
Semantics of a component-oriented programming language

: Compo

Julien RIXTE

July 19, 2016

Contents

1 Introduction 2

2 Description of Compo 3
2.1 Overview . 3
2.2 Descriptors and components . 3
2.3 Ports . 4
2.4 Services . 6
2.5 Our contributions . 7
2.6 Abstract syntax . 7
2.7 Repairing connections at the end of a service 8

3 Type system 9
3.1 Port types . 9
3.2 Environments . 9
3.3 What is typed . 10
3.4 What is typed? . 10
3.5 Type rules . 11

4 Compo's semantics 15
4.1 Environments . 15
4.2 Value domains . 16
4.3 Semantics of the language structures . 20
4.4 Big-step semantics of expressions . 23
4.5 Operational semantics of programs . 24

5 Puissance de calcul 28

Appendices 30

A Notations 31

B Vocabulaire 33

C TODO 34

1

Chapter 1

Introduction

First, we will give an overview and by the way an informal semantics of Compo. Then,
we will de�ne an operational semantics of the language. In a third chapter, we will
discuss the use of primitives. Once the theoretical aspect are dealt with, we will give a
glimpse of our implementation of a certi�ed interpreter of Compo in Coq. To �nish, we
will focus on the re�exivity of the language.

2

Chapter 2

Description of Compo

This chapter allows to the reader to become familiar with the language Compo. It will
also give us the opportunity to give informal semantics of the language constructions.
All the de�nitions follow closely the Petr Spacek's thesis [2], unless stated otherwise.

2.1 Overview

As in object oriented programming, the main concepts in Compo are descriptors and
components, where a component is an instance of a descriptor. A component can
require or provide services threw ports. To call a service a component has to connect
one of its required ports to a provided port of another component which provides the
service needed. A descriptor can specify the architecture of composites (ie components
containing subcomponents) by de�ning the connections between its subcomponents.

2.2 Descriptors and components

Here is an informal syntax for descriptors.

1 Descriptor descrName extends superName
2 {
3 provides{
4 provided port list
5 }
6

7 requires{
8 externally required port list
9 }

10 internally requires{
11 internally required port list
12 }
13

14 architecture{
15 connection list
16 }
17

18 service service1(arg1,...,arg_n){ body }

3

19 service service2(...){ body }
20

21 }

A descriptor completely speci�es a component behavior. It explicits the di�erent
ports, the services and the architecture of the component.

To create a new component from a descriptor, we have to use the keyword new :

1 my_descriptor.new()

This expression will return the port default (see 2.3.1 below) of a new instance of the
descriptor my_descriptor. Notice that the programmer has never access to a whole com-
ponent. He only has a point of view of this component threw a port (see TODO), here
the port default.

In the architecture section, the only ports a component can connect are its internally
required ports and the externally required ports of its subcomponents. Subcomponents
can be created by adding

1 connect my_internally_required_port to my_new_subcomponent_descriptor.new();

in the architecture section.

2.3 Ports

All the ports are compound of an identi�er and a signature of service list. Each port
has an owner, i.e. the component to which the port belongs. However, ports can have
di�erent roles (provided/required) or visibilities (external/internal/local).

2.3.1 Special ports

All the components have at list three ports : default, self and super.

Default The port default is a provided port which by default provides all the services
implemented within the component. Its default point of view is the set of the external
ports. Nevertheless, it can be overridden in the provides section of the descriptor.

Self This port allows a component to call its own services. It is consequently a required
port, automatically connected to the port default.

Super This port has the same role as self, but it considers the component as an instance
of the super descriptor. (TODO)

2.3.2 Role

A port can be either required or provided. The di�erence between those two kind of
ports is their role in a connection : a required port express that a component needs some
service that a provided port can furnish. Then, to call a service on a required port we

4

need to connect this required port to a provided port which provides the services needed.
For instance to call a service on the port default on a component viewed by a required
port p.

1 connect my_internally_required_port to default@p;
2 my_internally_required_port.service_name(arg_1, ..., arg_n);

In some cases, we could want to express that the services required by a port are
the same services as the services requires by another required port. We will call this
mechanism delegation. A required port can then be delegated to another required
port. For instance, a muscle need energy to function. If we consider the muscle as
a subcomponent of a human body, the human body still needs energy. We can then
delegate the need of energy of the muscle to the need of energy of the human body. This
need can then be satis�ed by a provided service in a component food.

In a similar manner, we can de�ne delegation between to provided ports. For instance,
if an enterprise has two branches, one producing pens and the other pencils, we can say
that this enterprise produces both pens and pencil : the component enterprise has to
provided ports pen and pencil which are delegated to the corresponding provided ports
of the branches.

The table 2.1 summaries these di�erent ways to connect components.

PPPPPPPPPConnect
To

Provided Required

Required Regular connection Delegation
Provided Delegation ×

Table 2.1: Connection types

Connection chains The fact that provided ports can be delegated leads us to ask
which port is actually providing the service. Let's consider a connection chain

r1, ..., rm, p1, ..., pn

where r1, ..., rm are required port, p1, ..., pn are provided port , r1 is delegated to r2, r2

to r3 ... rm−1 to rm, rm connected to p1 and p1 is delegated to p2, ... ,pn−1 to pn. p1

is called the providing port of the chain and pn �nal port. Even if the port which
actually executes the service is the �nal port, we will consider that the port providing
the service is the providing port. As an analogy, if we see required ports as pointers,
they point on the providing port and not on the �nal port.

