Exception Handling and Object-Oriented Programming:
towards a synthesis.

Christophe Dony
Rank-Xerox France & LITP

University Pierre & Marie Curie (Paris VI)
4 place Jussieu, 75221 Paris cedex 05.
chd@rx{f.ibp.fr

Abstract

The paper presents a discussion and a specification of an ex-
ception handling system dedicated to object-oriented program-
ming. We show how a full object-oriented representation of ex-
ceptions and of protocols to handle them, using meta-classes,
makes the system powerful as well as extendible and solves
many classical exception handling issues. We explain the inte-
rest for object-oriented programming of handlers attached to
classes and to expressions. We propose an original algorithm
for propagating exceptions along the invocation ¢hain which
takes into account, at each stack level, both kind of handlers.
Any class can control which exceptions will be propagated out
of its methods; any method can provide context-dependant ans-
wers 1o exceptional events. The whole specification and some
keys of our Smalltalk implementation are presented in the pa-
per.

Keywords: exception handling, fault-tolerance, class-
handlers, expression-handlers, exception propagation algo-
rithm, modularity, reusability, knowledge representation, ob-
ject-oriented design, interactive debugging.

1. Introduction

Modern languages dedicated to software engineering usually
provide exception handling systems (EHS). Different strategies
for exception handling can be found in today's object-oriented
languages (OOL) but no standard solution exists. This paper
presents a specification of an EHS, designed with and for OOLs,
that attempts to synthesize the main advantages of the existing
systems. It is based on the three following remarks.

1) The work carried out for handling exceptions in procedural
languages such as PL/I [PL/A 78}, Ciu [Liskov79], Ada
[Ichbiah79] or Mesa [Mitchell79], has demonstrated that
modularity and the notion of fault-tolerant encapsulation
rely on a stack-oriented research of handlers, on the ability
for signalers to raise exceptions to the operation callers, and
for the callers to handle the exceptions raised by inner mo-
dules.
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2) Smalitalk-80 [Goldberg&al83] has shown the utility of atta-
ching handlers to object classes (that we will call class-hand-
lers), providing an object-oriented style of handling excep-
tional situations and of reusing code in which exceptions are
signaled.

3) [Nixon83], [Moon&al83], [Borgida86] [Pitman88] have
proposed systems, where exceptions are hierarchically orga-
nized classes, that significantly improve classical EHS.

Our goals are to synthesize, extend and simplify the above
quoted systems in order to provide a user-friendly, powerful, ex-
tendible and object-oriented EHS. We will discuss the following
issues: (1) What are the advantages of an object-oriented repre-
sentation of exceptions. (2) How to integrate signaling and
handling protocols into an exception hierarchy? (3) How to
achieve modularity in presence of exceptions and (4) how to

specify responses to exceptions at the class and at the method
level?

Section 2 introduces our terminology. Section 3 deals with
the status of exception. We recall how some well-known excep-
tion handling issues [Horowitz 84 p. 268] are easily and effi-
ciently solved by representing exceptions as hierarchically or-
ganized classes. Our kernel exception classes with their associa-
ted protocols and an example of a hierarchy of exceptions are
presented. Section 4 presents how to signal exceptions with a
unique signaling primitive and how to parameterize them.
Section 5 explains how to write handler bodies in a generic way.
Why both handlers associated with classes and with expressions
should be proposed within an object-oriented EHS, why they all
should have a dynamic scope and how to implement them are is-
sues discussed in section 6. Section 7 proposes some examples
of how to define our various kind of handlers. Finally, related
works are discussed.

The proposed specification is relevant for any OOL with
some restrictions: (1) it takes advantage of the notion of meta-
class, a simplified version can be implemented provided that
class methods can be defined in the language; (2) some issues re-
lated to default handling only make sense within an interactive
programing environment.

Two versions of the system have been implemented: the
former [Dony 88] [Dony 89] for the Lore language [Caséau86]
[Caseau87], the latter for Smalltalk} (some notes about this se-
cond implementation are provided throughout the paper). All
examples in the paper use the Smalltalk syntax.

