
Using Smalltalk as a Reflective Executable
Meta-Language

Appeared to MODELS 2006

Stéphane Ducasse12, Tudor Girba1

1 Software Composition Group, University of Bern,
www.iam.unibe.ch/∼scg

2 Language and Software Evolution – LISTIC, Université de Savoie,
www.listic.univ-savoie.fr

Abstract. Object-oriented meta-languages such as MOF or EMOF are often
used to specify domain specific languages. However, these meta-languages lack
the ability to describe behavior or operational semantics. Several approaches
have used a subset of Java mixed with OCL as executable meta-languages. In
this paper, we report our experience of using Smalltalk as an executable meta-
language. We validated this approach in incrementally building over the last
decade, Moose, a meta-described reengineering environment. The reflective capa-
bilities of Smalltalk support a uniform way of letting the developer focus on his
tasks while at the same time allowing him to meta-describe his domain model.
The advantage of our approach is that the developer uses the same tools and en-
vironment he uses for his regular tasks.

Keywords: meta behavior description, reflective language, Smalltalk

1 Introduction

Object-oriented meta-languages such as MOF [OMG97], EMOF [OMG04] or ECore
[BSM+03] are often used to describe domain specific language meta-models. However,
such object-oriented meta-languages only support the description of structural entities
and their relationships. They do not have support for the definition of behavior, and, as
such, they cannot be used to specify the operational semantics of meta-models [MFJ05].

Attempts such as the UML Virtual Machine [RFBL+01] failed similarly to capture
the specification of operations at the meta level. Adaptive Object Models [RTJ05] used
the Type-Object design pattern and workflow to describe at meta-level the structure and
behavior of business models [YJ02]. Other approaches have used ECA rules to describe
the behavior of the meta-level [DT98]. Recently, Xactium [CESW04] proposed a simple
object-oriented model and imperative OCL to model state and behavior at the meta-level
in an executable form. Xion [MMS+05] was an extension of OCL with imperative
semantics to support the definition of action and behavior in web-modeling context.
More recently, Kermeta was introduced as a meta-language that is based on a subset of
Java and integrate OCL-like expressions [MFJ05].

http://www.iam.unibe.ch/~scg
http://www.listic.univ-savoie.fr/~ducasse/

2 S. Ducasse, T. Girba

In the late nineties we started to build a reengineering environment [DDL99,NDG05,
DGLD05] and we faced the need to be able to describe not only the structure at the meta-
level but also the behavior. After evaluating the different alternatives that were offered
to us at that time, we decided to use Smalltalk. In this paper, we report on our experi-
ence of using Smalltalk as a meta-language to specify MOF structure and behavior in
an uniform way.

In the next section we list the challenges we faced when building our reengineering
environment emphasizing the need for an executable meta-description. In Section 3 we
briefly describe Smalltalk and its reflective capabilities. Section 4 details our approach
of integrating MOF in Smalltalk, and shows how we used the approach in the context
of Moose. In Section 5 we evaluate the approach, and we conclude in Section 6.

2 The Need of Executable Meta-Language: the Moose Experience

Starting in 1996, our main research effort was concentrated on language design and
reengineering object-oriented legacy systems [DD99b]. Since then we incrementally
developed Moose, a reengineering environment [DL05, NDG05]. In this process, we
felt the need to meta describe our environment to enable us to be more efficient building
new tools for our reengineering research. Using meta-modeling was just a means to
introduce more flexibility and extensibility in our tools and not a research topic on its
own. Nowadays, Moose uses meta-descriptions to support automatic storage, browsing
or annotations of models. The context had practical impact on our solution. We describe
here the main constraints we faced so that the reader can assess our solution.

Not disrupting our developers. The goal of Moose is to enable other developers, mainly
researchers or consultants, to develop new source code analysis, source code visual-
izations, metrics . . . These researchers, while fluent in object-oriented programming,
should not be dealing with the details of the meta-descriptions: the environment should
let them express their ideas and require as less as possible for the meta-descriptions.
Also, the developers that want to extend the environment should be able to do so with-
out having to learn yet another language or formalisms.

