARCH to verify if the result of the “to
bus transformation” example (cf. Section 6.3) conforms to a bus-oriented architecture. We will con-

nect an instance of the VERIFYBUSARCH descriptor, i.e. a contraint component, to an instance of the

HTTPSERVER (cf. Listing 3.1), i.e. a business component, in order to perform post-transformation

verification. The constraint component executes a service verify which does the following steps:

Step 1 verifies the presence of an internal component representing a bus, i.e. an instance of descrip-

tor BUS;

Step 2 verifies that the bus component has one input and one output port;

Step 3 verifies that all the other components are connected to the bus only and the original delega-

tion connection is preserved.

We show the COMPO’s code of the VERIFYBUSARCH descriptor in Listing 6.8. The descriptor defines

the verify service that gradually triggers services implementing the above described steps, i.e. ser-

vices: stepOne-IsBusPresent, stepTwo-HasBusIOPorts and stepThree-AreAllConnsToBus. The

verify service collects boolean results of the “step”-services and return true if all the results are true.

The following code snippet shows the use of the transformation and verification components: let

us suppose that server represents a port connected to an instance of the HTTPSERVER descriptor

transformer := ToBusTransformer.new();
constraint := VerifyBusArch.new();

connect context@transformer to default@HTTPServer;
connect context@constraint to default@HTTPServer;

transformer.transform();
constraint.verify();
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Descriptor VerifyBusArch extends Constraint
{
service verify() {...}
service stepOne-IsBusPresent() {
|ports|
ports := context.getDescribedPorts();
if(ports.select([:p|

p.getInterface()==IBus])
.size()==1 )

{ return ports.select(
[:p|p.getInterface()==IBus])}

else { return false };
}
service stepTwo-HasBusIOPorts(busPD){
|ports|
ports := Bus.getDescribedPorts();

if(ports.any([:p|p.getName()==’input’]))
{ return true } else { return false };

if(ports.any([:p|p.getName()==’output’]))
{ return true } else { return false };
}
service stepThree-AreAllConnsToBus(busPD){
|conns|
conns := context.getConnsDescs();
conns.remove([:cd|cd.getSrcPort()

.getInterface()==IBus]);

if((conns.remove([:cd|
cd.isDelegation()]))

{} else { return false };

if(conns.forEach([:cd|
(cd.srcPortDesc()==busPD)
.or([cd.destPortDesc()==busPD])
]) {return true } else { return false };
}
}

LISTING 6.8 : The VerifyBusArch descriptor.
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6.4.2 Verifying the Pipe & Filter architecture

In this example we show a composite constraint component described by descriptor PIPEANDFILTER

(shown in Listing 6.9) which verifies whenever or not the internal architecture of a connected business

component (representing a context for the constraint) conforms to the Pipes&Filters architecture.

“The Pipes and Filters architectural pattern provides a structure for systems that process

a stream of data. Each processing step is encapsulated in a filter component. Data are

passed through pipes between adjacent filters. Recombining filters allows you to build

families of related filters.” [Buschmann et al., 2008]

The Pipe &Filter architecture consists of a chain of processes or other data processing entities (like

components), arranged so that the output of each element of the chain is the input of the next. They

are most efficiently implemented in a multitasking operating system, by launching all processes at

the same time, and automatically servicing the data read requests by each process with the data writ-

ten by the upstream process. In this way, the CPU will be naturally allocated alternatively among the

processes by the scheduler so as to minimize its idle time. Process pipelines were invented by Douglas

Mcllroy [McIlroy, 1968 ; McIlroy, 1972], one of the designers of the first Unix shells, and greatly con-

tributed to the popularity of that operating system. It can be considered the first non-trivial instance

of software components.

The PIPEANDFILTER descriptor is composed of 5 reusable constraint components, in the following

we refer to these as sub-constraints. For example, the first sub-constraint can be reused as a part of

“facade” constraint which checks whenever a descriptor describes the facade architecture1.

SUBCONSTRAINTONE : There is only one internal component having one or more external provided

ports connected uniquely to the owning composite only (delegated ports). The component

have to declare one or more external required ports, each being connected to an internal com-

ponent of the same hierarchical level, or being not connected at all. See Listing 6.10.

SUBCONSTRAINTTWO : There is only one internal component having one or more external required

ports connected uniquely to the owning composite only (delegated ports). The component

have to declare one or more external provided ports, each being connected to an internal com-

ponent of the same hierarchical level, or being not connected at all. See Listing B.8 in Ap-

pendix B.2.

SUBCONSTRAINTTHREE : Other internal components (n-2) have external provided and required ports

connected to other internal components of the same hierarchical level. See Listing B.9 in Ap-

pendix B.2.

SUBCONSTRAINTFOUR : Connection between each pair of internal components should go in the same

direction, i.e. there are not two connections of opposite direction between each pair. See List-

ing B.10 in Appendix B.2.

1The facade architecture is a component-based realization of the facade pattern, cf. http://en.wikipedia.org/
wiki/Facade_pattern.

http://en.wikipedia.org/wiki/Facade_pattern
http://en.wikipedia.org/wiki/Facade_pattern
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Descriptor PipeAndFilter extends Constraint
{

internally requires {
scOne : SubConstraintOne;
scTwo : SubConstraintTwo;
scThree : SubConstraintThree;
scFour : SubConstraintFour;
scFive : SubConstraintFive;

}
architecture {
connect scOne to default@(SubConstraintOne.new());
connect scTwo to default@(SubConstraintTwo.new());
connect scThree to default@(SubConstraintThree.new());
connect scFour to default@(SubConstraintFour.new());
connect scFive to default@(SubConstraintFive.new());

delegate context@scOne to context@self;
delegate context@scTwo to context@self;
delegate context@scThree to context@self;
delegate context@scFour to context@self;
delegate context@scFive to context@self;

}
service verify() {

|c1 c2 c3 c4 c5 |
c1 := scOne.verify();
c2 := scTwo.verify();
c3 := scThree.verify();
c4 := scFour.verify();
c5 := scFive.verify();

return (c1 & c2 & c3 & c4 & c5);
}

}

LISTING 6.9 : PipeAndFilter constraint in COMPO

SUBCONSTRAINTFIVE : For each pair (A, B) of directly connected internal components, there is not a

third component, which is connected to the required ports of A and in the same time to pro-

vided ports of B. See Listing B.11 in Appendix B.2.
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Descriptor SubConstraintOne extends Constraint
{

service verify() {
|retval|
retval := true;
intComps := context.getPorts().select([:p |

&p.isRequired().and([&p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().each([:x |
if(&x.isProvided().and([&p.isExternal()])) {

| count |
&x.getConnectedPorts().each([:cp |

if(&cp.isProvided().and([&p.isExternal()])) {
if(&cp.getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
if(&x.isRequired().and([&p.isExternal()])) {

&x.getConnectedPorts().each([:cp |
if(&cp.isProvided().and([&p.isExternal()])) {

if(&cp.getOwner().getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
]);

]);
return retVal;

}
}

LISTING 6.10 : PipeAndFilter, the sub constraint one in COMPO. There is only one internal compo-

nent having one or more external provided ports connected uniquely to the owning composite only

(delegated ports). The component have to declare one or more external required ports, each being

connected to an internal component of the same hierarchical level, or being not connected at all.
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6.5 Summary

The intent of this chapter was to show COMPO’s aim to provide a continuum to achieve the various

stages of component-based software development in the same conceptual world. We have presented

an example of an HTTP server showing architecture modeling skills and an example of hierarchy

modeling which benchmarks COMPO’s inheritance system. Then we have shown an example of archi-

tecture transformation and architecture constraint verification made within COMPO. This was pos-

sible thanks to the reflection capabilities which, for example, makes it possible to create executable

and reusable architecture constraints.