Y Objectworks for Smalltalk-80, v2.4, v2.5 [PP 88].
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2. Terminology

Software failures reveal either programming errors or the ap-
plication of correct programs to an ill-formed set of data; more
generally, an exception can be defined as a situation leading to
an impossibility of finishing a computation. Two main types of
exceptions can be distinguished [Goodenough 75] : the domain
exceptions raised when the iriput ‘assertions of an operation are
not verified and the range exceptions raised when the output as-
sertions of an operation are not verified or will never be.

An EHS provides materials and protocols allowing pro-
grammers to establish a communication between a routine
which detects an exceptional situation while performing an ope-
ration (a signaler) and those entities that asked for this opera-
tion (or have something to do with it). An EHS allows users to
signal exceptions and to define handlers. To signal an excep-
tion amounts to (1) identify the exceptional situation, (2) to in-
terrupt the usual sequence, (3) to look for a relevant handler and
(4) to invoke it while passing it relevant information. Handlers
are defined on (or attached to, or associated with) entities for
one or several exceptions {according to the language, an entity
may be a program, a process, a procedure, a statement, an ex-
pression, etc). Handlers are invoked when an exception is si-
gnaled during the execution or the use of a protected entity.To
handle means to set the system back to a coherent state i.e. ei-
ther (1) to transfer control to the statement following the signa-
ling one (resumption) or (2) to discard the context between the
signaling statement and the one to which the handler is attached
(termination) or (3) to signal a new exception.

For further precisions and explanations, see
[Goodenough75], [Liskové&al79] [Yemini&al85], [Knudsen87]
or [Dony89].

3. Status of exceptions.

3.1. Exceptions as classes.

The first issue that arises for either the user or the implemen-
tor of an EHS is the status of exceptions. How are exceptions
represented and referenced? How can they be manipulated or ins-
pected? Exceptions are usually strings, symbols or variable of
type "exception” (as e.g. in Ada [Ichbiah&al79]) that cannot be
inspected or enriched. General knowledge relative to exceptions
(e.g. default-handlers) is uneasy to grasp since unaccessible or
scattered in various handlers.

Exceptions are nevertheless complex entities of which des-
criptions can be given regardless of local handling considera-
tions. A first solution for representing exceptions within an
OOL is to create a class “exception”, of which concrete excep-
tions (e.g. division by zero) would be some instances; this pro-
vides a place to group together behaviors common to all excep-
tions but does not offer any opportunity to particularize the be-
havior of each of them. A second solution which eliminates this
drawback is to represent each exception as a class (cf. Taxis
[Nixon83], Zetalisp [Moon&al83] or [Borgida86]); grouping
together the characteristics common to exceptions viewed as
concepts is again possible provided that meta-classes exist in
the language

In our system, each occurrence of an exception is an instance
of a subclass of the class ExceptionalEvent, which owns their
common behavior and determines their basic structure.
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Fig.1: Kernel exception classes.

All exceptions viewed as concepts are instances of the meta-

class ExceptionCItz.w:s2 and are subclass of ExceptionalEvent.
Both exceptions viewed as concepts andtheir occurrences are

then first class objects, can be inspected, modified or enriched
(cf.fig.1).

This representation entails numerous advantages:

» New exceptions can be created as subclasses of
ExceptionalEvent. There is no distinction between system

and user-defined ones, all can be signaled and handled in the
same way.

* Pieces of information concerning an occurrence of an excep-
tion can be stored on slots defined on the related class (e.g.
all components of 2 message the execution of which has fai-
led, are stored on the slots defined on the exception
IncorrectMessage (cf. fig.2).

* Pieces of information designed to handle exceptions, that are
independent of any execution context, can be defined as me-
thods on exception classes. Examples are default handlers
(cf.§.7.3), or methods providing standard solutions for hand-
ling. For example (cf.fig.2) the method newReceiver: and the
associated proposition (cf.§.7.3) askForNewReceiver pro-
vide users with general pre-defined protocols to resume after
occurrences of WrongMessageReceiver.