The implications are the following ones. We do not want to use any generative tech-
niques that would hamper developers to use their favorite environment. In particular,
string manipulation and other such kind of low-level operations should not be used, be-
cause of breaking the object-oriented metaphor. The same environment should be used
to program the base language and the meta one. In this way, the navigation, versioning
tools, code refactorings, code browsers can be used at all levels. In particular, the devel-
opers should be able to use the same debugging tools and incremental hot recompilation
(e.g., editing and recompiling in the debugger) since this is one of the cornerstone of
fast development in Smalltalk. Possibly the same paradigm should be used at the base
and meta-level.

Even if our solution is influenced by this specific context, we believe that it presents
interesting results to enable executable meta-models in practical settings. It is the re-
cent publications on executable meta-languages Xion [MMS+05], Kermeta [MFJ05],
Xactium [CESW04] and our successful work in building our reengineering environment
that convinced us that our approach is worth being reported to the modeling community.

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 3

2.1 A First Analysis

In this section we discuss the reasons why we need an executable meta-language.

Why meta-data description languages are not enough? As already mentioned by [MFJ05],
MOF defines operations, but not their implementation counterparts, which have to be
described in text. The following example is excerpted from the MOF 2.0 Core Spec-
ification. The definition of the isInstance operation of the EMOF class Type (section
12.2.3 page 34) is given as follow:

Operation isInstance(element : Element) : Boolean
/*Returns true if the element is an instance of this type or a subclass of this type.

Returns false if the element is null*/

The description is informal and cannot be executed. Meta-data description languages
do not support the definition of a simple behavior such as the MOFType isInstance
behavior. In Moose, the MOFType class defines the method isInstance as follow:

MOFType>>isInstance: element
”Returns true if the element is an instance of this type or a subclass of this type.
Returns false if the element is null”

ˆ element isNil
ifTrue: [false]
ifFalse: [element metaClass == self

or: [element metaClass allSuperclasses includes: self]]

The caret sign ˆ is a return statement, and ifTrue:ifFalse: is the Smalltalk if-then-else
construct. In our approach, Smalltalk is used to specify the meta-model behavior: MOF
meta-model entity behavior is plain executable code. We did not choose Action Se-
mantics [MTAL98] as an executable meta language for the following reasons: Action
Semantics did not exist when we started, it is defined for UML models, and it is too
generic for our audience and constraints.

Customizable Executable Meta-Language. In the Moose environment any entity (e.g.,
a program element), is described by an instance of MOFClass. The description in-
cludes the way the entity should be loaded from files, saved, how it should be navigated
. . . Moose also allows for a developer to describe precisely how to specify the resolu-
tion of undefined references. For example, the developer is free to define the logic for
creating a stub3 creation which can be complex and dependent of the domain. The code
below shows that the class FamixClass which represents the class concept in a language
independent way for our analysis is in fact described by a MOFClass instance named
Class [DDL99]. What is important is that the end-user developer can specify specific
domain actions at the meta-model level: here the optimize: method specification defines
the way stub entities may be created when code models are extracted by code analyzers
or model loaders.

3 A stub is shell-entity that is creating to represent an entity that is not reified in our model: when
an access to a variable that is not extracted from the source code, we create a stub variable.

4 S. Ducasse, T. Girba

FAMIXClass>>mofDescription
ˆ MOFClass new

addSuperclass: self superclass mofDescription
name: #Class;
optimize: [:entity | (entity belongsTo isNamespace)

ifTrue: [entity belongsTo addClass: entity]];
addAttribute: (MOFAttribute new

name: #isAbstract;
...
booleanType).

....

2.2 New language or not?

Defining a new language is always a challenging (and exciting) moment as we control
the features that will influence our future expression possibilities. However, develop-
ping a new language also raises practical problems such as the language performance,
memory consumption, the development of libraries or development tools and the cost
in teaching new developers.

Our goal was not to define a new meta-language. We wanted to improve our reengi-
neering environment by making it more flexible and extensible, while in the same time,
we wanted to let our developers program in an environment in which they were comfort-
able and efficient. We favored the practical issues, and chose to use the same language
(i.e., Smalltalk) for both describing the meta-model and the meta-meta-model.

