Programming with Explicit Metaclasses in Smalltalk-80

Jean-Pierre Briot and Pierre Cointe

Equipe Mixte Rank Xerox France - LITP,
Université Pierre et Marie Curie,
4 place Jussieu, 75005 Paris, France

briot/pclrxf.ibp.fr.uucp

Abstract
This paper discusses the introduction of
explicit metaclasses & la ObjVlisp into the
Smalltalk-80 language. The rigidity of
Smalltalk metaclass architecture motivated
this work. We decided to implement the
ObjVlisp model into the standard Smalltalk-
80 system. The resulting combination
defines the Classtalk platform. This
platform provides a full-size environment

to experiment with class-oriented
programming by combining implicit
metaclasses a la Smalltalk and explicit

metaclasses a la ObjVlisp. Obviously, these
experiments are not limited to the Smalltalk
world and will be useful to understand and
practice the metaclass concept advocated by
modern object-oriented languages such as
ObjVlisp and CLOS.

1 Introduction

Uniformity is one of the main advantages
of Object-Oriented Programming
[Goldberg&Robson83]. Therefore in the
sub-field of class-oriented languages, an
increasing number of people claim that
classes must be considered as "first class
objects" [Cointe87], i.e. described by true
and appropriate classes, called meraclasses.

1.1 Metaclasses are Useful

It has already been argued that
metaclasses are useful both at the user's
and at the implementor's levels to describe
and extend the class architecture.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-333-7/89/0010/0419 $1.50

October 1-6, 1989

For the implementor, metaclasses are the
means to describe and parameterize the
object system itself, for instance to tailor
the implementation [Cointe&Graube88],
describe and extend the language in a
circular way [Bobrow&Kiczales88]
[Attardi&al89], and control the execution
process [Malenfant&al89]. In short to
describe and control the implementation of
objects at the user's level.

For the user, metaclasses define the class
methods, which allow to send messages to
classes, e.g. the messages to create new
objects, and the instance variables at the
class level, which enable the wuser to
parameterize classes [Cointe87].

1.2 Metaclasses in Smalltalk
Historically, Smalltalk was the first
language to introduce metaclasses. At the
implementation level, they define the
kernel of the architecture (in Smalltalk-80,
the metaclasses of the Kernel-Classes category)
in an object-oriented manner. But at the
user's level, metaclasses have been hidden.
When a class is defined, a new metaclass is

automatically created by the system. This

implicit metaclass is anonymous,
unsharable and strongly coupled with its
private instance.

This separation between the
implementor's level and user's level results
in an architecture which is not fully

uniform. This choice was probably made in
order to make things easier for the
beginner, but complicated the general
architecture of the class system in such a
way that it became very difficult to
understand it. Consequently people
working in the field of learnability of
object-oriented programming claim that
the Smalltalk metaclasses complicate
unnecessarily the model and that they
should be removed or at least highlighted

OOPSLA '89 Proceedings 419

[Borning&OShea87]. Nevertheless, taking
the decision to remove metaclasses can lead
to removing classes too, and to defining
prototype-based Smalltalk languages
[Ungar&Smith87].

1.3 Metaclasses in ObjVlisp & CLOS

On the contrary, many people have been
looking for uniform and explicit
metaclasses. Such systems are Loops,
ObjVlisp, CLOS and others. We proposed the
ObjVlisp model [Briot&Cointe87] which
supports a simple, clean and minimal
architecture for explicit metaclasses. The
Common Lisp Object System (CLOS)
[Bobrow&Kiczales88] has also been designed
along such an architecture.

Meanwhile ObjVlisp has the drawback of
its minimality. It does not have enough
class libraries to allow realistic
experiments with end-users. CLOS is a much
richer language but there are currently
few implementations and its programming
environment is still under development.

1.4 Motivations

A previous study [Cointe88] convinced us
that the Smalltalk language was extensible
enough to support another metaclass
system. Because we think Smalltalk-80 is
currently the most complete and flexible
object-oriented programming
environment, we decided to introduce the
uniform architecture of ObjVlisp
metaclasses into it. This integration must be
complete in order to experiment with
(meta)class-oriented programming while
still reusing standard Smalltalk-80 class
libraries. The resulting system, named
Classtalk, provides libraries of metaclasses
which the programmer may combine as
buliding blocks to design an unlimited
number of metaclass levels.