» Beyond properties defined on exceptions, the key idea which
underlies the choice of designing exceptions as classes is to
organize them into a hierarchy which makes the system ex-
tendible and reusable. For example (cf.fig.2), when created as
a subclassof WrongMessageReceiver and
WrongMessageSelector, the exception DoesNotUnderstand
inherits three pre-defined protocols for handling.

As we will see now, other advantages of this class-oriented
organization lie in the way exceptions can be signaled and
handled. ‘

3.2. Kemel exceptions and associated protocols.

All basic protocols to handle exceptions (exit, resume, retry,
and signal) are implemented by methods defined on kernel ex-
ception classes (cf.fig.3). ExceptionalEvent is then divided into
FatalEvent, to which are attached propositions and methods for
termination, and ProceedableEvent to which are attached those
for resumption.

2 When explicitly manipulated, meta-classes are Class
subclasses [Cointe87). In our Smalltalk-80 implementation,
ExceptionClass is implemented by the automatically created
meta-class ExceptionalEvent class. Each exception class has its
own (automatically created) meta-class that will inherit of
ExceptionalEvent class.
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C IncorrectMessage j

(( WrongMessageReceiver ) WrongMessageSelector

((__DoesNotUnderstand )

Event subclass: #IncorrectMessage "cf. fig. 3 for visualizing the exception- class Event"
instanceVariableNames: 'messageReceiver messageSelector messageArgs '

methodsFor: ‘proceeding’
askForMessageValue...

“ask for a value to be used as the message result ..."
messageValue: ...

"resume with the message value ..."

"An exception to be signaled when the selector is obviously wrong.”

IncorrectMessage subclass: #WrongMessageSelector ...

methodsFor: ‘proceeding'
askForNewSelector ...

"ask for a new selector ..."
newSelector: ...

"resume with the new selector ..."

"An exception 1o be signaled when the receiver is obviously wrong."

IncorrectMessage subclass: #WrongMessageReceiver ...

methodsFor: *proceeding’!
askForNewReceiver ...

"ask for a new receiver ..."
newReceiver: ..."

"resume with the new receiver ..."

“a class with multiple inheritance to be signaled when both alternatives are possible"”
Class named: #DoesNotUnderstand ...
superclasses: "WrongMessageReceiver WrongMessageSelector *

Fig.2: An exemple of a hierarchy of exceptions

From the user's viewpoint, the system is then based on three
main classes:

* Error is the class of exceptional events for which resumption
is impossible;

* Warning is the class of exceptional events for which the
termination is impossible;

» finally, multiple inheritance is used to create the exception-
class Event in order to allow both capabilities.

The slot signalingContext will be dynamically bound at each
occurrence of an exception to the signaling context. The slot
propositions (instance variable of the meta-class) is used to
store for each exception some propositions for interactive

handling (cf.§.7.3).
4. Signaling.

Signaling any exception consists in sending to the related
class the message signal defined on ExceptionClass (cf.fig.3),
e.g.:

DoesNotUnderstand signal.

Passing arguments. One argument can be passed for each
slot defined on the exception, e.g. after an attempt to perform
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the message "1 plusse: 2", the system would signal the excep-
tion DoesNotUnderstand in the following way:3

DoesNotUnderstand
signalWihMessageReceiver: 1
messageSelector; #plusse
messageArgs: #(2).

» The method signal first calls new in order to create an ins-
tance of the signaled exception - that will be called the
“"exception object”.

* Signal then sends 1o the exception object various initializa-
lion messages to assign its slots with, on the one hand va-
lues given by the signaler (e.g. messageReceiver), and on
the other hand, values owned by the system (e.g. signaling-
Context).

3The idea is to allow users to provide a list of alternating
initialization arguments names and values. This made no
problem in our Lore implementation since the method new was
able to receive a variable number of arguments. As Smalltalk-80
does not allow methods to have a variable number of arguments,
users have to define on each exception class a method named
"signalWithIvIName:Iv2Name:...IvnName:"; however, they
can be automatically generated thanks to meta-classes
[Goldberg&al 83} [Cointe 87].
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slots:
metnoas:

signalingContext ....
Nanaies By UCIault, J00Krorianaers ...