The examples presented show that the continuum opens the essential possibility that architec-

tures (plus their implementation), transformations and verifications can all be written at the compo-

nent level and using a unique language.
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Make it work.
Make it work right.
Make it work right and fast.

Edsger DIJKSTRA, Donald KNUTH, C.A.R. HOARE

Preamble

This chapter presents the prototype of COMPO. The prototype is implemented in SMALLTALK and more
precisely Pharo, which is an implementation of SMALLTALK. We present the prototype, technology
choices, its architecture and the final implementation. We also present a draft SMALLTALK develop-
ment environment for COMPO.
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7.1 Why Smalltalk?

Although COMPO can be implemented in different languages, we have chosen SMALLTALK, because its

meta-model is extensible enough to support another meta-class system as shown in [Briot et Cointe,

1989 ; Ducasse et Gîrba, 2006]. Concretely, the prototype of COMPO was made in Pharo [Black et al.,
2009]1 which is a free, modern and portable implementation of SMALLTALK-80 [Goldberg et Robson,

1989].

SMALLTALK is a reflective and dynamically typed object-oriented language. Dynamically typed

languages offer flexibility and qualities yet recognized [Nierstrasz et al., 2005]. The main features of

the SMALLTALK object model is single inheritance and the notion of implicit meta-class that is to say, a

meta-class is automatically created for each user-defined class without the programmer intervention.

Because of reflection, SMALLTALK is a uniform programming language (“everything is an object”) and

opened because it is easy to write its extensions. Pharo is an implementation of SMALLTALK written

in SMALLTALK2 therefore it is easy to write Virtual Machine extensions. Moreover, Pharo is a develop-

ment environment containing many tools like the class browser, the debugger or the profiler which

make the development of prototypes faster and easier.

We also found that the majority of current components-oriented languages prototypes are exten-

sions of Java. In opposite to Java, SMALLTALK is dynamically typed and therefore seems worthwhile

to offer an alternative in a different environment to better distinguish the specificities of component-

oriented languages, from those of the Java language.

7.2 Technology choices

The implementation of a programming language requires the development of a chain starting form

source code analysis (parser) and abstract syntax tree (AST) building to machine code generation or

AST-interpretation. Of course, there are many tools to facilitate the construction of this chain as for

example the compiler compiler3 that can generate source code of a parser, interpreter or compiler

from description (syntactic and semantic) of a programming language.

This technique involves changing the grammar to generate a new parser and especially change

the interpreter of the AST whenever the syntax changes. Although there are other techniques

proposed in the domain of Domain-Specific Languages (DSL) [Mernik et al., 2005] which directly

uses syntactic constructs and mechanisms of a host language, and therefore it is more flexible

and suits better to constant changes. This technique was used in SCL [Fabresse et al., 2008 ;

Fabresse, 2007]. A disadvantage is that it prevents use of special syntax construct like our & opera-

tor. Moreover, we consider SMALLTALK syntax to be inappropriate for structural descriptions because

it is basically nothing more than a list of message sends.

To eliminate the “change-generate” loop necessary for static grammar specification, we decided

to use PetitParser framework [Renggli et al., 2010] for building a parser and to develop a custom inter-

preter. PetitParser combines ideas from scannerless parsing, parser combinators, parsing expression

1www.pharo-project.org
2More exactly in a subset of SMALLTALK called Slang.
3like SMACC, http://www.refactory.com/Software/SmaCC/

www.pharo-project.org
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grammars and packrat parsers to model grammars and parsers as objects that can be reconfigured

dynamically [Renggli et al., 2010]. This gives us the freedom of syntax evolution without the need to

regenerate AST every time the syntax changes.

For the interpreter, we chose to use the very effective AST visitor pattern [Gamma et al., 1995a ;

Buschmann et al., 2008] which also offers great flexibility for the evolution of the syntax.

7.3 Bootstrap Implementation

The bootstrap implementation of COMPO is based on the representation of components and descrip-

tors. There are several requirements the implementation should handle:

Req.1 It should correspond to the basic meta-model (see Figure 7.1) of COMPO where descriptor DE-

SCRIPTOR inherits from descriptor COMPONENT and it is an instance of itself (i.e. it is both de-

scriptor and meta-descriptor). Descriptor COMPONENT is a root of descriptor-based inheritance

and it is an instance of descriptor DESCRIPTOR.

Req.2 It has to respect the parallel hierarchy rule of SMALLTALK which is: meta-classes are implicit

and automatically created in SMALLTALK. It is therefore not possible to construct a meta-class

which inherits from class

Req.3 It should take advantage of SMALLTALK classes management and make it possible to use stan-

dard tools of the SMALLTALK environment to handle descriptor as they were regular classes.

Req.4 It should affect the SMALLTALK’s meta-model as less as possible.

Figure 7.1 : Zoom in to the relation between Component and Descriptor descriptors

The current implementation of COMPO’s core defines class Descriptor to represent descrip-

tors and Component to represent components. Both are implemented as sub-classes of SMALLTALK-

classes: Object and Class, respectively. Figure 7.2 shows their integration into SMALLTALK’s meta-

model. This integration makes COMPO components and descriptors manageable inside Pharo

SMALLTALK environment. For example, one can use basic inspecting tool, the Inspector. Descriptor
being defined as a sub-class of SMALLTALK-class Class enables us to benefit from class management

and maintenance capabilities provided by the environment. For example, all descriptors are “brows-

able” with the standard SystemBrowser tool. Such implementation raised few issues we discuss below.
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Figure 7.2 : Integrating COMPO’s meta-model into SMALLTALK’s meta-model.

SMALLTALK uses parallel hierarchy where each class is a unique instance of its anonymous

meta-class. Meta-classes are accessible by sending message class. The parallel hierarchy rule of

SMALLTALK says that when a class inherits from another class (from a super-class), then the meta-

class of the class inherits from the meta-class of the super-class. For example, SMALLTALK automat-

ically creates the meta-class Component class which, according to parallel hierarchy rules, extends

meta-class Object class.