In this section we described our practical constraints, and how we came to the con-
clusion that Smalltalk is the solution for our problem. To let the reader better understand
the detail, we briefly describe in the next section the key characteristics of the Smalltalk
language and its meta-model. In the subsequent section we present the architecture we
chose to integrate a MOF-based architecture inside the Smalltalk one.

3 Smalltalk in a Nutshell

While Smalltalk may seem to be an old language to a certain audience, its uniformity,
simplicity and elegance make it still an innovative language. For example, Smalltalk
iterators have influenced OCL statements (e.g., select, collect). The recent introduction
of built-in queriable declarative annotations make it a powerful language for meta de-
scriptions since we can annotate methods and query such meta-descriptions from within
the language.

The Smalltalk object model is a subset of the one of Java [GR83]. In Smalltalk ev-
erything is an object and objects communicate exclusively via message passing (method
invocation). This is applied uniformly in the sense that message passing is preferred to
new language constructs. For example, select: is a method defined in Collection, rather
than being a language construct.

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 5

Objects are instances of classes. All instance variables are private to the object4

and all methods are public. There is single inheritance between classes, classes are
objects too. A class is instance of a metaclass which has this class as its sole instance.
Class methods are simply methods of the metaclasses and follow all the previous rules.
For example, in the figure below, the class Workstation is an instance of the metaclass
Workstation class.

The complete system is written in itself, therefore can be queried and manipulated
within itself allowing powerful introspective and reflective facilities [Riv96].

Node
name
accept: aPacket
send: aPacket

Workstation
originate: aPacket
accept: aPacket

Node class
new
withName: aString

Workstation class

:Workstation

instance of

instance of

instance of

Fig. 1. The class Workstation is instance of the metaclass Workstation class

Query meta-language. Because of its reflective capabilities, Smalltalk can be easily
used as a query meta-language on it own structure. For example, the following expres-
sions query the methods defined locally, all the methods, and all the instances of the
class Set.

Set selectors
returns the method names defined locally

Set allSelectors size
returns the number of methods locally and inherited by Set

Set allInstances
returns all the instances of the class Set in the system

4 Contrary to Java and C++ where private is class-based i.e., two objects of the same classes can
directly access their private fields.

6 S. Ducasse, T. Girba

OCL like iterators. Smalltalk offers high level iterators such as collect:, select:, reject:,
includes:, do:, do:separatedBy:, occurencesOf:, and more interestingly the definition of
new iterators is open and simple. The iterators are passed closures to be evaluated. For
example, [:each |each even] is equivalent with (lambda (each) (even each)), or with
(each|each->even()) in OCL.

#(1 2 3 4) collect: [:each | each even]
returns: #(false true false true)

#(1 2 3 4) select: [:each | each even]
returns: #(2 4)

| string |
string := ’’
#(1 2 3)

do: [:each | string := string, each printString]
separatedBy: [string := string, ’-’].

string.
returns the string ’1-2-3’

Declarative built-in meta descriptions. Since several years, several Smalltalk imple-
mentations introduced built-in declarative annotations, called Pragmas. Pragmas are
pure annotations without any behavior influence, attached to the method definitions.
These annotations can be queried from the language which makes them useful as declar-
ative registration mechanisms.

The following example shows how an application can define at the same time a
method and several menu items that will invoke such a method. In our example, the
method openFileBrowser is defined in class VisualLauncher and it consists of the last
line that open the FileBrowser application. Then two annotations between < > are used
to declare in this specific case that such a method can be invoked from the menu bar
using the browse menu item and from the Launcher tool bar by clicking on the icon (see
the Figure 2).

VisualLauncher>>openFileBrowser
<menuItem: ’File Browser’ icon: #fileBrowser menu: #(#toolBar)>
<menuItem: ’File Browser’ icon: #fileBrowser shortcut: #F2 menu: #(#menuBar file)>

FileBrowser open

An annotation is defined within a method body and in addition it should first be
declared so that the compiler can verify that the correctness of the annotations. Be-
low we give the query example that returns a collection with the annotations named
menuItem:icon:menu: defined in the system. An annotation knows the relevant meta-
information about its use such as the method and class in which it is declared.