This is not only a matter of vocabulary. Indeed, the instruction !r will return the
providing port of the connection chain starting from r and not the �nal port.

2.3.3 Visibility

External

Internal

5

Local A local port is a port which exists within a service. At the end of the service,
it is deleted. If an internal port is connected (in the broad sense) to the local port, the
connection will be broken. It is repaired at the end of the service (see TODO).

2.4 Services

2.4.1 Argument passing

2.4.2 Return

A service can either return a provided port or a required port. However, if it returns a
provided port, it is not possible to chain calls :

1 (port.get_provided_port()).a_service(); "here get_provided_port returns a
provided port"

will crash. In fact, this is not really a problem because the programmer could always
write

1 require tmp_port;
2 connect tmp_port to port.get_provided_port();
3 tmp_port.a_service;

We believe that this is to heavy (TODO voc). Then, we will introduce transparent
ports, which will allow to chain the service calls.

De�nition 1. A port p is transparent i� it is impossible to connect a port p' to p.

If the programmer tries to connect a port p' to p, p' will be connected to the �rst non

transparent port of the connection chain starting from p.

If a provided port is returned we will create an temporary transparent required port
connected to the provided port. It is then possible to call a service on this port. Moreover,
if we want to connect a port to the return, it will be connected to the provided port
and not to the transparent port. A transparent port can not be manipulated by the
programmer.

2.4.3 Points of view

1 Descriptor PrivacyExample extends Component
2 {
3 provides{
4 default:{public_serv} - {private_prov}
5 private_prov:{private_serv}
6 internally requires{
7 private:{private_serv()}
8 }
9

10 service public_serv{...}
11 service private_serv{...}
12

6

13 }

(TODO : templates)

2.5 Our contributions

Visibility Both internal and external ports were already implemented by Petr Spacek.
However internal ports were accessible via the operator @. Moreover, a component was
able to build a connection with any port. This problem had already been pointed out by
our predecessors who had suggested that it should not have the possibility to connect its
external ports. We went even further : a component can only connect its own internally
required ports and the required ports of its direct subcomponents.

Providing/�nal port Our predecessors identi�ed two kinds of argument passing :

Call-by-require (TODO add the schemes of Jimmy's report)

Call-by-provide

They introduced the notation !p only in the argument passing to specify that
the argument was passed by require. A �rst critic is that ! is the dereferencing operator
in OCaml dereferencing and it would be more intuitive to use ! for the call-by-provide
passing mode.

Moreover it seems reasonable to have also the possible to do a provided connection,
i.e. to have the ability to connect to a provided port instead of the required port. We
then decided that the operator ! will be an expression instead of an annotation. We also
introduced the de�nitions of providing port and �nal port.

2.5.1 Points of view

The status of the variables and of the ports were not clearly de�ne. Indeed, the initial
vision of the expression

1 name@expr

implicitly considered that it was returning the port name of the owner of expr, while
expr is in fact a port. We believe that it was not relevant because it would imply all the
components were their ports. Instead, we proposed that each port is in fact a point of
view of the component, which can occult some other ports.

2.6 Abstract syntax

To add : ofKind (spa13 p.165) et * (universal interface) and

7

Program (in a service) :

Name ::= camelCase

Expr ::= Name | Expr.Name(Expr, ..., Expr) | Name@Expr | !Expr

Prog ::= ⊥ | Prog;Prog | require Name |
connect Name to Expr | return Prog

Port :

Sig ::= Name(Name, ..., Name)

List[V] ::= ε | V ;List[V] where V is a variable of the grammar
Port ::= Name : {List[Sig]}

Descriptor :

Serv ::= service Sig {Prog}
Descr ::= descriptor Name extends Name{

provides {List[Port]}
requires {List[Port]}
internally requires {List[Port]}
architecture {List[Connect]}
List[Service] (without ;)

}

Figure 2.1: Compo's abstract syntax

2.7 Repairing connections at the end of a service

Keep a list of port connected to a local port. Then two possibilities : *make all the local
ports transparent and call the connect instructions on all the port of the list + pass the
list to the calling service *optimisation : connected components of the graph of the local
ports.

8

Chapter 3

Type system

In this chapter, we want to design a static type checker for the language Compo which
has to be sound and decidable.

The di�culty relies on the soundness of the type system. Let us list the cases where
the semantics fails :

• a service is called but this service does not exist in the corresponding �nal port

• the expression port@expr is used when port is not accessible from expr

3.1 Port types

To get a sound type system we want that if a program is typed then if a service is called
on a port p, then the �nal port of p provides this service. As we can not decide statically
whether a port is connected to another port, this means that a required port has always
to be connected (directly or indirectly) to a provided port which provides at list all the
services the required port requires.

Moreover, the programmer has the possibility to use the instruction @ on a port.
Though, the port accessible with the @ operation are the ports of the corresponding
providing port. Consequently we cannot deduce that the port that we want to access
exists. We then must store the accessible ports in the type of every port.

A port type is then composed of a list of signature and a partial function which
associates a name to an accessible port via the operator @.

3.2 Environments

3.2.1 The local environment

The local environment contains the type of all the local ports of a service (i.e. the
arguments and the temporary variables). We will the use a partial function Θ : Name→
PT where PT is the port type set, de�ned in 3.4.2

9

3.2.2 The descriptor environment

To type all the program, we will need to know the type of all the ports belonging to
components. However, the type of a port can not change during the execution. Therefore
we can just store the types of the ports in the descriptors : ∆ : Name→ DT .