One of the problems we challenged during the implementation is the fact that SMALLTALK sup-

ports single-inheritance only. The meta-model shown in Figure 7.1 says that Descriptor inherits

from Component, but as it is said above, we implement Descriptor as a sub-class of SMALLTALK-

classes (Class). Consequently Descriptor should have two parents and multiple-inheritance4 is

needed. Concretely, there are three critical points, where multiple-inheritance is needed, marked

with red ellipses in Figure 7.2:

• Descriptor should inherit from SMALLTALK-class Class and from class Component, to keep

all benefits of SMALLTALK’s classes management and in the same time to implement the

meta-model design of COMPO.

Solution: we simulate the multiple inheritance by automated copying attributes and methods

from Component to Descriptor;

4 Although there is a solution based on single-inheritance, the solution introduces an issue when distinguishing com-

ponents/descriptors from objects/classes in the implementation level and it makes Pharo VM unstable when extending

class Component.
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• The automatically created SMALLTALK-meta-class Component class should inherit from

SMALLTALK-meta-class Object class and from class Descriptor, to implement the fact that

Component is an instance of Descriptor.

Solution: we set the super-class of Component class to Object class and simulate the

multiple inheritance by copying attributes and methods from Object class to Component
class and from ProtoObject class to Component class.

• Another problem we encountered is the implementation of Descriptor as an instance of

itself. SMALLTALK-class Descriptor is a unique instance of SMALLTALK-meta-class Descriptor
class, which is automatically created as a sub-class of SMALLTALK-meta-class Class class
(parallel hierarchy rule of SMALLTALK) and therefore it does not have the same structure as

Descriptor class.

Solution: we set the super-class of Descriptor class to Component and we simulate the

multiple inheritance by copying attributes and methods from Component to Descriptor
class.

Indeed, to simulate multiple inheritance by coping attributes and methods requires manual re-

sponse. When one of the parents (Component, Object class and ProtoObject class) evolves,

classes Descriptor, Component class and Descriptor class have to be manually updated. For-

tunately, these parent classes are not changed frequently, in fact they remain unchanged for most of

the time.

The chosen integration of classes Descriptor (to represent descriptors) and Component (to rep-

resent components) causes that the following assertions are true:

• class Descriptor inherits class Component

• class Descriptor is a kind-of 5 Descriptor, because class Descriptor and its meta-class

Descriptor class have the same structure and the same methods. Because Descriptor in-

herits Component and it is a kind-of itself, it is also a kind-of Component.

• class Component is a kind-of Descriptor (indirectly via Component class) thus it is also a

kind-of Component.

• every sub-class of Component is a kind-of Descriptor (including classes Descriptor and

Descriptor class) and thus also a kind-of Component.

• every sub-class of Descriptor is a kind-of Descriptor class and thus it is also a kind-of
Descriptor and a kind-of Component.

7.4 The implemented model

The implemented model conforms to the meta-model presented in reflection chapter (Chapter 5.5

and Figure 5.3). Figure 7.3 shows a UML class diagram of realizations of all core component concepts

5“X is kind-of Y” is an expression returning true if X is an instance of Y or of one of its sub-classes.
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and their relations. The diagram also shows relations the realizations have with standard SMALLTALK

classes.

The two central classes Descriptor and Component define structure and behavior of descriptors

and components respectively. Class Descriptor declares three attributes of kind dictionary to refer-

ence services, port-descriptions and bind-descriptions.
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Figure 7.3 : A UML model of COMPO implemented in SMALLTALK

Classes Port and PortDescription participate in UML realization relationship which is a rela-

tionship between two model elements, in which one model element (the client) realizes the behavior

that the other model element (the supplier) specifies. Ports realize port-descriptions defined by de-

scriptors.

Class Component (realizing descriptor COMPONENT, cf. 5.1) introduces a dictionary of ports6.

6similarly to SMALLTALK-Behavior, which introduces the method dictionary [Black et al., 2009]
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A component is constituted of ports (Port) and possibly of collection ports ( CollectionPort).

A port is described by a port-description (PortDescription) (defined in a descriptor) which

defines its name, role, visibility and its interface (Interface), i.e. a set of service signatures

(ServiceSignatureList). We distinguish single required ports (SRequiredPort) and single pro-

vided ports (SProvidedPort) and three specific ports that are self (SelfPort), super (SuperPort)

and default (DefaultPort). We also distinguish collection required ports (CRequiredPort) and col-

lection provided ports (CProvidedPort).

Class BindDescription describes connection between ports. It defines two attributes

to reference instances of PortDescription. We distinguish two kinds of bind-description:

ConnectionDescription and DisconnectionDescription. Class Port realizes bind-descriptions

with attribute connectedPorts to store references to other ports and thus making connections.

Services are represented by class Service. Each service is associated with a service signature

(ServiceSignature) which defines its selector and parameters names, for example sum(a,b). For

each service there is exactly one SMALLTALK method. The parameters of such method are automati-

cally mapped to the args port of the component representing the service. An automatic (and trans-

parent for the user) mapping of a service signature from COMPO to a SMALLTALK’s method selector

is based on naming convention, for example the following service signature sum(a,b) is mapped

to a SMALLTALK method with selector cs__sum__par01:par02: (the cs__ prefix stands for Compo-

Service). When a compo service invokes the primitive <primitive_execute> (see Liisting 5.11 in

Section 5.7) it actually executes the associated SMALLTALK method.

7.5 Services invocation implementation

The mechanism of the service invocation was described by the algorithms 2 and 3 (see page 97) in

Chapter 3.

To illustrate the treatment of a service invocation, let us place ourselves in the context of the exam-

ple shown in Figure 3.6 where the instance calculator of descriptor CALC is connected to an instance

of descriptor SOMERANDOMGENERATOR. In this context, consider the following service invocation is-

sued via the port randGen component calculator.

randGen.getRandVal(1);

COMPO’s interpreter transforms this service invocation to the following SMALLTALK code (note

that the cs__<name> prefix denotes the SMALLTALK method associated to a COMPO service named

<name>):

port := (self cs__getPortNamed: #randGen).
port cs__invoke__par01: (ServiceInvocation

selector: #getRandVal
arguments: { 1. }
sentThrough: port ).
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The object (instance of class Port) realizing the component representing the port randGen im-

plements the method cs__invoke__par01 associated with the service invoke defined by descriptor

PORT (see Listing 5.5).

Choice 38 says that a port is a component having primitive ports. Therefore an instance of the

class Port realizing the PORT descriptor own instances of class PrimitivePort to represent its own

ports. For example the default port of an instance of descriptor CALC (see Listing 3.4) is realized

as an instance of class Port. Descriptor PORT defines that ports have, for example, primitive port

connectedPorts. Thus an instance of class Port references an instance of class PrimitivePort un-

der the key “connectedPorts” of its ports dictionary. Primitive ports implement the behavior of stan-

dard ports, as stated by Definition 20.