1.5 Outline of the Paper
Section 2 discusses the limitations of the

Smalltalk-80 metaclass architecture,
namely the private class/metaclass
"module” and the non-uniform protocol of

instantiating objects. Section 3 reviews how
the ObjVlisp and CLOS architectures fill

these gaps. Section 4 discusses 1wo
alternatives to integrate the ObjVlisp
architecture into Smalltalk-80, then
describes in detail one implementation.
Section 5 describes how we extend the
standard Smalltalk-80 programming

420

OOPSLA '89 Proceedings

environment to provide a specific
suitable for Classtalk's explicit metaclasses,

Section 6 introduces a Dbasic library of =
metaclasses. Section 7 explains how we
merge the Borning&Ingalls' multiple k-

inheritance scheme into Classtalk. Section §
gives an example of metaclass combination,

In section 9 we present our implementation
of uniform creation.

concluding.

2 The Smalltalk-80 Arcanes

2.1 Kernel Metaclasses

Like ObjVlisp or CLOS, Smallialk-80 uses a =

of explicit metaclasses in order to
classes. We call them kernel
describes standard classes
metaclasses),

set
describe
classes. Class
(classes which are not
Metaclass describes metaclasses.
the common properties of standard classes
and metaclasses, they are both direct
subclasses of ClassDescription, itself a subclass

of Behavior. The inheritance hierarchy of the =

kernel classes is shown below. The instance
variables are enclosed within ().

Object ()
Behavior (superclass methodDict format subclasses)
ClassDescription (instanceVariables organization)
Metaclass (thisClass)
Class (name classPool sharedPools)

Note the structural difference between a

class and a metaclass. A metaclass uses the
backward pointer thisClass to memorize its

private metaclass, while a class has name,

classPool and sharedPools variables.

2.2 User's Metaclasses

Besides this primitive kernchu
architecture, the Smalltalk's designers =
chose to hide the metaclass architecture =
from the user and to provide an implicit =
and automatic metalevel for standard =
classes. ;

When a new class is defined, e.g. class

one

Section 10 discusses
the new issues raised by this work before

and
To express

Actor, the system automatically creates @ &

class/metaclass module. This means that the =
implicit E
in order =

system first creates a new
metaclass and then -instantiates it
to create the class which will be its sole
instance. Such an implicit metaclass 18
anonymous and is only reachable by
sending the message class to the class it
describes, e.g. Actor class. The browser
connects the definitions of the class and of

October 1-6, 1989

jts metaclass through the instance/class switch
view of the browser,

The user may define methods at the
metaclass level. These methods describe
messages which may be sent to the class
itself, and are named class methods. In
order to extend the structure of standard
classes, the user may also define instance

variables at the metaclass level.
Nevertheless these variables have no
specific names and are not part of the

Smalltalk terminology. They must not be
mistaken for class or pool variables which
implement shared wvariables.

2.3 The Class/Metaclass
Module
Being

Implicit

implicitly created by the system,
the inheritance and instantiation of
metaclasses should obey some implicit
rules. To provide the same inheritance rule
for class and instance methods, the
inheritance hierarchy of metaclasses is
parallel to the inheritance hierarchy of
classes. In order to have the same structure
and behavior for all implicit metaclasses,
each of them is created as an instance of
Metaclass. Smalltalk-80 connects the metaclass
inheritance hierarchy to the class
hierarchy by declaring the jmost general
metaclass, Object class, a subclassi.:)f Class:
!

Object ()
Actor ()
Behavior (superclass methodDict format subclasses)
ClassDescription (instanceVariables organization)
Metaclass (thisClass)
Class (name classPool sharedPools)
Object class ()
Actor class ()
Behavior class ()
ClassDescription class ()
Metaclass class ()
Class class ()

Nevertheless the implicit class/metaclass
module provides too rigid a coupling
between a class and its metaclass. This leads
to limitations in the expressiveness of the

A simple example of abstract class
appears when one tries to model complex
numbers as objects. Two representations
are useful for complex numbers, namely
cartesian and polar coordinates. Therefore
we define two classes, respectively Cartesian
and Polar to implement them. The abstract
class Complex factors the common behavior,
for instance computing arithmetic. In the
inheritance hierarchy figure, methods are
enclosed within <>,