3.2.3 The current descriptor

When we are typing the body of a service, we need to know to which descriptor this
service belongs. We will call this descriptor δ, which consists in a string.

3.3 What is typed

We want to �nd a sound type system. Th

3.4 What is typed?

provided port : name + name_descr required port : list name*sig * name

3.4.1 Provided port

All the information that we need in the type of a provided port is the list of the signature
of the services it provides. However, if we connect a required port to a provided port,
we need to be able to verify that the descriptor of the provided port corresponds to the
accessible ports of the required port. Then we need to store the descriptor of a provided
port in its type. Then the type of provided ports are in the set

PPT = Name×Name

3.4.2 Port

A port type consists mainly in the signature list of its services. Though, there are other
candidates to be added to the port type :

Interface The interface is the main element of the type of a port. It is compounded
of a partial function which associates a name to a service signature. A service signature
consists of a list of interfaces for the arguments and an interface for the return. However,
this de�nition is not well founded. Consequently, we need to name interfaces : the only
way to break the induction loop is to use named interface instead of interface. We have
to use a co-inductive de�nition :

Once we have de�ned I , we need to de�ne a subtype relation on it, coinductively
again. Th sub typing relation does not take into account the role of the port. That is
why we use the wild-card character _.

Provided/required The role of a port will be checked by the type checker. Even if in
the semantics the role of ports will be stored in the component, it seems more consistent
that the role of port is included in its type.

10

⋃
d∈Im(∆)Dom(d#πP)@d#name ⊆ I

a1 ∈PRT

...
an ∈PRT

ret ∈PRT

< (a1, ..., an), ret >∈ SigT

T1 ∈ SigT

...
Tn ∈ SigT

{serv1 : T1; ...; servn : Tn} ∈ I

T1 ∈PRT ∪PPT

...
Tn ∈PRT ∪PPT

∀k ∈ [[1;n]], < portk, {port1 : T1; ...; portn : Tn} >∈PRT

Figure 3.1: De�nition of I and PT

Connexion If we want to type the instruction !port, we could need to include the
connection of a port in its type. Indeed, the signature list of port can be di�erent from
that of !port. We would then need to follow a connection chain to be able to give the exact
type of !port. However, to make a parallel with the object world, we do not specialize the
type of an object when we apply a dereferencing operator. We could then just consider
that the type of !port is the same as the type of port.

Here we will choose not to store the connexion of the port.
The type of a port is consequently an element of the set

PT = I × {P,R}

3.4.3 Component

The type of a component is a list of port types list of ports + descriptor

3.4.4 Descriptors

list of signature + architecture + port declarations

3.5 Type rules

11

a1 � a′1
...

an � a′n

ret � ret′

< (a1, ..., an), ret >�< (a′1, ..., a
′
n), ret′ >

getType(port@descr) � b
port@descr � b

a � getType(port@descr)
a � port@descr

T1 � U1

...
Tn � Un

< portk, {port1 : T1; ...; portn : Tn} >�< portk, {port1 : U1; ...; portn : Un; portp : Up} >

Figure 3.2: Subtyping relation in Compo

12

V arloc
∆,Θ, δ ` v : Θ(v)

V ardescr v /∈ Dom(Θ)
∆,Θ, δ ` v : ∆(δ)(v)

∆,Θ, δ ` expr : T
∆,Θ, δ ` arg1 : T1

...
∆,Θ, δ ` argn : Tn

< (T1, ..., Tn), Tret >� T#interface(serv)

Call
∆,Θ, δ ` expr.serv(arg1, ...argn) : Tret

∆,Θ, δ ` expr :< _, {..., port : U, ...} >
At

∆,Θ, δ ` port@expr : U

∆,Θ, δ ` expr : T
Path

∆,Θ, δ `e !expr : T

∆,Θ, δ ` ∆(descr)#arch : ()
New

∆,Θ, δ ` descr.new() : ∆(descr)#π(default)

Figure 3.3: Type system of Compo expressions

13

∆,Θ, δ `p prog1 : T ∆,Θ, δ `p prog2 : U
Seq

∆,Θ, δ `p prog1; prog2 : U

∆,Θ, δ ` expr : T
Ret

∆,Θ, δ ` return expr : T

Require
∆,Θ, δ ` require name : T : ()

∆,Θ, δ `e expr1 : T1 ∆,Θ, δ `e expr2 : T2
Connect

∆,Θ, δ `p connect expr1 to expr2 : ()

with :

• T1 � T2 or (T1 ∈PRT and T2 ∈PPT and T1#

Figure 3.4: Type system of Compo programs

14

Chapter 4

Compo's semantics

In this section, we are going to describe a big-step semantics of Compo. We choose
the big-step style because the aim of this internship is more to describe the language
with precision than to prove theorems with the semantics. The, the big-step style is
more relevant than a denotational or a small-step style [1]. Indeed, �x points make
denotational more di�cult to understand and small-step semantics do not describe what
an instruction do as directly as big-steps semantics.