In the invoke service of the descriptor PORT the primitive <primitive_invoke> is called. Actually

it is a method of the class Port representing ports. The method is redefined in sub-classes of Port
class so that each kind of port specifically addresses the invocations it receives. In case of collection

ports, the same processing is preformed for each port in the collection. Listing 7.1 and 7.2 show the

method code for provided and required ports:

"Code of the primitive_invoke: method defined in class Port"
RequiredPort>>primitive_invoke: aServiceInvocation

| res receiverObject |
"Compute the receiver object."
(self cs__isConnected) ifTrue:[

"the primitive port connectedPorts will be the receiver"
receiverObject := self ports at: #connectedPorts.

] ifFalse: [
(self cs__isDelegated) ifTrue: [

"the primitive port delegatedPorts will be the receiver"
receiverObject := self ports at: #delegatedPorts.

] ifFalse: [
"stop the execution and throw an error"
self error: self name, ’ : not connected or delegated’

].
]
"Transmit the invocation to the receiver object."
res := receiverObject primitive_invoke: aServiceInvocation.
"Before returning the result of the invocation, we check the returned value."
"It has to be of kind Port, otherwise we set the result to reference to self"
(res isKindOf: Port) ifFalse: [ res := self ].
"the result is returned"
^res

LISTING 7.1 : The <primitive_invoke> method of the class RequiredPort.
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"Code of the primitive_invoke: method defined in class Port"
ProvidedPort>>primitive_invoke: aServiceInvocation

| res receiverObject |
"verify if the owner component implements the requested service"
(self cs__getOwner respondsTo: (aServiceInvocation smalltalkSel))

ifTrue: [
"look up the service"
|service|
service := self lookupService: (aServiceInvocation selector)

arity: (aServiceInvocation args size).
"set up the arguments"
self connectArgs: (aServiceInvocation args) forService: service.
"execute the service"
res := service cs__execute.
self disconnectArgs: (aServiceInvocation args) forService: service.

] ifFalse: [
(self cs__isDelegated) ifTrue:[

"the primitive port delegatedPorts should handle the invocation"
res := (self ports at: #delegatedPorts) primitive_invoke: aServiceInvocation.

] ifFalse: [
"stop the execution and throw an error"
self error: self name, ’ : not implemented or delegated’.

]
]

"Before returning the result of the invocation, we check the returned value."
"It has to be of kind Port, otherwise we set the result to reference to self"
(res isKindOf: Port) ifFalse: [ res := self ].
"the result is returned"
^res

LISTING 7.2 : The <primitive_invoke> method of the class ProvidedPort.

7.6 Connection mechanism implementation

As we saw above, the connections are realized by references between ports. Depending on the nature

of the port, the service connectTo (resp. the associated SMALLTALK method cs__connecTo__par01:)

of descriptor PORT can establish regular and delegation connections. The connect-to statement is

actually a syntax sugar for connectTo service, as we show in Listing 7.3.

In the code of the connectTo service the descriptor PORT calls <primitive_connectTo> which

is a method implemented by class Port realizing descriptor PORT. The <primitive_connectTo>
method calls the <primitive_connectTo> of its primitive port connectTo (remember ports are com-

ponents, instance of descriptor PORT, having primitive ports). Primitive ports are instances of class

PrimitivePort which implements the <primitive_connectTo> method as it is shown in Listing 7.4.
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Having a solution where components are connected via theirs ports, we consider connections

between ports as primitive entities (references), and do not need to reify connections. This entails

no limitation regarding the capability to experiment with various kind of connections [Mehta et al.,
2000] because our model makes it possible to define new kinds of ports (see Section 5.6) and because

of the capability it offers to put an adapter component between any components.

calculator := Calc.new();
rng := SomeRandomGenerator.new();

/*connecting the ports randGen and default with statement connect-to*/
connect randGen@calculator to default@rng;

/*connecting the ports randGen and default with the connectTo service*/
randGen := calculator.getPortNamed(’randGen’);
&randGen.connectTo(rng.getPortNamed(’default’));

LISTING 7.3 : Connecting ports in COMPO

"Code of the primitive_invoke: method defined in class Port"
PrimitivePort>>primitive_connectTo: port

"store the port reference to set of connectedPorts"
self connectedPorts add: port.

LISTING 7.4 : The primitive_connectTo method of the class PrimitivePort.

7.7 Inheritance implementation

The inheritance mechanism uses SMALLTALK’s class inheritance to implement extension and spe-

cialization operations for both the structure and behavior of descriptors. A sub-descriptor is imple-

mented as a sub-class of the class representing its super-descriptor.

Extension and specialization of the structure of a component is realized as the modification of the

corresponding descriptions (port-descriptions and bind-descriptions) maintained by a descriptor of

the component.

For example Listing 7.5 shows an example where descriptor B extends descriptor A with a new

required port named rb. In the prototype implementation, these descriptors are realized as classes A
and B. Class A is a sub-class of class Component and class B is a sub-class of class A.

Descriptor A extends Component {}
Descriptor B extends A { requires : { rb : * } }

LISTING 7.5 : This COMPO example is implemented with SMALLTALK code in Listing 7.6

Extension and specialization of the behavior leads to addition and specialization of services and

their associated SMALLTALK methods. For example, when a sub-descriptor specializes service foo
of its super descriptor, then a component representing service foo is connected to the services of

the sub-descriptor and the class realizing the sub-descriptor defines method cs__foo. The service

invocation mechanism of COMPO ensures the correct execution.
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"Sub-classes of class Component realizes its sub-descriptors"
Component subclass: #A category: ’playground’.
A subclass: #B category: ’playground’.
"Introducing the new required port in B"
B cs__addPortDescription_par01: (PortDescription name: #rb

role: #required
visibility: #external
interface: #* ).

LISTING 7.6 : SMALLTALK implementaion of the code from Listing 7.5

7.8 Instantiation mechanism implementation

The instantiation mechanism of COMPO was described in Chapter 3 in Section 3.3.1. In COMPO, de-

scriptors define the structure of components. In the allocation phase of the instantiation mechanism,

we analyze descriptor’s external and internal contract, i.e. the ports it defines, and for each port the

mechanism allocates a memory space. The structure and the amount of the memory needed for each

port is defined by class Port resp. its sub-classes. The initialization phase happens in two steps. Dur-

ing the first step we set the references associating each port with its corresponding port description

(i.e. references to instances of class PortDescription). The second step works with the architecture

section of descriptors which describe connections between ports of the created component and ports

of internal components. We process each connection description, i.e. evaluate both port-address ex-

pressions and then we set the binding reference between ports.