Complex () <+ - * [conjugate modulus negated>
Cartesian (x y) <x y rho theta printOn:>
Polar (rho theta) <x y rho theta printOn:>

The problem is to model the general
behavior of an abstract class, and more
precisely, to ensure that such a class

cannot create instances. The obvious way is
to forbid instantiation by redefining the
standard method for creation (in fact
allocation) in order to raise an error. This
standard method is named new and belongs
to class Behavior. It should be redefined as a
class method. Therefore we need to
introduce a standard class, named Abstract. Its
only purpose is to provide a metaclass.

tAbstract class methodsFor: '(forbidden) allocation'!
new
self error: 'no instance, I am an abstract class'! !

Then Complex is defined as a subclass of
Abstract;

Object <...>
Abstract <>
Complex <...>
Cartesian <...>
Polar <...>
Behavior<... new mnew: ..>
ClassDescription <...>
Metaclass <...>
Class <..>
Object class <..>
Abstract class <new>
Complex class <x:y: rho:theta:>
Cartesian class <x:y:>
Polar class <rho:theta:>

language as illustrated by the following
example. Because Complex is defined as a subclass of
Abstract, its metaclass Complex class inherits the
é.:amg‘l}::e abstract Class Counter- redefinition of the method new owned by
vAbstract class: dlass dhar speeiiies Abstract class. Unfortunately, classes Cartesian
Protocf)lm;ut Cis sz.or izble to fully z‘m‘;z'e:neit sl EBolas hoh inhe_rit from e e e
it; by c"onventt‘on instances are not created Consequently t}-w”- corrcspon.dmg
0} Py }’cind of classes. " !nctacl.ass.cs also inherit the forbidden
[Goldberg&Robson83) : instantiation. Thus., th_ey bccpmc abstract
classes too, and it will be impossible to
October 1-6, 1989 OOPSLA '89 Proceedings 421

create any complex number. The rule for
implicit inheritance of metaclasses does not
match our intuition.

A pragmatic solution is to change
explicitly the inheritance rule by updating
the instance variable superclass, which
specifies the inheritance link. Therefore
we declare the most general metaclass, i.e.
Object class, as the new superclass:

Cartesian class superclass: Object class.
Polar class superclass: Object class

This is an ad hoc solution and which
lacks modularity since we need to redefine
inheritance for every subclass. The
complete solution, given in section 3.2, uses
explicit control of inheritance and
instantiation of classes.

2.5 Non Uniform Creation

Smalltalk provides two primitive methods
to allocate objects. These methods, named
new and new: are owned by the kemel class
Behavior. Method new allocates objects whose
structure is defined by named instance
variables (such as Cartesian) whereas new:
allocates objects whose structure is defined
by indexed variables (such as Array). Every
object in the system, except rockbottom
objects such as numbers, is created by
calling one of these allocators.
Consequently allocation of objects is
(almost) uniform. However, their
initialization is not.

When an object is allocated, the values
associated to its instance variables get the
default initial value nil. In order to initialize
these variables, no standard method is
provided, and therefore one needs to define
explicitly an initialization method. For
instance, we define such a method which
initializes Cartesian instances:

!Cartesian methodsFor: 'initializing'!
setX: xValue setY: yValue

X _ xValue.

y _yValue! !

If we want to combine allocation and
initialization into a single message for
creation, we have to define the following
class method:

ICartesian class methodsFor: 'creation'!
X: xValue y: yValue
Aself new setX: xValue setY: yValue! !

422 OQPSLA '89 Proceedings

Such initialization and creation methodg
are in most cases specific to each clagg
because their selectors are built from the.
names of the instance variables. HDWeva;;
there is a method to create standard classes,
All standard classes share the same
structure (instance variables defined o
inherited by Class) and are created by the
method subclass:instanceVariableNames:...category:. Bug
this assumption does not stand anymore
when adding new instance variables at the
class level (see section 6.4).

3 The ObjVlisp & CLOS Alternative
The complete solution to the previous
limitations has '

uniformly created as instances of some
other classes called metaclasses.

ObjVlisp and CLOS are two systems which
ObjVlisp is
in the sense of being self-
defined by only two classes: the root of the
instantiation tree (Class), and the root of the *.21
(Object). Class, being an

propose such an architecture.

also minimal

inheritance tree
object, must itself be described by (and
must be an instance of) some class. The
minimal solution proposed in
[Briot&Cointe87] defines Class as an instance
of itself. This self-instantiation ensures a
complete uniformity and self-description
(reflexivity) of the kernel.