�We speculate that it would be easier to convince the standards committee in charge
of a given programming language of the adequacy of a big-step formalization than to
convince them of the adequacy of a small-step formalization.�[1]

However, even if we are going to use a big-step style to describe programs, we will
use a denotational style to describe the declaration of the language's structures e.g.
signatures, services, ports, descriptors. We made this choice because the semantics of
the declaration of a descriptor, for instance, only consists in parsing the di�erent sections
(e.g. requires, architecture) and make them available in a mathematical structure. Thus,
it can be seen as a transformation of the text into a higher-level structure. Moreover, no
�x-points will appear in the semantics.

4.1 Environments

In order to describe the program's state at each moment of the execution, we need several
environments. Almost all the environments that we are going to introduce are partial
functions from a set of identi�ers to a value domain.

4.1.1 The descriptor environment

At each moment of the execution, we can invoke descr.new(). Consequently, we need an
environment ∆ : Name→ D , where D is the value domain of descriptors. Once all the
descriptors have been evaluated, this environment will not change during the execution.
(TODO à moins qu'on puisse déclarer de nouveaux descripteurs à partir de la couche
ré�exive).

15

4.1.2 The required port environment

This environment is similar to the standard environment of variables : its scope is local
and it evolves each time a required port is declared or connected. Consequently, we need
a partial function Π : Name→P, where P is the value domain of ports (as described
in 4.2.6, page 18). This environment will only contain the required port declared in the
body of a service. Consequently, the required ports of the component which owns the
service are not in Π.

4.1.3 The component environment

This environment gives us references to components. As we will store connections in
ports, ports will need to store components. However, if a port p owns the whole compo-
nent to which it is connected, if this component is changed by another port, it will not
be changed in p. Thus, we will need a partial function Γ : N→ C , where C is the value
domain of components as de�ned in 4.2.7, page 19. Each component has then a unique
identi�er. To refer to N as the set of references to components, we de�ne Cref = N.

4.1.4 The current component

In the execution of a service, we need to be aware of the component to which this service
belongs. Indeed, as the require ports of the current component are not in ∆, we have
to add it in the state of a program, otherwise we could not access those ports. As
all components are contained in Γ, we only need σ ∈ N the reference to the current
component

4.2 Value domains

In the semantics, we will need as many domain values as structures in the language. We
give a summary of the value domain in the table 4.2.8 and notations are speci�ed in the
annex.

4.2.1 Error

We already have the error program ⊥. This program, when it is evaluated, have to return
a value that we will call ⊥ too. For each incorrect program, the semantics will give this
value.

4.2.2 Side e�ect

Some programs as connect do not return any value. Then we need a value for side
e�ects denoted ().

4.2.3 Signatures

The signature of a service consists in its name, the type of its arguments and the return
type. Here we will consider that arguments of signatures are not typed. Consequently,

16

two signatures are equal if and only if they have the same name and the same number
of arguments.

Sig = Name× N

4.2.4 Services

A service is the implementation of a signature. To characterize a service, we need three
informations :

• its name, which is actually contained by the signature of the service

• the ordered list of the arguments name of the service. We de�ne L (E) the set of
the elements belonging to a set E by induction :

� nil ∈ L (E)

� x ∈ E =⇒ l ∈ L (E) =⇒ x :: l ∈ L (E)

The argument list domain is then L (Name).

• the implementation of the service i.e. an element of Prog.

To conclude,

Serv = Sig ×L (Name)× Prog

Let's note that we could have chosen to only store the name of the service instead of
its signature because the number of arguments can be deduced of the list. However, it
will be simpler to store the signature because it will allow us, at the call of a service, to
directly test the equality of signatures.

4.2.5 Connexions

There are to possibilities to represent connexions :

• add a new value domain connexion which would be a set of port pairs.

• store directly in the ports the ports to which they are connected.

We will adopt the second option. This choice is justi�ed by two facts. First, in his
thesis, Petr Spacek decided to not reify the connections (TODO : citation + explication)
and considering a connexion as a value would be similar to rei�y a connexion. (TODO
justi�er parce que c'est quand même un peu gratuit). Second, it will simplify the se-
mantics rules because we will not have an intermediate object to get the component
connected to the port on which we call a service.

17

4.2.6 Ports

First of all, let's explain why we can consider that required ports and provided ports
can share the same domain value. The main di�erence between a provided port and a
required port is that the signature of the provided port (if it is not delegated) demands
an implementation of the signatures it contains. However, as two provided ports of a
same component can provide a same service, it's seems that the sles ports accessibles
depuis notre port ervices should be owned by components and not by ports to avoid
redundancy. That is why the provided ports will not contain the implementation of the
services they provide.

Consequently, both required ports and provided ports only contain signatures and as
a provided port can be connected to another provided port, both need to store the port
to which they are connected. Thus we will use a unique value domain P for provided
ports and required ports.

Here we list the necessary informations to characterize a port :

Name The name of a port allows us to identify it. Two ports, even if one is provided
and the other required can not have the same name.

Signatures We need to know the signature set of a port to verify that the call of a
service is authorized. As the order in which signatures appear does not matter, we will
use signature sets rather than signature lists.

Connexion We chose to store connexions directly in the ports. To do this, we need
to store the port and the component to which our port is connected1. In fact, as a
component must store all its ports, knowing the name of the port and the reference of
the component is enough to be able to identify it.

Owner component When the instruction name@p is evaluated, we need to access to
the port called name in the component to which p belongs. Then each port must store
a reference to the component to which it belongs.