The instantiation mechanism is implemented by service new of descriptor DESCRIPTOR. In the

code of this service, COMPO calls primitive <newC> which is a SMALLTALK method implemented by

class Descriptor. The method creates and initializes new instances (new components) and returns

a reference to the default port of a new component. In fact, this technique can be widespread to inte-

grate all SMALLTALK objects, which will then behave as primitive components providing all methods

they define (seen as COMPO services) through a unique provided port. Thus SMALLTALK-objects are

seen as primitive COMPO-components and they are usable in COMPO, but as components. This will

make it possible to reuse SMALLTALK class library.

Integration of SMALLTALK objects The integration of SMALLTALK objects requires modifying the in-

stantiation mechanism of SMALLTALK. When instantiating a class, it must return a reference to the

default port of the newly created instance and not to the instance directly.

In general, it would have to redefine the basicNew in class Behavior that creates an instance but

it is impossible because it is a primitive of the Pharo’s virtual machine. Note that the redefinition of

the new implemented in the class Behavior does not achieve our goal because many classes override

this method and use the basicNew directly . To implement our instantiation mechanism, we define

the following two methods:

• newC (shortcut of newComponent) in the class Object class that allows to instantiate a com-

ponent from a class and returns a reference to the default port of this component,
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• defaultPort which provides the default port of any SMALLTALK object. The interface port is

initialized with all the signatures (a selector contains the arity of the method in SMALLTALK)

messages that this object can respond.

In the following example, we show the use of these methods to integrate basic SMALLTALK objects

in the form of COMPO components:

/* Instantiation of the class OrderedCollection */
col := OrderedCollection.new();

/* the temporal required port col is connected to
a provided port named ’default’ */

col.size(); /* invocation of service size /*

/* literals are automatically treated as components */
aPrimitiveComponent := 1.

/* the temporal required port aPrimitiveComponent is connected to
a provided port named ’default’ */"

aPrimitiveComponent.odd(); /* invocation of service odd */

In the case of literals such as integers or strings, the COMPO programmer should store the refer-

ence to their default port using the defaultPort. In fact, the literal does not benefit directly from

the newC defined in class Object class because they are never really instantiated but specifically ad-

dressed by the Pharo virtual machine. To standardize the vision offered to the COMPO programmer,

we also defined the newC in class Object as follows:

Object>>newC
^self defaultPort

This feature enables COMPO’s interpreter to create primitive components and standard compo-

nents in the same manner by invoking the newC primitive.

7.9 Toward a graphical development environment

Figure 7.4 shows a screenshot of a visual development tool for browsing and writing new COMPO

descriptors. This prototype tool currently allows an architect to browse descriptors in a library. Once

a descriptor is selected, the users may edit its code. All the changes are immediately propagated to a

graphical visualization of an instance of the descriptor. Then, it is possible to enter the COMPO code

in the box at the bottom left to invoke the services of the instance. The results can be displayed in the

window at the bottom right which is the standard output. This browser/editor environment is a step

towards a graphical development environment as it is a simple useful tool to understand and put into

practice for developing new components prototypes.
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Figure 7.4 : Screenshot of the Compo browser, a step towards visual development

7.10 Summary

In this chapter, we presented a prototype of COMPO written in Pharo SMALLTALK. We also presented

the arguments that led us to choose the SMALLTALK language and our implementation choices. When

specifying the prototype, we have:

• addressed the problem of bootstrap implementation which requires that the class representing

descriptor DESCRIPTOR inherits from SMALLTALK-class Class

• described the implemented UML model

• integrated SMALLTALK objects and COMPO components by providing the primitive newC.

• explained the implementation of the service invocation

• illustrated assembly of components using connections

• shown, finally, a visual tool (COMPO browse) for writing new descriptors in COMPO

The point of improvement of the prototype is certainly its effectiveness. Indeed, we clearly pre-

ferred evolution over efficiency. It is difficult to quantify the effectiveness of the current prototype but

the implementation we have chosen for the service invocation (explicit delegation between objects

representing the ports) suggests that the performance of the implementation could be improved.
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Conclusion

THIS thesis contributes to the domain of component-based software engineering (CBSE) by

proposing a reflective component-oriented language named COMPO which enables users to

describe and continuously implement component-based architectures. On behalf of the work, we

have studied many component-based approaches ranging from architecture description languages

over component frameworks to component-oriented programming languages. The study convinced

us that the potential problems, like the non-conformance between an architecture design and its

implementation, raising from the fact that most of component-based approaches separate design

and implementation stage could be overcame when a component-oriented programming language

is used. Embedding architecture into an implementation language lets architects specify the architec-

ture of a system in much more detail, and its presence in the source code provides developers with a

constant awareness of architectural issues. However, while the conformance between design and im-

plementation is well addressed by the existing component-oriented languages, a support for software

evolution and for model driven development has not yet been well addressed by these approaches.

In our work, we have partially answered to that issue by designing a reflective component-

oriented language with an inheritance mechanism for structural and behavioral reuse. We believe

that reflection and inheritance are the key factors directly supporting evolution and maintenance of

software developed in COMPO. Reflection simply opens the possibility that architectures, implemen-

tations and transformations can all be written at the component level and using a unique language.

The study made in Chapter 2 helped us to identify the core concepts and mechanisms of CBSE and

to built COMPO language on top of them. The core mechanisms: instantiation, composition, service

invocation and substitution together with the identified concepts: components and their descriptors,

ports, connections and services, provide architecture description constructs, so that developers can

specify an architecture during design and then fill in the architecture with COMPO implementation.

207
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Having the architecture part well described, it is possible to write the implementation of services in

various (future) COLs or even in an OOP language. Thus, we also support the idea that it is interesting

to implement models in various contexts.

Communication protocol as presented in COMPO is based on the idea that the only way two com-

ponents can communicate is by sending a service invocation through a connection between their

ports. Existing component-oriented languages support hierarchical design, i.e. to describe architec-

ture in terms of components (composites) which are composed of other components (internal com-
ponent) which are composed of other components, etc. However, the communication between dif-

ferent levels of the hierarchical design has not been addressed and thus there was no protocol saying

how these internal components communicate with their owning composite and vice verse. A one

of contributions of this work is that thanks to the concept of internal required ports we were able to

preserve this statement even for communication between a composite and its internal components.

Such a communication protocol does not introduce an additional mechanism or concept to the lan-

guage and it enforces communication integrity because all the communication is well described by

connections.

The inheritance mechanism proposes an innovative reuse scheme in the context of CBSE by

bringing an objects like inheritance capability to components descriptions. Inheritance in COMPO

promotes modeling power with covariant specializations via the extends statement. A new descriptor

(a sub-descriptor) can be defined on the base of an existing descriptor by extending or specializing its

definition. Indeed, covariant specialization has advantages but also drawbacks, for example it is hard

to ensure substitutability between instances of sub- and super-descriptors. We choose a coherent

policy comparing its advantages and drawbacks. We believe that developers are much more inter-

ested in specializing and extending at the same time provisions and requirements of a component,

and less on substitutability, which they can manage manually (by satisfying additional requirements,

if needed). Because we were unable to ensure type-safe substitution, we have proposed a substitu-

tion mechanism based on run-time checks which if used properly, preserves the safety of substitu-

tions. Thus, sub-descriptors may: (1) introduce new ports or extend interfaces of inherited ports, (2)

introduce new services and override inherited services and (3) extend and specialize the inherited

architecture description. The ability to inherit existing architectures make it possible to capitalize on

good designs where well-established architecture styles or patterns are applied.