, -

w

ft

method: signal
slot:  propositions

method: exit, retry
propositions: abort

:; ProcecdableEvent
slot; protocolsForResumption
method: resume

‘ positions: _proceed

Fig.3: Kernel exception classes, associated slots and methods.

+ Signal finally sends to the created and initialized instance
the message lookForHandlers understood by all instances of
exceptions (cf.fig.3), which will find and invoke a handler4.

Protocols for signaling. Within standard EHSs, a set of
primitives is generally provided to support the various signa-
ling cases. E.g., in Goodenough's proposal, signaling with es-
cape states that termination is mandatory, notify forces resump-
tion and signal let the handler responsible for the decision.

In our system, signal is the single basic signaling primitive.
This is possible because knowing whether the signaled excep-
tion is proceedable or not only depends of its type and because
all the information needed to handle it will be stored in the ar-
gument that will be transmitted to handlers.

Cooperation for resumption. Resumption raises a
specific issue, it should not be achieved without the agreement
of both the signaler and the handler when, although the handler
is responsible for saying what to do, the operations allowing to
restart computation must be performed by the signaler in its en-
vironment. In such cases, the signaler might want to predict
which kind of resumption are possible. A slot named protocol-
ForResumption, defined on ProceedableEvent provides a basic
solution to this problem. The signaler can use it to indicate, at
signaling time, the options among which a handler may choose
to achieve resumption. Assigning it to nil means that resump-

tion is irnpossibles.

result <-
DoesNotUnderstand
signalWithProtocolsForResumption:

# Value newReceiv
messageReceiver: anObject
messageSelector: aSymbol
messageArgs: anArmray.

; result is an association <option, value>

; if control returns there, the variable result will be tested

. and appropriate actions will be performed

ewSelector

4From a structural point of view, a paraliel can be drawn between
the couple “signal - lookForHandlers” and the classical couple
“new - initialize" for creating and initializing objects.

5 The default value of the slot is #(resume).
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This slot will be accessible within handlers and checked by
the system before effective resumption.

[Pitman 88] has proposed for to this problem a more sophis-
ticated solution: some new dedicated control structures {(e.g. res-
tart-case) provide a user-friendly way (with a case-like syntax)
of writing code such as the one in the example and allow users to
dynamically create new options for proceeding.

5. Wiiting handlers bodies in a generic way.

Handlers are responsible for saying what to do after the oc-
currence of an exceptional situation. All kind of handlers
(cf.§.7) can use in the same way the same protocols to put the
program execution back into a coherent state. Important ideas,
allowing to improve classical ways of handling, come again
from Zetalisp:

» All handlers have a unique parameter, automatically bound at
handling time to the instance of the current exception and
through which arguments provided by the signaler are con-
veyedﬁ. This solves one of the main problem of classical
EHS.

+ Multiple (abstract classes) exceptions can be caught by defi-
ning a sole handler. Any (may be unexpected) exception
which is a sub-exception of the exception for which a hand-
ler has been designed will be trapped.

We have added the idea that handling should only be perfor-
med via message sending to the exception object, all protocols
for (default) handling being defined on exception classes
(cf.fig.3) and inherited. Four basic ways of handling an excep-
tion are provided: resumption, termination, signaling a new ex-
ception or propagating the trapped one (cf. § 7 for examples).
When handlers do not choose explicitly one of these solutions,
the exception ExceptionNotHandled is signaled.

» Termination: sending to the exception object the message

"exitWith: <aValue>" entails termination. The execution
contexts between the signaler and the handler are discarded

6 Accessing these arguments supposes that slot accessors are
defined on each exception; these accessors can be automatically
generated.
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while recovery blocks are executed’. The argument's value
becomes the value returned by the expression to which the
handler was attached. Class handlers are invoked when an ex-
ception is about to be propagated outside of a method defined
on a protected class; entailing termination within a class
handler causes this method to return the exit value. Default-
handlers, defined on exception classes, are conceptually at-
tached to the top-level loop, thus exiting from a default-
handler returns to the current top-level.