Accessible ports Access to an internal port is forbidden from a service which does
not belong to the owner of this internal port.(TODO)

To conclude, we de�ne

P = Name× Cref ×P(Sig)×Name× Cref ×P(Name)

We then de�ne those �eld names : < selfname, selfc, sigs, cpname, cpc, ap > with
selfname the port's name
selfc the identi�er of the component to which the port belongs
sigs the signature set
cpname the name of the port to which our port is connected
cpc the identi�er of the component to which our port is connected
ap the ports accessible from our port via the operator @

1here we use the word connected in the broad sense : it can be either connected or delegated

18

4.2.7 Components

A component has to store :

• its services

• its provided ports

• its external required ports

• its internal required ports

In fact, there is no need to store the services in each component. Indeed, it would be
a loss of memory as all the components of a same descriptor will have the same services.
Consequently, we will instead store the name of the descriptor of the component and
access the services on the descriptor.

Each of those structures is identi�ed by a name and two ports, even if they don't have
the same visibility, can not have the same name. A component is then characterized by
three partial functions which domain is included in Name. Names are consequently a
redundant information but using partial functions rather than sets highly simpli�es the
notations.

C = Name× (Name→P)3

4.2.8 Descriptors

The descriptor value is not really di�erent from the syntactic declaration of a descriptor.
As a descriptor is not instantiated, we can not declare ports nor execute the architecture.
We will only separate the di�erent sections of the descriptor and store them in di�erent
�elds :

D = Name2 × (Name→P)3 × Prog ×Name→ Serv

Notation Value type Domain
Sig Signature Name× N
Serv Service Sig ×L (Name)× Prog
P Port Name× Cref ×P(Sig)×Name× Cref ×P(Name)
C Component Name× (Name→P)3

D Descriptor Name2 × List[Port]3 × Prog ×Name→ Serv

Table 4.1: Value domains

19

4.3 Semantics of the language structures

4.3.1 Miscellaneous functions

Semantics of lists Lists appear frequently in Compo: there are lists of arguments,
of ports, of services and of signature. We then need a function which takes a semantic
function on a domain value D and lift it to a semantic function on L (D) or P(D). More
formally, we want to lift [[]] : E → F (where E is a subset of elements of the grammar of
Compoand F a value domain) to a function lift : List[E]→ P(E) or L (E).

Such a function is naturally de�ned by

liftP : (E → F) → List[E]→ P(E))

[[]] →

{
ε → ∅
x1; ...;xn → {[[x1]]} ∪ liftP([[]])(x2; ...;xn)

In the same way, we de�ne

liftL : (E → F) → List[E]→ L (E))

[[]] →

{
ε → nil

x1; ...;xn → [[x1]] :: liftL ([[]])(x2; ...;xn)

From now on, we would take the liberty to write [[]](x1; ...;xn) instead of
liftP/L ([[]])(x1; ...;xn) when there is no ambiguity.

4.3.2 Semantics of signatures

Let us de�ne the function [[]]sig : Sig → Sig. It just consists in extracting the name of
the signature and counting the number of arguments in a signature . Then we will need
[[]]args : (Name, ..., Name)→ N which counts the number of elements of a list :

[[()]]args = 0
[[(arg1, ..., argn)]]args = 1 + [[(arg1, ..., argn−1)]]args

We can directly deduce

[[name(arg1, ..., argn)]]sig =< name, [[(arg1, ..., argn)]]args >

4.3.3 Semantics of services

The semantics of a service can be directly deduced of the domain value of services : we
only need to extract a signature, an argument list and a body.

[[service name(arg1, ..., argn){body}]]serv =

< [[name(arg1, ..., argn)]]sig, liftL (IdName)(arg1, ..., argn), body >

where IdName is the identity function on Name.

20

4.3.4 Semantics of ports

Here, we will describe the semantics of a port declaration. A port needs to know to which
component it belongs. Consequently, the semantics of the declaration of a port depends
on the component where this declaration is located. We then search a function with the
form

[[]]p : Port→ Cref →P

such that [[name : {sig1; ...; sign}]]p(σ) returns a value of the port domain owned by
the component σ.

As we can see in the de�nition of the value domain P, a port is always connected to
another port. We then need to �nd a solution to connect ports at initialization. To do
that, we have to distinguish provided and required ports : at initialization , a provided
port will be connected to itself (as it provides its own services) and a required port to a
void provided port. Moreover, the point of views of internal port and an external port
are di�erent. We then need three functions for ports even if we have only one domain.

Provided ports To specify that a provided port is not delegated, we are going to
connect it to itself. It will then be easy to know whether a port is �nal : it just consists
in testing the equality between (selfname, selfc) and (cpname, cpc).

Moreover, a provided port is an external port. Consequently, we cannot access inter-
nal ports via a provided port.

[[name : {sig1; ...; sign}]]pp(σ) =

< name, σ, [[]]sig(sig1; ...; sign), name, σ,Dom(σ#πX) >

Required port A required port which is not connected will behave as follow : when
a service is called on this port or if it is used in the right part of an @, the program
will crash. This behavior can be simulated by connecting the required port to a void
provided port with a void point of view on the component to which it belongs.

Let us de�ne ⊗ =< void, 0, ∅, void, 0, ∅ > the void provided port and C⊗ =<
⊗, ∅, ∅, [] > the component with only one port : ⊗. We will need to access this compo-
nent. We can then assume that it will always be referenced by 0 in Γ at any moment of
the execution.