3.1 Explicit Metaclasses

An ObjVlisp metaclass is a class which :,:::

can have access to the standard allocation =
message by owning it or by inheriting it.
Class, as the holder of the standard allocation
method allocateInstance, is the first metaclass of
the system. In order to inherit this standard
allocator, a new metaclass is always created
as a subclass of a previous one. As opposed
to Smalltalk-80, there is no difference
between classes and metaclasses.
Consequently, the two metaclasses of =

Smalltalk-80 (Class and Metaclass) are merged =

into one (Class).

3.2 Abstract Class Revisited

In ObjVlisp, as opposed to Smalltalk-80,
there is no implicit link between a class
and its private metaclass. Consequently 2
same metaclass can be used (shared) tO
describe different classes. The Oijligp
solution to the abstract class problem 18
summarized by the following architecture:

October 1-6, 1989

already been presented i'n_'%""

[Cointe87]. Classes must be explicitly and

instance of

subclass of

59

g Class 1
1 |

: 4
r :

F AbstractClass
: \\ 1
~
o ~
it i \\
‘* L8 Complex
E 2T M
Cartesian Po1lar
o 104201 Jcis 45
There are three steps to this solution:
% . . create the new metaclass describing all

~ abstract classes. AbstractClass is an instance

and a subclass of the first metaclass Class.

§ AbstractClass redefines the allocation methods
% new (and new:) in order to signal an error,

Class newName: #AbstractClass
superclass: Class
nstance VariableNames:
category: 'Metaclass-Library'!

"

- !AbstractClass methodsFor: '(forbidden) allocation'!

self error: 'mo instance, I am an abstract class'!

self error: 'no instance, I am an abstract class'! |

° create a new abstract class Complex,
mstance of AbstractClass and subclass of Object,

AbstractClass newName: #Complex
superclass: Object

instanceVariableNames:
~ category: 'Numeric-Complex'!

.‘.:
£y e

° create the two classes Cartesian and Polar as
- Instances of Class and subclasses of Complex,

lass newName: #Cartesian
superclass: Complex
instanceVariableNames: 'x y '
- category: 'Numeric-Complex'!

 Class newName: #Polar
Superclass: Complex
instanceVariableNames: 'rho theta '
category: 'Numeric-Complex'!

3.3 Uniform Creation
In ObjVlisp and CLOS,
Objects is uniform. It is

the creation of
achieved by

- Oclober 1-6, 1989

combination of an allocation and an

initialization method:
creation = allocation + initialization

Class holds the standard allocation method,
named allocatelnstance, and the standard
creation method, named makelnstance:. There
are two standard initialization methods,
both of them named initializelnstance:. The first
one is owned by Object and defines standard
initialization of objects. The second one,
owned by Class, defines initialization of
classes. Initializing classes is more complex
and includes for instance compiling static
inheritance of instance variables.
Consequently this second initialization
method specializes (and calls) the most
general initialization method owned by
Object. Here is the inheritance hierarchy of
the ObjVlisp kernel:

Object <initializeInstance:>
Class <allocateInstance initializelnstance: makelnstance:>

Compared with Smalltalk, the ObjVlisp

makelnstance: method includes parameters for
object initialization, which it transmits to
the initializelnstance: method, whereas the

Smalltalk-80 method new is a simple allocator
(equivalent to allocateInstance) and not a
complete creation method.

in Smalltalk-80
Smalltalk-80

4, Classtalk: ObjVlisp

Implementing ObjVlisp in
raises two problems:

« introducing an explicit class
architecture not limited to an automatic
coupling between a class and its metaclass,

« introducing a wunified method of
creation which takes into account both the
allocation and the initialization procedures.

Smalltalk-80 1is extensible enough to
propose a clean solution to the first
problem. But its somewhat limited syntax
makes it difficult to find a simple solution to

the second problem. The result of our
implementation, a subworld of explicit
(meta)classes embedded. into the standard

Smalltalk-80 system, was named Classtalk,
because the class concept is at its core.