Pragmas allNamed: #menuItem:icon:menu:

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 7

File Browser

Fig. 2. The File Browser can be invoked both from the menu and from the toolbar due
to the two Pragmas.

Class Extension Mechanism. Contrary to Java or C++, in Smalltalk as well as in
Objective-C, we can package a method in a different package than the one the class
belongs to. For example, in the example above, the class VisualLauncher is defined in
one package, while the openFileBrowser is defined in another package named Tools-File
Browser. As a result, this method is available on the class VisualLauncher, and conse-
quently appears in the menu, only when the Tools-File Browser package is loaded.

This mechanism, called class extension, lets the developer add methods to classes
that did not provide the expected behavior. Inheritance is not a solution to the problem
that class extension solves since clients may still refer to the original class. In our ex-
ample, extending the VisualLauncher via subclassing would not work since the menu
can be extended by different clients, and we still want to open the VisualLauncher to
see what tools are available [BDN05]. C# recently introduced static class extensions to
improve the extensibility of the applications written with this language.

4 Integrating MOF in Smalltalk and Moose

Smalltalk being a reflective language (i.e., supporting both introspection and interces-
sion [BGW93]), it already includes a causally connected meta-description of its own
run-time and structure. To introduce a fourth layer 5, we used the architecture shown in
Figure 3. In the example, the Java class Point is represented as an instance of the FAMIX-
Class [DD99a]. The FAMIXClass is described by the instances of the class MOFAttribute
and MOFClass.

Such an architecture is not new and can be seen as a validation of the nowadays
well-known distinction between two conceptually different kinds of instance-of rela-
tionships: (i) a traditional and implementation driven one where an instance is an in-
stance of its type, and (ii) a representation one where an instance is described by an-
other entity [BG01]. Atkinson and Kühne named these two forms: form vs. contents or
linguistic and logical [AK05] [AK01]6.

5 We started in early 1997 with an entity relationship meta-meta-model then since 2003 we
replaced it by a MOF-based one.

6 In 1997, the distinction between the implementation and the representation was not clear nor
described in the literature. Hence, our architecture was not influenced by existing readings,
and therefore it acts as a confirmation of the related work.

8 S. Ducasse, T. Girba

FAMIXClass
name
methods
...

instance of

MOFClass
name
attributes
...

MOFAttribute
name
...

:MOFClass
name = Class
...

instance of

class Point {
...
}

described by

:FAMIXClass
name = Point
...

representd by

System

Model

Meta-Model

Meta-Meta-Model

:MOFAttribute
name = isAbtract
...

instance of

Fig. 3. Mapping Meta-Descriptions to Smalltalk.

4.1 Describing Smalltalk Classes with MOF

Because Smalltalk classes are objects we can attach the MOF description to the class
objects. One possibility of providing the descriptions are like in the code below.

FAMIXClass class>>mofDescription
ˆ MOFClass new

superClass: self superclass mofDescription;
name: #Class;
...
addAttribute: (MOFAttribute new

name: #isAbstract;
loadMethod: #setAbstract:;
saveMethod: #getAbstract;
booleanType)

In this example, we show an excerpt of the mofDescription method attached to the
FAMIXClass class. The method returns a MOFClass with the name Class. Attached to
the MOFClass are several attributes. For example, isAbstract is an MOFAttribute. Par-
ticular to our implementation is that we did not use MOF, but an extension of MOF.
The reason for it, is that we needed to attach executability to the descriptions as we
show in the previous section. For example, for the isAbstract attribute we added infor-
mation of which methods should be used to read or store the attribute in an instance of
FAMIXClass.