As far as we know COMPO is the first fully reflective component-oriented language with core com-

ponent concepts reified in terms of components. In Chapter 5 , we have proposed the component-

based model compliant to its meta-model and the component-based meta-model compliant to itself.

There is only one kind of entity, component: a descriptor is a component and a meta-descriptor is a

descriptor whose instances are descriptors. This allows a simplification and economy of concepts,

which are thus more powerful and general. Reflection makes the language uniformly accessible by

users who can introspect the underlying structure and behavior of the platform and also adaptation

them if needed. Reflection also allows to experience the impact of adding new mechanisms at both

the architectural and implementation levels. For example: to define different control facilities for

components such as non-functional aspects or to define trade-offs such as degree of configurability

vs performance and space consumption.
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Future work COMPO in its today’s state is a research laboratory and does not yet embed all ca-

pabilities offered by existing ADLs or COLs, but we believe that there is no conceptual lock to the

integration of new concepts. For example, dynamic software architectures represent one encourag-

ing approach to mitigate an important class of safety- and mission-critical software systems, such

as: telephone dynamic update in high availability public information systems. Dynamic software ar-

chitectures [Baresi et al., 2004 ; Barais et al., 2008] are software architecture descriptions that include

not only the description of fixed (i.e. static) parts, but also the description of changing (i.e. dynamic)

parts. ArchJava or Darwin have shown that the dynamic aspect of architectures can be captured at

the language level enlarging the spectrum of problems such languages can be used for. Therefore, in

future, we would like to extend COMPO with the ability to describe dynamic architectures.

In Section 5.6 we tried to show that it is possible to define new communication protocols or

lookup policies by creating new kinds of ports. This makes it possible to achieve scenarios similar

to the ones in the object-oriented context, where first-class references are introduced [Arnaud et al.,
2010] or the ones where custom lookup objects are needed [Vran� et al., 2012]. Thus, it would be nice

to study all the possibilities which come with first-class ports. Moreover the meta-model architecture

of COMPO makes it possible to define new kinds of descriptors. It should be possible to define a new

kind of “deployment-location-aware” descriptors whose instances will be descriptors aware of the

location where they can be instantiated. This in turn would make it possible to explicitly describe an

architecture which is distributed over multiple execution nodes. In addition, to deploy components

a packaging tool, similar to OSGi bundles or similar things, would be needed.

Another prospective work is to design a (visual) graphical development environment. In such

development environment it should be possible to define new descriptors graphically in way that

is similar to the one of the applications for designing UML diagrams. This would also require to

integrate the notion of “properties”, so another components could listen for “value change” events of

the properties. In fact, properties for components have been integrated in SCL, thus we just have to

adapt the SCL’s solution for COMPO.

To optimize programs efficiency is another remaining tasks. Many solutions do exist [Chiba,

1997]. For COMPO, we already do have an initial idea for a pure virtual-machine where only enti-

ties managed by the machine will be components. This should enhance the language performance

in comparison to the current implementation hosted within a third party virtual machine.
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EBNF form, quick help:

( start-group-symbol end-group-symbol )
[ start-option-symbol end-option-symbol ]
{ start-repeat-symbol end-repeat-symbol }
| definition-separator-symbol

* repetition-symbol
- except-symbol
, concatenate-symbol
= defining-symbol
; terminator-symbol

A.1 Lexan rules

Character = ? Any Unicode character ?;
WhitespaceCharacter = ? Any space, newline or horizontal tab character ?;
DecimalDigit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
Letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
| "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"
| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z";

CommentCharacter = Character - ’"’; (* Any character other than a double quote *)
Comment = ’"’, {CommentCharacter}, ’"’;
OptionalWhitespace = {WhitespaceCharacter | Comment};
Whitespace = (WhitespaceCharacter | Comment), OptionalWhitespace;
LetterOrDigit = DecimalDigit

| Letter;
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Identifier = (Letter | "_"), {(LetterOrDigit | "_")};
Reference = Identifier;
ConstantReference = "nil"

| "false"
| "true";

PseudoVariableReference = "self" | "super" | "myPorts" | "default" | "myConnections";
ReservedIdentifier = PseudoVariableReference

| ConstantReference;
BindableIdentifier = Identifier - ReservedIdentifier;
StdMessageSelector = Identifier;
BinarySelectorChar = "~" | "!" | "@" | "[PERCENT]" | "&" | "*" | "-" | "+" | "=" | "|" | "<" | ">" | "," | "?" | "/" | "\";
BinaryMessageSelector = BinarySelectorChar, [BinarySelectorChar];
IntegerLiteral = ["-"], UnsignedIntegerLiteral;
UnsignedIntegerLiteral = DecimalIntegerLiteral

| Radix, "r", BaseNIntegerLiteral;
DecimalIntegerLiteral = DecimalDigit, {DecimalDigit};
Radix = DecimalIntegerLiteral;
BaseNIntegerLiteral = LetterOrDigit, {LetterOrDigit};
ScaledDecimalLiteral = ["-"], DecimalIntegerLiteral, [".", DecimalIntegerLiteral], "s", [DecimalIntegerLiteral];

FloatingPointLiteral = ["-"], DecimalIntegerLiteral, (".", DecimalIntegerLiteral, [Exponent] | Exponent);
Exponent = ("e" | "d" | "q"), [["-"], DecimalIntegerLiteral];
CharacterLiteral = "[DOLAR]", Character;
StringLiteral = "’", {StringLiteralCharacter | "’’"}, "’"; (* To embed a "’" character in a String literal, use two consecutive single quotes *)
StringLiteralCharacter = Character - "’"; (* Any character other than a single quote *)
SymbolInArrayLiteral = StdMessageSelector - ConstantReference

| BinaryMessageSelector;
SymbolLiteral = "#", (SymbolInArrayLiteral | ConstantReference | StringLiteral);
ArrayLiteral = ObjectArrayLiteral

| ByteArrayLiteral;
ObjectArrayLiteral = "#", NestedObjectArrayLiteral;
NestedObjectArrayLiteral = "(", OptionalWhitespace, [LiteralArrayElement, {Whitespace, LiteralArrayElement}], OptionalWhitespace, ")";
LiteralArrayElement = Literal - BlockLiteral

| NestedObjectArrayLiteral
| SymbolInArrayLiteral
| ConstantReference;