Retry [Mitchell 79] is a variation of termination, the protec-
ted expression is re-executed under the same protections after
contexts has been discarded.

* Resumption: sending to the exception object the message
“resumeWith: <aResumptionOption> with: <aValue>" en-
tails resumption. The couple <option, value> becomes the
value returned by the method signal provided that the op-
tion belongs to the protocolsForResumption collection.

* Explicit propagation: signaling a new exception wi-
thin a handler is a crucial possibility for modularity
(cf.§.6.2). This can be done by sending the message signal
either to a new exception (a class), or to the exception object

in order to propagate it to outer handlersS. In both cases the
handler research starts from the context in which the current
handler has been invoked.

* Entering the debugger can be done by sending the message
handlesDefaut to the exception object (provided that the me-
thod has not been redefined), however this is not a basic way
to handle since the debugger will further abord or resume the
computation.

Thanks to message sending, handling is a generic operation.
Genericity first means that neither programmers nor implemen-
tors have to perform tests to ensure that operations incompa-
tible with the signaled exception will not be invoked”. For
example, any attempt to send the message exitWith: to an ob-
ject which is not an element of FatalEvent will fail. Genericity
also means that the operations relevant to the current exception
will automatically be selected even though an abstract (a mul-
tiple) exception has been caught.

7 An important issue when both resumption and termination are
possible is the restoration of valid contexts. Indeed, signalers
as well as handlers that propagate exceptions do not know
whether there will be resumption or not. Thus they do not know
whether they have to perform some restorations (cf. cleanup
handlers [Goodenough 751). Our system provide a lisp unwind-
protect like primitive, allowing users to specify restoration
actions to be executed only when the stack frame in which they
are defined is really discarded. While looking for a handler (a
non destructive activity in our system), we simply mark all
stack frames containing recoveruy actions. When no automatic
garbage collection exists, it should also be possible to
associate such restoration actions with classes (see e.g C++
destructors).

8 This appears to be slightly different than signaling the
exception again, no new object being created and all pieces of
information about the original event being left unmodified.

9 This rule is violated for resumption where the slot
protocolForResumption is tested by the system.
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6. Which kind of handlers and how to look for
them.,

In most languages, handlers are associated with code
(instructions in Clu, method's bodies in ADA, expressions in
Zetalisp, etc) and have a dynamic (restricted to one stack level
in Clu) scopem. The main interest of dynamic handlers is modu-
larity: exceptions are propagated to the operation callers which
are thus able to specify context dependant answers or to hide the
details of their implementation. The purpose of this paragraph
is to highlight the interest of another kind of handlers which are
associated with object classes, to explain why they fit the ob-

ject-oriented design style and what should be avoided to make
them really efficient.

6.1. Interest of class-handlers.

Smalltalk-80 has promoted an original class-oriented vi-
sion of handling. Exceptions are signaled within methods by
sending to the current receiver, a message (e.g. error:) corres-
ponding to the current exception [Goldberg&al 83 p.102].
Smalltalk class-handlers are standard methods, they have a sta-
tic scope because determining which handler will be invoked af-
ter a signal can be done statically by inspecting the class (and
its ancestors) in which the method which signals the exception

is defined. Let us see why class-handlers fit the object-oriented
design.

* Class-handlers allow all objects of a particular class to react
in the same way when applied methods encounter an excep-
tional situation. They allow users to specify, at the class le-
vel, which exceptions can be propagated outside of methods
defined on that class, and on its subclasses. For example,
they allow an implementor to state that overflow and emp-
tyStack are the only exceptions that should be propagated
out of a method defined on the class Stack. Any other excep-
tion being either the result of a misuse or of a bug in the im-
plementation, in such cases the implementor might want the
program to be stopped or the debugger to be entered.