4.1 Creating Classes Explicitly

In order to create a class as an explicit
instance of a metaclass we introduce the
new creation message:

OOPSLA '89 Proceedings 423

newName:superclass:instanceVariableNames:category:. ItS
keywords are taken from ObjVlisp while
retaining the Smalltalk-80 syntax and
conventions. As advocated by ObjVlisp, class
and pool variables are suppressed for the
sake of simplicity. This new creation
message is sent to the metaclass, i.e. the
creator, and not to the superclass, as in
standard Smalltalk-80. This follows the
principle of creating every object as an
instance of a class.

4.2 Implementation Alternative

We have to ask ourselves which metaclass
should own this new creation method. More
generally the question is: "How do we
transpose the ObjVlisp kernel into the
Smalltalk-80 architecture?". At the
implementation level, two answers may be
given:

» identifying (merging) the ObjVlisp
kernel, classes Class and Object, with the two
corresponding Smalltalk-80 classes,

¢ grafting ObjVlisp by adding to the
Smalltalk-80 kernel a new metaclass, named
Classtalk, defined as a subclass of ClassDescription,

4.2.1
Class

Merging

already owns the standard method
subclass: instanceVariableNarxg s:...category: for
creating standard Smalltklk classes. By
identifying the ObjVlisp méfaclass Class with
the Smalltalk-80 class Class, the method
newName:...category: becomes also a method of
Class:

Class <subclass:...category: ... newName:...category:>

Object class <...>
Behavior class <...>
ClassDescription class <>
Class class <..>

Class is both the instance and an indirect
superclass of its metaclass Class class. This
provides an implicit self-description of
Class. But, as opposed to ObjVlisp, this self-
description is partial, because Class class is

not equal to Class.

4.2.2 Grafting
The grafting scheme makes it more
difficult to express the self-instantiation of

the first metaclass (Classtalk). Nevertheless
we can change the implicit rule of
Smalltalk metaclass inheritance to make

Classtalk class a direct subclass of Classtalk:

Classtalk class superclass: Classtalk

424 OQOPSLA '89 Proceedings

- 4.3 Explicit Creation of Classes

We obtain two different mhentancg _l" i
trees: one for the structure and one for thc :
behavior:

Object ()
Behavior (superclass methodDict format subclasses) B
ClassDescription (instanceVariables organization)
Metaclass (thisClass) 8
Classtalk (name category) 5
Class (name classPool sharedPools)
ObjectClass ()
Behavior class ()
ClassDescription class ()
Classtalk class ()

Object <...>
Behavior <... new ..>
ClassDescription <...>
Metaclass <
Class <... subclass:...
Classtalk <newName:...
Classtalk class <>

category: ..>
category:> :

The grafting scheme allows a precise
definition of Classtalk classes. Unus
instance variables such as classPool
sharedPools are no longer
Nevertheless the instance variable name ang.
some methods of Class need to be copied Jnto
Classtalk.

Both solutions are almost equivalent. I;;
this paper we chose the grafting schenig,
in order to easily distinguish betwee
Smalltalk and Classtalk classes. i

The implementation of the
newName:...category: to create Classtalk cIass
follows the standard implementation
class creation. It includes a dispatch by th
type of the superclass (with named
indexed variables). As in standal
Smalltalk-80, the "auxiliary method
newName:environment:...category: shares a com
implementation between classes Wi
named or indexed instance variables.

To focus on the semantics of these
methods, we give their definitions withol
the type dispatcher and without the pi¢e
of code related to the management of th
programming environment (syntax check
changes management...) which
replaced by comments:

October 1-6, 1989

iClasstalk methodsFor: 'Classtalk - class creation'!
pewName: n superclass: s instanceVariableNames: i
category: c
"Dispatch along classes with indexed variables."
Aself
newName: n
environment: Smalltalk
superclass: s
otherSupers: nil
instanceVariableNames: i
variable: false
words: true
pointers: true
category: c!

newName: n environment: e snperclass: s
otherSupers: o instanceVariableNames: i
variable: v words: w pointers: p category: ¢
| newClass "..." |
"Syntax checking and redefinition management."
"(1) Allocation of the new class."
newClass _ self new.