Invariant 1. At any time of the execution, 0 refers to the component C⊗

The point of view of external required ports is the same as that of provided ports.
However, internal ports can see all the ports of the component to which they belong.
Finally, we can de�ne

[[name : {sig1; ...; sign}]]erp(σ) =

< name, σ, [[sig1; ...; sign]]sig, empty, 0, Dom(σ#πX) >

and

[[name : {sig1; ...; sign}]]irp(σ) =< name, σ, [[sig1; ...; sign]]sig, empty, 0, Dom(σ#π)) >

21

It may be worth to remind that we took the freedom to write [[sig1; ...; sign]]sig instead
of liftP([[]]sig)(sig1; ...; sign).

4.3.5 Semantics of descriptors

The semantics of a descriptor only consists in extracting informations. However, we do
not know the reference of the owner to initialize the provided ports. The best would have
been to evaluate it later. Though, we will need to verify the specialization of ports in
the inheritance mechanism. We will then initialize the connexion of the provided ports
and we will correct it when new is called.

[[descriptor descr_name extends super_name{
provides {pp}
requires {erp}
internally requires {irp}
architecture {arch}
servs

}]]descr(∆) ={
d if inheritanceCorrectness(∆, d)

⊥ else

where

d =< descr_name, super_name, [default→ defaultport] +[pp]]pp(0),

[self → selfport; super → superport] +[erp]]erp(0), [[irp]]irp(0), arch, [[servs]]serv >

.
Note that all the �elds except the name are optional in descriptor. Let us precise the

value of [[]]descr when a �eld has not been given.

super_name if the descriptor do not inherit from any other descriptor, super_name =
descr_name

pp/erp/irp void function

service void list

architecture ε (the void word?? TODO)

Let us de�ne inheritanceCorrectness by closely follow the choices made by Petr
Spacek [2].

Inheritance veri�cation

22

4.4 Big-step semantics of expressions

The rules of the semantics will follow the scheme :

environments ` expression =⇒ value ; new environments

As the descriptor environment ∆ does not vary during the execution, it will not
appear in the rules. (TODO re�exivity?)

4.4.1 Some simpli�cations

Let us give some de�nitions to facilitate the reading of the rules

Initialization of an environment At the beginning of a service execution, we have
to initialize the environments of require ports. In the service we will have to access to

• the required ports of the component owning the service

• the parameter ports

A �rst approach would be to not distinguish the instance ports and the local ports
(i.e. the parameter ports and the temporary ports). Though, a local port and an instance
port do not behave exactly the same way : an instance port appears in a connection chain
while a local port is transparent (see 2.3.3 page 6).

That is why we will not include the required port environment of the component in
the environment of the service. The initialization then consists in create an environment
for the parameter ports.

Use of the required port environment However, this decision add a little di�culty
: if a local port has the same name as an instance port, we have to specify that we are
referring to the local port. We will then use an augmented environment Π+

σ , depending
on a component σ :

Π+
σ (x) =


Π(x) if x ∈ Dom(Π)

σ#πR(x) else if x ∈ Dom(σ#πR)

⊥ else

Creation of a transparent port After a service call, we will need to create a trans-
parent port (cf 2.4.2) if the service has returned a provided port. However, if the service
had returned a required port, we do not need to change anything. Here we de�ne how
this transparent port is declared when a service called by a component σ returned a port
p :

transpσ(p) ={
< ε, σ, p#sigs, p#name, p#selfc, p#ap, true > if p#name ∈ Dom(p#πp)

p else

23

4.4.2 Localization of ports

As seen in 2.3.2 page 4 we will need to locate the providing port and the �nal port. To
do so, we just have to follow the path and to verify that each step of the path is correct.
We �rst de�ne a function to �nd the providing port.

findProvΓ,Π(p) =
p if p#selfname ∈ Dom(Γ(p#selfc)#πP)

findProvΓ,Π(p#cp) else if p#cp#name ∈ Dom(p#cc#π)

⊗ else

Then we can de�ne a miscellaneous function which takes in argument provided port
and returns the �nal port.

findF inalFromProvΓ,Π(p) =
p if p#selfname = p#cpname, p#selfc = p#cpc

and p#selfname ∈ Dom(Γ(p#selfc)#πF)

findFinalFromProvΓ,Π(p#cp) else if p#cp#name ∈ Dom(p#cc#πP)

⊗ else

findF inal = findFinalFromProv ◦ findProv

(TODO : in fact we don't have to do any restriction, all the veri�cations are already
done. to prove)

Invariant 2. All the ports is connected by a connection chain to a �nal provided port.

(TODO preuve de la bonne fondaison de la relation connect.)

Invariant 3.

∀c ∈ Dom(Γ), Dom(c#πP) ∩Dom(c#πR) = ∅

ie un port requis et un port fourni d'un même composant ne peuvent pas avoir le même

nom. (TODO déplacer)

We can de�ne in a very similar way a function findNonTransp which returns the
�rst non transparent port of a connection chain.