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 9

As shown by the previous example, the method mofDescription is a class method of
FAMIXClass. In Smalltalk, the class and the instance methods are clearly separated, both
in the language and in the IDE user interface. Usually, the regular programmer spends
most of the time programming on the instance side. Hence, having the mofDescription
on the class side is rather distant from the actual focus of the programmer. That is why,
we provided another way to express meta-descriptions using Pragmas. Below we give
an example of how we use the Pragmas to attach the numberOfMethods metric as a MO-
FAttribute to the description of FAMIXClass. The developer only has to write the regular
method in the model class and how he defines a property. This illustrates how the base
code is annotated with a meta-description and also how the meta-description behavior
can be specified by the end-user programmer. Note that we call numberOfMethods a
property, and not an attribute, as the reverse engineer thinks in terms of entities and
properties, rather then classes and attributes.

FAMIXClass>>numberOfMethods
<property: #NOM longName: ’Number of methods’>
ˆself methods size

We fill our MOF repository by querying the existing annotations. The below code
shows how we compute the MOF descriptions for all the entities defined as subclass of
AbstractEntity. The method traverses all the subclasses and for each of it, it initializes
the description and then it queries all the defined Pragmas and transforms them into
MOF annotations.

AbstractEntity class>>initializeAllMofDescriptions
self withAllSubclasses do: [:each | each registerMofPackage].
self withAllSubclasses do: [:each |

each initializeMofDescription.
each attachPragmasToMOFDescription]

4.2 Building Meta-Aware Tools

Research in reverse engineering is about creating new ways of representing software.
As the representation is dictated by the meta-model, we needed the meta-model to be
extensible. This is not a problem per se, but in the same time we needed to be able to
browse the results and also interact with other tools via external formats. As a conse-
quence we built several generic tools that would cope with the extensions.

To be able to communicate with third parties tools we provided generic import/export.
We started with supporting the CDIF format and later we also implemented the support
for XMI [TDD00]. The generic engine depends only on the meta-description of the
meta-model. That is, the only thing the programmer has to do is to build his meta-
model, and describe the storable attributes. Based on this, the objects in the model can
be serialized in either CDIF or XMI.

The act of analyzing can be decomposed in several generic atomic actions: (i) in-
trospection - given an entity, what are its attributes, (ii) selection - given a collection of
entities, which are the entities that obey a certain rule, (iii) navigation - given an entity,

10 S. Ducasse, T. Girba

what are the nearby objects, and (iv) presentation - given a collection of entities, what is
the order of the entities. In the same time, an important factor in reverse engineering re-
search is the exposure to the data. That is why we implemented generic tools to address
the four points above while being independent on the type of data. Again, we accom-
plished this by making the tools dependent only on the meta-descriptions [DGLD05].

property

MOFClass

MOFAttribute
computationBlock
saveMethod
loadMethod

MOFAction
actionBlock

MOFExpression
expression

*

*

*

entitiy

menu
expression

Fig. 4. We extended MOF with new entities and new methods to hook in the execution.
The Moose Browser is a generic tool based on the meta-descriptions.

Because of the extension possibilities, Moose enabled several directions of research
in reverse engineering. As a result, several techniques have been implemented to deal
with the diversity of data, techniques which are orthogonal to the type of data. As a
consequence, we have implemented a mechanism for integrating these techniques. Our
solution was to extend MOF with other types of annotations. One such an annotation
is the MOFAction that a tool can perform on an entity. Based on this annotation we can
build a menu, and different tools can register themselves to the context they can handle.

Figure 4 shows the different extensions we performed on MOF as well as one ap-
plication in building a generic browser. We added the information about loading and
saving an attribute, and we added the possibility of hooking in a computation block that

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 11

would be executed if the attribute is not already computed for a given entity. We also
added two new classes for Action and Expression. The Action represents a particular ac-
tion that can be triggered on a certain type of entity, while the Expression is a boolean
query that shows whether an entity obeys the rule or not.