(2} Initialization of the new class - 1."
newClass

superclass: s

methodDict: MethodDictionary new

format: -8192

name: n

organization: ClassOrganizer new

instVarNames: (Scarmer new scanFieldNames: i)

classPool: nil

sharedPools: mnil.
"(3) Specification of remaining superclasses.”
o isNil ifFalse: [newClass otherSupers: o].
"(4) Initialization of the new class - 2."
newClass

format: newClass alllnstVarNames size

variable: v

words: w

pointers: p.
"Environment management."
ObjVlispOrganization classify: newClass name

under: categoryString asSymbol.

"Hierarchy updating and change management.”"
"(5) Compilation of multiple inheritance.”
o isNil ifFalse: [newClass copyMethods).
AnewClass! |

* as suggested by ObjVlisp a class creation
Is realized in two stages: allocation (1) and

standard Smalltalk-80, the initialization
process takes place in two successive steps:

(2) and (4).

» to organize Classtalk classes in a
specialized browser we introduce a new
organizer, the global variable

ObjVlispOrganization which is coupled with the
Classtalk browser,

¢ the method newName:environment:..category:
introduces a parameter prefixed by the
keyword otherSupers:. It specifies an unused
array of superclasses (calling value is nil).
Meanwhile, this allows this method to be
reused when introducing multiple
inheritance (see section 7).

° expressions (3) and (5) are evaluated
only in the case of multiple inheritance.
(3) assigns the array of remaining

superclasses. (5) calls the management of
multiple inheritance provided by the
standard extension of Smalltalk-80
[IngallsBorning82]. This will recompile the

methods or conflicting methods

when needed.

generate

5 The Classtalk Environment

The Smalltalk-80 standard browser may
confuse the programmer when browsing
on Classtalk classes. When the instance/class
switch is set to class, the browser shows the
explicit metaclass, and not an implicit one
as in standard Smalltalk-80. Moreover the
template and the definition printed in the

browser do not reflect the Classtalk
definition.
Therefore we designed a browser

specifically dedicated to Classtalk classes.
The differences lie in the removal of the
instance/class switch and the adjustment of
templates and definitions in order to make
clear the Classtalk way of creating classes.

This browser is also interfaced with a
generic tree editor [Wolinski89] in order to

initialization (2 & 4). The new class browse both the instantiation and the
allocated (temporary variable newClass) is inheritance graphs.

defined explicitly as an instance of a

pPrevious metaclass: self new (1). As in

October 1-6, 1989 QOPSLA '89 Proceedings 425

Aid
Classtalk Browser

, |
"""""" - -==--=--- StringStack :
Metaclass-Library [flnte ey ;
Multiple-Inheritance | StringStack | ------ supercla:! |
Metaclass-Combinati] TypedStack mathodD
Access-Ex | ==emsoo--o—o—- _ format
fTyped StackEX Class objVlispSubclasses] subclass

AccessClass——— PublieClass

MetaAccessClass

TypedClass newName: #integer|)
superclass: TypedStack AbstractClass ——— Abstra...dClass |
instanceVariableNames: *

sl padinteger
iZlazz allinstance:

MetaTypedClass

v ‘Typed-Stack-E Class W Y

AccessClass ————— Record

MetaAccessClass

AbstractClass

execute

MetaMu...eClass

4 Class PublicClass —————o
. AutolnitClass<
MemoClass

6.1 AbstractClass
6 Library of Metaclasses This metaclass models abstract classes, i.e.
This new browser was helpful to develop a non-instantiable classes, as defined and

library of Classtalk metaclasses. Qur idea is wused in section 3.2.

e them ildi i ;

to reus em as building blocks to d.cf.lne 6.2 AutolnitClass
more complex metaclasses by combining .] nich
them with both the instantiation and This mera_class models classes WAL
inkietitancs ‘mechanisms provide their instances with automatic |

In this section we propose to introduce initiglization. PRIy

In order to get automatic initialization of

zi-lgat?gglai-?ﬂ:m?:r ofhé?:m;n;?d::seﬁcau thﬁ objects, every Smalltalk-80 programmer has
© 8L 4t least once redefined the class method new.

Multip...eClass

bad list
next in bad list

|
|
i
!