4.5 Operational semantics of programs

Explications :

4.5.1 Connect to

During all the execution, a component can only connect one of its own ports or an external
of its subcomponent. Note that v1 could be changed by v2 but only the connected port
(TODO prove)

24

V ar
Γ,Π,Ω, σ `e x =⇒ Π+

σ (x); Γ,Ω

Γ,Π,Ω, σ `e expr =⇒ val; Γ′,Ω′

Γ′,Π,Ω′, σ `e arg1 =⇒ val1; Γ1,Ω1

...
Γn−1,Π,Ωn−1, σ `e argn =⇒ valn; Γn,Ωn

Γn,Π
′,Ωn, σ

′ `p prog =⇒
val′; Γ′′,Ω′′

Call
Γ,Π,Ω, σ `e expr.serv(arg1, ...argn) =⇒ transpσ(val′); Γ′′,Ωn ∪ Ω′′

with :

• val, valarg1 , ..., valargn 6=⊥

• val ∈ Dom(Π) ∪ σ#πR

• σ′ = findFinalΓ,Π,Ω(val)#selfc

• Πp = [arg1 →< arg1, σ
′, val1#sigs, val1#selfname, val1#selfc, val#ap >;

...; argn →< argn, σ
′, valn#sigs, valn#selfname, valn#selfc, val#ap >]

• prog =


valserv#body if it is defined and if valserv#sig =< serv, n >

and < serv, n >∈ val#sigs
⊥ else

where valserv = ∆(Γn(σ′)#descr)#servs(serv)

Figure 4.1: Semantics of expressions

25

Γ,Π,Ω, σ `e expr =⇒ val; Γ′,Ω′
At

Γ,Π,Ω, σ `e port@expr =⇒ val′; Γ′,Ω′

with :

val′ =

{
Γ(pgp#selfc)#πX(port) if it is defined and if port ∈ pgp#ap
⊥ else

where pgp is the providing port of val : pgp = findProvΓ,Π,Ω(val)

Γ,Π,Ω, σ `e expr =⇒ val; Γ′,Ω′
Path

Γ,Π,Ω, σ `e !expr =⇒ val′; Γ′,Ω′

where val′ = findProv(val)

Γ′,Π,Ω,max `e arch =⇒ (); Γ′′,Ω′
New

Γ,Π,Ω, σ `e descr.new() =⇒ val; Γ′′,Ω′

with :

• newCompo =< descr#servs, [[descr#πP]]pp, [[descr#πER]]erp, [[descr#πIR]]irp >

• max = max(Dom(Γ)) + 1

• Γ′ = Γ + [max→ newCompo]

• val = Γ′′(max)#πP (default)

Figure 4.2: Semantics of expressions

26

⊥
Γ,Π,Ω, σ `p⊥ =⇒ ⊥; Γ,Π,Ω

Γ,Π,Ω, σ `p prog1 =⇒ val1; Γ′,Π′,Ω′ Γ′,Π′,Ω′, σ `p prog2 =⇒ val2; Γ′′,Π′′,Ω′′
Seq

Γ,Π,Ω, σ `p prog1; prog2 =⇒ val2; Γ′′,Π′′,Ω′′

Γ,Πtransp,Ω, σ `e expr =⇒ val; Γ′,Ω′
Ret

Γ,Π,Ω, σ `p return expr =⇒ Ret(findNonTransp(val)); Γ′,Π′,Ω′

+connect Ω

Require
Γ,Π,Ω, σ `p require name =⇒ (); Γ,Π + [name→< name, σ, ∅, empty, 0, ∅ >],Ω

Γ,Π,Ω, σ `e expr1 =⇒ v1; Γ′,Ω′ Γ,Π,Ω, σ `e expr2 =⇒ vtransp; Γ′′,Ω′′
Connect

Γ,Π,Ω, σ `p connect expr1 to expr2 =⇒ vres; Γres,Πres,Ωres

with :

• v2 = findNonTransp(vtransp)

• vres =



() if v1#sigs ⊂ v2#sigs and
(

(
v1#selfc = σ and v1#name ∈ v1#selfc#πI

)
or(

v1#selfc ∈ {irp#cpc|irp ∈ Im(σ#πIR)} and

v1#name ∈ Dom(v1#selfc#πX)
))

⊥ else

•
(Γres,Πres) ={

(Γ′′,Π + [v1#name→ newPort])) if v1#name ∈ Dom(Π)

(Γ′′ + [v1#selfc → newCompo],Π) else

• Ωres =

{
Ω′′ ∪ {v1} if v1 /∈ Dom(Π) and v2 ∈ Dom(Π)

Ω′′ else

• newPort =



< v1#name, v1#selfc, v2#sigs,

v2#cpname, v2#cpc, v2#ap > if v1#name ∈ Dom(Π)

< v1#name, v1#selfc, v1#sigs,

v2#selfname, v2#selfc, v1#ap > else

• newCompo =< Γ′′(v1#selfc)#servs, πP , πER, πIR > where

πP (resp πER, πIR) =


Γ′′(v1#selfc)#πP (resp πER, πIR) + [name→ newPort]

if name ∈ Dom(Γ′(v1#selfc)#πP) (resp πER, πIR)

Γ′′(v1#selfc))#πP (resp πER, πIR)

else

Figure 4.3: Sémantique des programmes27

Chapter 5

Puissance de calcul

Problématique : comment se passer des primitives?
Il est possible de simuler le λ−calcul dans Compo:

Listing 5.1: Variable
1 freshVar(x) =
2 (Descriptor Var extends Component
3 {
4 provides{
5 default : {run()}
6 }
7 requires{
8 x : {run()}
9 }

10

11 architecture{
12 connect x to default;
13 }
14

15 service run(){
16 "return par terminal"
17 return !x;
18 }
19 }).new()