ByteArrayLiteral = "#[", OptionalWhitespace, [UnsignedIntegerLiteral, {Whitespace, UnsignedIntegerLiteral}], OptionalWhitespace,"]";

DereferenceLiteral = "&" , Reference ;
(* Operator "&" enables to see ports as components, semantics is: (&aPort).isConnected() == myPorts[myPorts.indexOf("aPort")].isConnected() *)
CollectionPortLiteral = Reference , "[" , Expression , "]" ;
PortAddressLiteral = Reference , "@" , Reference ;

A.2 Parser rules
FormalBlockArgumentDeclaration = ":", BindableIdentifier;
FormalBlockArgumentDeclarationList = FormalBlockArgumentDeclaration, {Whitespace, FormalBlockArgumentDeclaration};
BlockLiteral = "[", [OptionalWhitespace, FormalBlockArgumentDeclarationList, OptionalWhitespace, "|"], ExecutableCode, OptionalWhitespace, "]";
Literal = ConstantReference
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| IntegerLiteral
| ScaledDecimalLiteral
| FloatingPointLiteral
| CharacterLiteral
| StringLiteral
| SymbolLiteral
| DerefenceLiteral
| CollectionPortLiteral
| ArrayLiteral
| BlockLiteral;

NestedExpression = "(", Statement, OptionalWhitespace, ")";
Operand = Literal

| Reference
| NestedExpression;

FormalStdMsgArgumentDeclaration = [BindableIdentifier , ":"] , StdMessageArgument;
FormalStdMsgArgumentDeclarationList = FormalStdMsgArgumentDeclaration , { OptionalWhitespace, ",", OptionalWhitespace, FormalStdMsgArgumentDeclaration }
StdMessageArgument = BinaryMessageOperand, BinaryMessageChain;
StdMessage = StdMessageSelector, "(" , OptionalWhitespace, [ FormalStdMsgArgumentDeclarationList, OptionalWhitespace ] , ")";
StdMessageChain = {OptionalWhitespace, UnaryMessage};
BinaryMessageOperand = Operand, UnaryMessageChain;
BinaryMessage = BinaryMessageSelector, OptionalWhitespace, BinaryMessageOperand;
BinaryMessageChain = {OptionalWhitespace, BinaryMessage};
MessageChain = ".", StdMessage, StdMessageChain, BinaryMessageChain

| OptionalWhitespace, BinaryMessage, BinaryMessageChain;
CascadedMessage = ",", OptionalWhitespace, MessageChain;
Expression = Operand, [MessageChain, {OptionalWhitespace, CascadedMessage}];
AssignmentOperation = OptionalWhitespace, BindableIdentifier, OptionalWhitespace, ":=";
Statement = {AssignmentOperation}, OptionalWhitespace, Expression;
MethodReturnOperator = OptionalWhitespace, "return";
FinalStatement = [MethodReturnOperator], Statement;
LocalVariableDeclarationList = OptionalWhitespace, "|", OptionalWhitespace, [BindableIdentifier, {Whitespace, BindableIdentifier}], OptionalWhitespace, "|";
ExecutableCode = [LocalVariableDeclarationList], [{Statement, OptionalWhitespace, ";"}, FinalStatement, [";"]];

CompoIdent = Identifier;
CompoServiceSign = CompoIdent , "(" , [{ CompoIdent , "," }] , [CompoIdent] , ")" ;
ServiceSignsList = "{", [{CompoServiceSign , ";"}], [CompoServiceSign] , "}"
Connection = "connect", PortAddressLiteral, "to" , PortAddressLiteral;
Disconnection = "disconnet", PortAddressLiteral, "from" , PortAddressLiteral;
PortDecl = ["atomic" ], CompoIdent , ":" , (CompoIdent | ServiceSignsList);
ExProvisions = ["externally"] , "provides", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
ExRequirements = ["externally"] , "requires", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
InProvisions = "internally" , "provides", CompoIdent , "{", [{PortDecl, ";"}], [PortDecl] , "}";
InRequirements = "internally" , "requires", CompoIdent , "{", [{PortDecl, ["inject-with" , CompoIdent], ";"}], [PortDecl, ["inject-with" , CompoIdent]] , "}";
Services = "service", CompoServiceSign, "{" , ExecutebaleCode , "}";
Contraints = "constraint", CompoServiceSign, "{" , ExecutebaleCode , "}";
Architecture = "architecture", "{", [{(Connection | Disconnection) , ";"}], [(Connection | Disconnection)] , "}";
CompoExpr = ExProvisions

| ExRequirements
| Services
| Constraints
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| InProvisions
| InRequirements
| Architecture;

ComponentDecl = "component descriptor", CompoIdent , ["extends" , CompoIdent] , "{", {CompoExpr} , "}";
Interface = "interface", CompoIdent , ["extends" , CompoIdent] , ServiceSignsList;
CompoStart = [{ComponentDecl | Interface}];
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Descriptor AbstractSet extends Collection {
/* new abstract not public service*/
service getItemAt(index);
/* new abstract not public service*/
service areEqual(itemA, itemB);

service foreachDo(closure) {
|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(self.getItemAt(i));
closure.execute();
disconnect args@closure from default@(self.getItemAt(i));

}
}

/* not public */
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.areEqual(self.getItemAt(i), item))
{ return i; }

}
return -1;

}
}

LISTING B.1 : The SET descriptor
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Descriptor Bag extends Collection {
internally requires {

items[] : * ;
tally[] : *

}
service size() { return sizeof(items); }
service add(item) {

|itemClone i|
i := self.indexOf(item);
if(i<0) {

itemClone := item;
&items.connectTo(default@itemClone);
self.zeroTally(i);
self.addToTally(i);

}else{
self.addToTally(i);

}
}
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) {

if(self.getTally() > 1)
{ self.subFromTally(i); }
else
{

&items.disconnect(i);
self.zeroTally();

}
}

}
service foreachDo(closure) {

|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(items[i]);
closure.execute();
disconnect args@closure from default@(items[i]);

}
}
/* not public */
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.getIdentityHash() == item.getIdentityHash())
{ return i; }

}
return -1;

}
service getTally(index) { return tally[index]; }
service zeroTally(index) { tally[index] := 0; }
service addToTally(index) { tally[index] := tally[index] + 1 }
service subFromTally(index) { tally[index] := tally[index] - 1 }

}

LISTING B.2 : The BAG descriptor
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Descriptor SequenceableCollection extends Collection
{

provides {
accessing : { getIndex(index); setIndex(index,item); };
removing : { removeIndex(index); };
testing : { indexOf(item); };

}
internally requires
{

items[] : *;
}
service size() { return sizeof(items); }
service add(item) { &items.connectTo(default@item); }
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { self.removeIndex(i); }

}
service removeIndex(index) { &items.disconnect(i); }
service getIndex(index) { if(self.indexOK(index) { return items[index]; } }
service setIndex(index,item) {

if(self.indexOK(index))
{

items.disconnect(index);
connect items[index] to default@item;