Figure 4 also shows how the generic browser of Moose uses the meta descriptions.
The mapping between the different parts of the browser and the meta-descriptions are
denoted with arrows that also show how the meta-descriptions are seen by the user. For
example, by selecting an entity we can trigger its menu which is composed of actions. In
the figure, we selected a FAMIXClass and in its menu we have a CodeCrawler submenu.
One visualization defined in CodeCrawler is the Class Blueprint, and it can be applied
on any class through the contextual menu [DL05]. The code below shows the method
that CodeCrawler uses to extend the FAMIXClass to spawn the Class Blueprint. Note
that the below method is packaged in CodeCrawler, and not in Moose where FAMIX-
Class is defined. Like this, we can trigger the menu action only when CodeCrawler is
loaded.

FAMIXClass>>openClassBlueprint

<action: ’Class Blueprint’ category: ’CodeCrawler’>
CodeCrawler openClassBlueprintOn: self

CodeCrawler is a generic visualization tool based on a graph model [LD05]. The
main technique implemented by CodeCrawler is called polymetric views which maps
on the nodes different measurements. As Moose provides the description of the mea-
surements computable on the entities, CodeCrawler offers an interactive tool for the
user to set the mapping between the measurements and the visualization properties.

4.3 Using Meta-Descriptions For Generating Meta-Models

While our approach is not MOF-compliant, it still holds the good property that we can
query and manipulate the meta-description and run-time of the model and programs
themselves. Indeed the fact that Smalltalk is reflective makes it possible to query the
run-time or structural representation of the language itself and to modify it in a causally
connected way [Riv96]. While we favored a code centric approach, we also believe in
generative ones when appropriate. Moose supports the generation of meta-described
meta-models from MOF description: from a MOF description, the system can generate
classes representing new models and their associated descriptions. However, while the
generation of initializers, accessors and other structural navigation facilities is trivial
(and ressemble to the work on the UML virtual machine [RFBL+01]), the behavior is
expressed as plain Smalltalk methods.

As such this domain generation can be seen as a simple model transformation. Tools
such as VAN [G0̂5] which enables the definition of temporal, history analyses, are based
on the transformation of models: starting with the structural model we can build the
historical meta-model [GD06]. In this case too, we describe the transformation itself as
Smalltalk code: we can query the models entities and manipulate them to generate new
entities [Pol05].

12 S. Ducasse, T. Girba

5 Evaluation

Our approach takes the best of the object-oriented programming and meta-modeling
worlds and uses it in a practical setup. One the one hand, we continue to use only one
paradigm and environment. This helps our developers to develop their own applications
or to extend our environment. They do not have to learn a new language and they stay
within their known environment. On the other hand, we provide a meta-described exten-
sible environment in which meta-interpreters can deliver their power. Using Smalltalk
as a meta-modeling language provided us with several advantages:

– Executability – We obtained a meta-model that is executable and that can be ex-
tended using the Smalltalk language constructs (declarative annotations, class ex-
tensions).

– Good performance – Because we use a professional Smalltalk environment, we can
focus on our main activities and we do not have to worry about performance that
building our own language would have implied.

– Tools support – We can use the same toolsets (debugger, version management,
refactorings) to develop both our domain and our meta-domain.

– Extensibility – Using class extensions we can package our meta-model extensions
with the domain entities they describe. But we can also package new tools orthogo-
nally to the base domain and even meta-model. For example, we can package all the
navigation facilities independently of the rest even if the code is attach conceptually
to the core entities.

However, our approach is not completely MOF compliant since the MOF does not
describe execution. It does not follow a traditional MDA decomposition. As such, model
transformation of behavior may be more difficult than if we would have been using
a model to describe the behavior as suggested by Action Semantics [MTAL98], or a
dedicated language such as Kermeta [MFJ05]. However since Smalltalk also offers a
reflective API, we developed some simple meta-model transformations using Smalltalk.

The common objection against using a programming language as an executable
meta language can be summarized by saying that languages provide too much or too
few. Muller et al. said: “Existing programming languages already provide a precise
operational semantic for action specifications. Unfortunately, these languages provide
both too much (e.g., interfaces), and too few (they lack concepts available in MOF,
such as associations, enumerations, opposite properties, multiplicities, derived proper-
ties...).” [MFJ05]

However, like other mainstream object-oriented programming language, Smalltalk
does not support associations, derived entities, opposite properties directly in the lan-
guage, and because of that the developer may be facing implementation decisions in-
stead of meta-modeling ones. From the language point of view, the Smalltalk meta-
model is minimalist. We believe that given our constraint of use a programming lan-
guage to describe both our base domain and the meta-description, the choice of Smalltalk
was adequate and offered a good and practical solution to our problems.