Listing 5.2: λ−abstraction
1 lambda(x,u) =
2 (Descriptor Lam extends Component
3 {
4 provides{
5 default : {run();app(v)}
6 }
7 requires{
8 u#requires - x
9 }

10 internally requires{
11 x :{run()}

28

12 }
13

14 architecture{
15 "si u a un port requis x"
16 connect u@x to x;
17

18 "pour tous les autres ports"
19 connect u@p to p;
20 }
21

22 service run(){
23 return default;
24 }
25

26 service app(v){
27 connect x to v;
28 return u.run();
29 }
30 }).new()

Listing 5.3: Application

1 app(u,v)=
2 (Descriptor App extends Component
3 {
4 provides{
5 default : {run()}
6 }
7 requires{
8 u#requires + v#requires
9 }

10

11 architecture{
12 "pour tous les ports de u"
13 connect u@p to p;
14 "pour tous les ports de v"
15 connect v@p to p;
16 }
17

18 service run(){
19 return u.app(v);
20 }
21

22 }).new()

29

Appendices

30

Appendix A

Notations

Ensembles

• Nous confondrons les noms des variables dans la syntaxe abstraite de Compo et
les ensembles engendrés par ceux-ci.

• Parties d'un ensemble E : P(E)

• Nous distinguerons les valeurs de la sémantique et les chaînes de caractère de la
syntaxe en utilisant d'un côté des lettres (TODO: trouver bon mot) normales et de
l'autre des lettre rondes.

• On pose L (E) l'ensemble des listes d'éléments d'un ensemble E dé�ni par induction
comme suit :

� nil ∈ L (E)

� x ∈ E =⇒ l ∈ L (E) =⇒ x :: l ∈ L (E)

Application partielles

• Dom(f) : domaine de f.

• f = [i1 → v1; i2 → v2; ...; in → vn] : application partielle de domaine {i1, ..., in}
telle que ∀k ∈ [[1, n]]f(ik) = vk.

• f = [i1 → v1; i2 → v2; ...; in → vn] + in+1 → vn+1 : application partielle de
domaine {i1, ..., in, in+1} telle que ∀k ∈ [[1, n+ 1]]f(ik) = vk.

Domaines de valeurs Chaque domaine est donné sous la forme d'un produit d'ensembles.
Cependant, a�n de distinguer une liste d'arguments et une valeur, nous écrirons une
valeur du domaine A × B × C avec une notation de la forme < a, b, c > avec (a, b, c) ∈
A×B × C.

De plus, nous aurons souvent besoin de désigner les di�érents champs de ces valeur.
Recourir à des projections serait alors illisible. Nous allons donc donner un nom aux
champs des valeurs et nous utiliserons la notation foo#bar pour désigner le champ bar
de la valeur foo.

31

Notation Value type Field name Value domain
Sig Signatures < name, nbargs > Name× N
Serv Services < sig, args, body > Sig ×L (Name)× Prog
P Ports < selfname, selfc, sigs, Name× Cref ×P(Sig)×

cpname, cpc, ap > Name× Cref ×P(Name)
C Components < descr, πP , πER, πIR > Name× (Name→P)3

D Descriptors < name, super, pp, irp, Name2 × List(Port)3

erp, arch, servs > ×Prog ×Name→ Serv

Table A.1: Value domains and notations

Voici un tableau récapitulatif des noms des champs pour les di�érentes valeurs appa-
raissant dans la sémantique :

Some additional notations : for a component c we will note c#π = πP + πER + πIR
, c#πR = πER + πIR, c#πX = πER + πP and c#πI = πIR + πIP . All these partial
functions are de�ned because the domains of πP , πER and πIR are pairwise disjoints.

Environnements

32

Appendix B

Vocabulaire

Syntax directed À chaque étape, on ne peut choisir qu'une règle.

Propriété de la sous-formule Toutes les formules qui apparaissent dans une preuve
sont des sous-formules de la formule prouvée.

Subcomponent A component A is a subcomponent of a component B i� there is an
internally required port of B connected to a provided port of A.

33

Appendix C

TODO

Expliquer pourquoi la ré�exivité aide à écrire une sémantique. (mouais...)
parallèle entre sémantique formelle et dessins
expliciter où sont les primitives
véri�er les dead locks
Non treated in the semantics : ofkind, * , named interfaces, descritor name to specify

a signature list, inheritance, collection ports (see Spa13 p; 159).
De�ne more clearly seq and return
WE : �nish inheritance, De�ne more clearly seq and return, de�nitive version!!
re�exivity
remove type veri�cations from the semantics
choice between type connexions or not
choice between Omega or not
Π cannot be changed in expression. This can alleviate the notations. [3] [2]

34

Bibliography

[1] Arthur Charguéraud. Pretty-big-step semantics. In Programming Languages and

Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings, pages 41�60, 2013.

[2] Petr Spacek. Design and implementation of a re�ective component-oriented program-
ming and modeling language, 2013.

[3] Petr Spacek, Christophe Dony, and Chouki Tibermacine. A component-based meta-
level architecture and prototypical implementation of a re�ective component-based
programming and modeling language. In CBSE'14, Proceedings of the 17th Interna-

tional ACM SIGSOFT Symposium on Component-Based Software Engineering (part

of CompArch 2014), Marcq-en-Baroeul, Lille, France, June 30 - July 4, 2014, pages
13�22, 2014.

35