}
}
service foreachDo(closure) {

|i|
for(i:=0;i<self.size();i:=i+1) {

connect args@closure to default@(items[i]);
closure.execute();
disconnect args@closure from default@(items[i]);

}
}
service indexOf(item) {

|i|
for(i:=0;i<self.size();i:=i+1) {

if(self.getIdentityHash() == item.getIdentityHash())
{ return i; }

}
return -1;

}
/* not public */
service indexOK(index) { return ((index >=0)&(index<self.size())); }

}

LISTING B.3 : The SEQUENCEABLECOLLECTION descriptor
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Descriptor Stack extends SequenceableCollection
{

provides {
stackable : { push(item); pop(); }

}
service remove(item) { error(’this is a stack, use push-pop’); }
service indexOf(item) { error(’this is a stack, use push-pop’); }
service removeIndex(index) { error(’this is a stack, use push-pop’); }
service getIndex(index) { error(’this is a stack, use push-pop’); }
service setIndex(index) { error(’this is a stack, use push-pop’); }

service push(item){ self.add(item); }
service pop(){

|item top|
top := self.size()-1;
connect item to defautl@(items[top]);
&items.disconnect(top);
return item;

}
}

LISTING B.4 : The STACK descriptor
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Descriptor Set extends AbstractSet {
internally requires {

items[] : * ;
}
service size() { return sizeof(items); }
service add(item) {

|itemClone i|
i := self.indexOf(item);
if(i<0) {

itemClone := item;
&items.connectTo(default@itemClone);

}
}
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { &items.disconnect(i); }

}
/* not public */
service getItemAt(index) {

|i|
if(i>=0 & i<self.size()) {

return items[i];
}
else { error(’index out of bounds’) }

}
/* not public */
service areEqual(itemA, itemB) {

return itemA == itemB;
}

}

LISTING B.5 : The SET descriptor
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Descriptor IdentitySet extends AbstractSet {
requires {

items[] : * ofKind SetCollPort;
}
service size() { return sizeof(items); }
service add(item) { &items.connectTo(default@item); }
service remove(item) {

|i|
i := self.indexOf(item);
if(i>=0) { &items.privatedisconnect(i); }

}
/* not public */
service getItemAt(index) {

|i|
if(i>=0 & i<self.size()) {

return items[i];
}
else { error(’index out of bounds’) }

}
/* not public */
service areEqual(itemA, itemB) {

return itemA.getIdentityHash() == itemB.getIdentityHash();
}

}

LISTING B.6 : The SET descriptor

Descriptor SetCollPort extends CollectionPort {
service connectTo(port){

|i|
i := owner.indexOf(item);
if(i<0) { super.connectTo(port) }

}
service disconnect(index) {}
service privatedisconnect(index) {super.disconnect(index);}

}

LISTING B.7 : The SETCOLLPORT descriptor
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B.2 Constraints sources

B.2.1 Pipes&Filters

Descriptor SubConstraintTwo extends Constraint
{

service verify() {
|retval|
retval := true;
intComps := context.getPorts().select([:p |

&p.isRequired().and([&p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().each([:x |
if(&x.isRequired().and([&p.isExternal()])) {

| count |
&x.getConnectedPorts().each([:cp |

if(&cp.isRequired().and([&p.isExternal()])) {
if(&cp.getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
if(&x.isProvided().and([&p.isExternal()])) {

&x.getConnectedPorts().each([:cp |
if(&cp.isRequired().and([&p.isExternal()])) {

if(&cp.getOwner().getOwner() == context.yourself())
{ retVal := retVal.and([true]); }
else
{ retVal := retVal.and([false]); }

}
]);

}
]);

]);
return retVal;

}
}

LISTING B.8 : PipeAndFilter, the sub constraint two in COMPO. There is only one internal compo-

nent having one or more external required ports connected uniquely to the owning composite only

(delegated ports). The component have to have one or more external provided ports, each being

connected to an internal component of the same hierarchical level, or being not connected at all.



B.2. Constraints sources 223

Descriptor SubConstraintThree extends Constraint
{

service verify() {
|count|
count := 0;
intComps := context.getPorts().select([:p |

&p.isRequired().and([p.isInternal()]);
]);
intComps.each([:ic |

ic.getPorts().select([:p | &p.isExternal()]).each([:ep |
|trueForAll|
trueForAll := true;
&ep.getConnectedPorts().each([:cp |

if(&cp.getOwner().getOwner() == context.yourself())
{ trueForAll := trueForAll.and([true]); }
else
{ trueForAll := trueForAll.and([false]); }

]);
if(trueForAll) { count := count + 1 }

]);
]);
if(count == (intComps.size() - 2))
{ return true; }
else
{ return false; }

}
}

LISTING B.9 : PipeAndFilter, the sub constraint three in COMPO. Other internal components (n-2)

have external provided and required ports connected to other internal components of the same hier-

archical level.
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Descriptor SubConstraintFour extends Constraint
{

service verify() {
conns := context.getDescriptor().getDescribedConnections();
conns.each([:conn |

|dest source |
source := conn.getSourcePortComponent();
dest := conn.getDestinationPortComponent();
conns.each([:conn2 |

if((conn2.getSourcePortComponent() == dest).and([
conn2.getDestinationPortComponent() == source]))

{ return false; }
]);

]);
return true;

}
}

LISTING B.10 : PipeAndFilter, the sub constraint four in COMPO. Connection between each pair of

internal components should go in the same direction, i.e. there are not two connections of opposite

direction between each pair.
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Descriptor SubConstraintFive extends Constraint
{

service verify() {
conns := context.getDescriptor().getDescribedConnections();
conns.each([:conn |

|destPD sourcePD connsA connsB|
sourcePD := conn.getSourcePortDescription();
destPD := conn.getDestinationPortDescription();
/* for each connection, there are no other two where the former has
the same source, the later the same destination and the two have
a common port end. */
connsA := conns.select([:conn2 |

| sourcePD2|
if((conn == conn2).not())
{

sourcePD2 := conn2.getSourcePortDescription();
(sourcePD == sourcePD2);

}else{ false }
]);
connsB := conns.select([:conn2 |

| sourcePD2|
if((conn == conn2).not())
{

destPD2 := conn2.getDestinationPortDescription();
(destPD == destPD2);

}else{ false }
]);
connsA.each([:cA |

|destA |
destA := cA.getDestinationPortDescription();
connsB.each[:cB |

|srcB|
srcB := cB.getSourcePortDescription();
if(destA.getComponent() == srcB.getComponent())
{ return false }

]);
]);

]);
return true;

}
}

LISTING B.11 : PipeAndFilter, the sub constraint five in COMPO. For each pair (A, B) of directly con-

nected internal components, there is not a third component, which is connected to the required ports

of A and in the same time to provided ports of B.
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