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 13

6 Conclusion and Future Works

To make our reengineering environment more flexible and extensible, we introduced a
meta-description and used this meta-description to build extensible reengineering tools.
We used Smalltalk as an executable meta-language, and we simplified our code and
its logic by factoring knowledge at the meta-level. Our developers could focus on their
tasks without having to learn new languages and new tools that would not be casually
connected with the objects they manipulate.

We show how a four layer architecture can be introduced in a reflective language,
validating the distinction between instantiation and representation links in meta-modeling
tools architectures [BG01,AK05]. We believe that our approach can be applied in other
mainstream programming languages, and we can imagine doing the same using EMF.
Still to gain the maximum from this approach we believe that being able to annotate
methods, to query these annotations, and to package methods independently from the
classes they belong are important factors.

Our solution influenced our reengineering environment in several ways:

– The decision to use Smalltalk as a meta-language makes it possible to use all the
tools provided by the development environment: browser, debugger, versioning,
testing, refactoring, etc. Moreover it eases the entry level as developers do not need
to learn another language.

– Having first class meta-description as ordinary objects also helps manipulating the
meta-model, and building flexible tools based on it. For example, we can develop
meta-interpreters as simple methods or objects.

– Having a meta-description greatly enhances the possibilities to refactor and change
existing code, since a change to the meta-model only needs to be performed at one
single place, without requiring to change the generic tools (e.g., import/export).

By letting the end-user programmer naturally annotate his base code with meta-
descriptions, we narrow the gap between what are traditionally seen as complex and
separated tasks. We coined this approach literate meta-programming [Knu92].

In the future, we plan to describe the Smalltalk meta-entities with MOF to get a fully
MOF-compliant Smalltalk. For example, the class CompiledMethod could be described
to represent the fact that a method can be abstract and that it has parameters. We would
then have a completely executable MOF meta-language.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Recast: Evolution of Object-Oriented Applications (SNF 2000–
061655.00/1)” and the French National Research Agency (ANR) for the project “Cook:
Rearchitecting object-oriented applications”(2005-2008).

References

[AK01] Colin Atkinson and Thomas Kuehne. The essence of multilevel metamodeling. In
Proceedings of the UML Conference, number 2185 in LNCS, pages 19–33, 2001.

14 S. Ducasse, T. Girba

[AK05] Colin Atkinson and Thomas Kuehne. Concepts for comparing modeling tool ar-
chitecture. In Proceedings of the UML Conference, number 3713 in LNCS, pages
19–33, 2005.

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Controlling
the scope of change in Java. In Proceedings of Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’05), pages 177–189, New York, NY,
USA, 2005. ACM Press.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the OMG/MDA
framework. In Proceedings Automated Software Engineering (ASE 2001), pages
273–282, Los Alamitos CA, 2001. IEEE Computer Society.

[BGW93] D.G. Bobrow, R.P. Gabriel, and J.L. White. Clos in context — the shape of the
design. In A. Paepcke, editor, Object-Oriented Programming: the CLOS perspective,
pages 29–61. MIT Press, 1993.

[BSM+03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy
Grose. Eclipse Modeling Framework. Addison Wesley Professional, 2003.

[CESW04] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied metamodelling:
A foundation for language driven development, 2004.

[DD99a] Serge Demeyer and Stéphane Ducasse. Metrics, do they really help? In Jacques
Malenfant, editor, Proceedings LMO ’99 (Languages et Modèles à Objets), pages
69–82. HERMES Science Publications, Paris, 1999.

[DD99b] Stéphane Ducasse and Serge Demeyer, editors. The FAMOOS Object-Oriented
Reengineering Handbook. University of Bern, October 1999.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engineer-
ing platform combining metrics and program visualization. In Francoise Balmas,
Mike Blaha, and Spencer Rugaber, editors, Proceedings WCRE ’99 (6th Working
Conference on Reverse Engineering). IEEE, October 1999.