! : _lk e L 'la Lan h L To avoid code duplication, we model this
QX[!IIQIL m§[3013§§. Our naming convention behavior in the SPGCifiC mﬁtaCIaSS;\“f
is that they end up with Class. AutoInitClass. A class instance of AutolnitClass has *

the following behavior: after being created
a new object will automatically receive the

lasstal 5% :
cajs e message init: ;
] . I:
\ Classtalk newName: #AutoInitClass d
- ! “ S superclass: Classtalk
- 1 . - "]
AbstractClass A ,’ MelaA\ccessCte\ss " mstanceValx\'Idablel;Iames: !
Pl) Bl ¥ !I
AutornitC}éss I‘ \\MetaTypedClass category: 'Metaclass-Library'!
/ 1 . ' . '
’] e |AutoInitClass methodsFor: ‘allocation'!
K J % new
¢ AccessClass % Asuper new init! !
MemoClass TypedClass

6.3 MemoClass

This metaclass models classes which
memorize the collection of all theil
instances by using an explicit backpointer.

426 OOPSLA '89 Proceedings October 1-6, 1989

! creation

- definition of this

This backpointer is implemented by a new
instance variable instances added at the
metaclass level. Its value is an ordered
collection remembering all the instances
which are created.

This variable needs to be initialized to an
empty collection before starting to create
instances. In order to provide automatic
initialization, we define MemoClass as an
instance of AutoInitClass:

AutoInitClass newName: #MemoClass
superclass: Classtalk
instanceVariableNames: 'instances '
category: 'Metaclass-Library'!

IMemoClass methodsFor: 'init'!
init
instances _ OrderedCollection new! !

IMemoClass methodsFor: 'allocation'!

new
"Method add: returns the object added."
Ainstances add: super new! !

!MemoClass methodsFor: 'accessing'!
instances
Ainstances! !

6.4 TypedClass
This metaclass models classes which are
parameterized by a type [Cointe87].
TypedClass introduces the new
variable type and two associated

instance
accessor

- methods. In order to provide an explicit

initialization of this variable, we need to
extend and specialize the standard Classtalk
message for creating classes. The new
method newName:...type:category:
combines the standard newName:.,.category: with
the assignment of the type. Meanwhile, the
new method led us to
introduce the new metaclass MetaTypedClass

~ whose only goal is to hold this extended
- Creation

: method. A non-uniform
; Initialization forces us to reintroduce the
- tlass/metaclass module:

Classtalk newName: #MetaTypedClass
superclass: Classtalk
instanceVariableNames: "

Category: 'Metaclass-Library'!

MetaTypedClass newName: #TypedClass
Superclass: Classtalk
InstanceVariableNames: ‘type '

Category: 'Metaclass-Library'!

'TypedClass methodsFor: 'accessing'!

type
"‘type!

October 1-6, 1989

type: aClass
type _ aClass! !

!MetaTypedClass methodsFor: 'creation'!
newName: n superclass: s instanceVariableNames: i
type: aClass category: ¢
A(self newName: n superclass: s instanceVariableNames: i

category: c)
type: aClass! !
6.5 AccessClass
This metaclass models classes which may
provide automatic (read-write) accessors to
their instance variables.

Another repetitive programming
problem lies in the definition of accessor
methods. Their selectors are usually

associated with the instance variables to
which they give access. In order to relieve
the programmer from this routine, we
propose the metaclass AccessClass which
describes how to generate automatically
such accessors. The programmer can
specify which instance variables will be
public (i.e. with accessors) by using the
declaration public:.

The following example is the Classtalk
solution to the example described in
[Goldberg&Robson83], pages 289-290:

AccessClass newName: #Record
superclass: Object
instanceVariableNames: ‘name address '
public: 'name '
category: 'Access-Example'!

Like TypedClass, the specialization of the
creation message leads to introduce a new
metaclass, named MetaAccessClass, to define the
extended creation method.

This method, named newName:...public:category:,
will compose the standard newName:...category:
method with the call of the method to
generate accessors. This method, named
makelvAccessOn:, is owned by AccessClass. A
Scanner parses the string specifying public
variables into an array which becomes the
parameter of the message:

Classtalk newName: #MetaAccessClass
superclass: Classtalk
instanceVariableNames: "
category: 'Metaclass-Library'!

IMetaAccessClass methodsFor: 'creation'|
newName: n superclass: s instanceVariableNames: i
public: p category: c
A(self newName: n superclass: s instanceVariableNames: i
category: ¢)
makelvAccessOn: (Scanner new scanFieldNames: p)! !

OOPSLA '89 Proceedings 427