[DGLD05] Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and Serge Demeyer. Moose: a
collaborative and extensible reengineering environment. In Tools for Software Main-
tenance and Reengineering, RCOST / Software Technology Series, pages 55–71.
Franco Angeli, Milano, 2005.

[DL05] Stéphane Ducasse and Michele Lanza. The class blueprint: Visually supporting the
understanding of classes. IEEE Transactions on Software Engineering, 31(1):75–90,
January 2005.

[DT98] Martine Devos and Michel Tilman. Incremental development of a repository-based
framework supporting organizational inquiry and learning. In OOPSLA’98 Prac-
tioner’s Report, 1998.

[G0̂5] Tudor Gı̂rba. Modeling History to Understand Software Evolution. PhD thesis,
University of Berne, Berne, November 2005.

[GD06] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evolution.
International Journal on Software Maintenance: Research and Practice (JSME),
18:207–236, 2006.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its Implemen-
tation. Addison Wesley, Reading, Mass., May 1983.

[Knu92] Donald E. Knuth. Literate Programming. Stanford, California: Center for the Study
of Language and Information, 1992.

[LD05] Michele Lanza and Stéphane Ducasse. Codecrawler–an extensible and language in-
dependent 2d and 3d software visualization tool. In Tools for Software Maintenance
and Reengineering, RCOST / Software Technology Series, pages 74–94. Franco An-
geli, Milano, 2005.

Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006 15

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In S. Kent L. Briand, editor, Proceedings
of MODELS/UML’2005, volume 3713 of LNCS, pages 264–278, Montego Bay, Ja-
maica, October 2005. Springer.

[MSFB05] Pierre-Alain Muller, Philippe Studer, Frédérick Fondement, and Jean Bézivin. In-
dependent web application modeling and development with netsilon. Software and
System Modeling, 4(4):424–442, November 2005.

[MTAL98] Stephen J. Mellor, Steve Tockey, Rodolphe Arthaud, and Philippe LeBlanc.
Software-platform-independent, precise action specifications for UML. In Jean
Bézivin and Pierre-Alain Muller, editors, The Unified Modeling Language, UML’98
- Beyond the Notation. First International Workshop, Mulhouse, France, June 1998,
number 1618 in LNCS, pages 281–286, 1998.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an agile
reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE 2005), pages 1–10, New York NY, 2005. ACM Press. Invited
paper.

[OMG97] Object Management Group. Meta object facility (MOF) specification. Technical
Report ad/97-08-14, Object Management Group, September 1997.

[OMG04] Object Management Group. Meta object facility (MOF) 2.0 core final adopted spec-
ification. Technical report, Object Management Group, 2004.

[Pol05] Damien Pollet. Une architecture pour les transformations de modèles et la restruc-
turation de modèles UML. PhD thesis, Université de Rennes 1, June 2005.

[RFBL+01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, , and Nosa Omorogbe. The archi-
tecture of a uml virtual machine. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’01), pages 327–341, 2001.

[Riv96] Fred Rivard. Pour un lien d’instanciation dynamique dans les langages à classes. In
JFLA96. INRIA — collection didactique, January 1996.

[RTJ05] Dirk Riehle, Michel Tilman, and Ralph Johnson. Dynamic object model. In Pattern
Languages of Program Design 5. Addison-Wesley, 2005.

[TDD00] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX: Exchange experi-
ences with CDIF and XMI. In Proceedings of the ICSE 2000 Workshop on Standard
Exchange Format (WoSEF 2000), June 2000.

[YJ02] Joseph W. Yoder and Ralph Johnson. The adaptive object model architectural style.
In Proceeding of The Working IEEE/IFIP Conference on Software Architecture 2002
(WICSA3 ’02), August 2002.

	Using Smalltalk as a Reflective Executable Meta-Language Appeared to MODELS 2006
	Stéphane Ducasse, Tudor Girba