* Since class-handlers are class properties, classical OOP reu-
sability schemes can be applied. Consider again the class
Stack. Now suppose that we want to implement a class of
stacks that are able to grow11 when needed. A solution to
this problem is to create a Stack subclass named
GrowingStack, on which will be defined a handler for over-
flow and a method grow, this handler can resume the interrup-
ted method, whatever its name and its location, after having
grown the stack (cf.§.7.2).

Similarly, class-handlers allow a new subclass to handle a
particular exception regardless of the number of methods,
upper in the hierarchy, in which 1t is raised. Suppose we want
to create, in Smalltalk,.a class of ordered collections for
which particular actions can be performed when items are
searched for and not found in the collection, either while
accessing to, searching or removing elements: all cases
where the exception /temNotFound is signaled. To define a
single class-handler for [temNotFound on a subclass of
OrderedCollection fulfils the requirements.

* It is sometimes argued that class handlers are only useful to
trap the exception doesNotUnderstand (to perform actions

10 Dynamic extent and indefinite scope.

11 This is appropriate when the default size meets the current
applications needs.
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around message sending [Pascoe 86] (cf. § 7.2). The main
reason is certainly that, in Smalitalk, all other exceptions
are raised with the sole selector error:. Although some do-
main tests are performed via message sending, we think that,
within OOLs, all exceptions should be explicitly named
since many of them are not converted into the exception
doesNotUnderstand. Consider. e.g. : 1. the range exceptions,
2. those raised when the input assertions of an operation are
not only based on argument types, 3. those raised when ar-
gument types are not classes of the system (e.g. positive in-
teger). Assuming that all exceptions have a name, it would

become natural to define, as shown before, class-handlers for
them.

6.2. Weaknesses of class-handlers.

However, class-handlers, as they are invoked in Smalltalk,
have an important drawback: their static scope which entail
problems with modularity. As far as exceptions are not propaga-
ted to method callers, a method has no way to regain control, ei-
ther to hide the occurrence of an exception (modularity) or to
execute some recovery actions, when one of the methods it has
invoked failed.

Consider the following method M1 defined on class Cl1 (e.g.
the class View) which uses composition (one of its slot is a
compound object to which messages are sent, e.g. with the
MVC, view's methods send messages to the model) and suppose
that M2, defined on class C2 (e.g. class Model), signals an ex-
ception by sending the message error: to self. Although a hand-
ler (method error:) is defined on C1, it will never be invoked.
M1 has no way to trap the exception signaled within M2. It can
neither handle the situation nor hide its implementation details
1o its clients (e.g the fact that it send messages to its model).

default handler

- method error

N\

- method M2
self error.

/

- method error ...
- method M1
02 M2.

Fig.4 : composition and modularity

Two conditions are necessary for a class-handler on C1 to be
invoked: 1. exceptions have to be propagated along the invoca-
tion chain, 2. default handlers (method error: on Object) should
not be defined on top of the classes hierarchy.

Besides, class-handlers have another drawback, they cannot
give context dependant answers. Even if the method error on C1
had been invoker, it could not access M1 local variables nor
specify context-dependant answers to exceptions. This proves
that, although class-handlers are useful, they cannot replace
handlers associated with expressions and knowing about
execution contexts.

Smalltalk programmers were used to circumvent all class-
handlers problems by defining methods accepting a block to be
executed in exception cases (e.g. at:ifAbsent:, compile:ifFail:,
etc.). The new Objectworks Smalltalk EHS [PP 89] solves the
second problem but not the first one (cf. § 8).
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6.3. Synthesis: how to look for handlers.

We have seen that various kind of handlers can be of interest
within an OOL provided that appropriate rules for searching
them are designed. We propose a system where both handlers
associated with expressions (created into the stack at expres-
sion execution time) and with classes (stored on classes at hand-
ler definition time) can live together, all having a dynamic
scope. What determines the scope of handlers is the way they
are searched. The method lookForHandler (cf.fig.3) propagates

exceptions along the invocation chain by performing the fol-
lowing algorithm.

Let C be the stack context in which signal has been
performed and E be the signaled exception. If C has
been established by an invocation of the method
when:do:12 and if the associated handler H traps E,
then execute H. Else, let CL be the class of the receiver
of the current context method, if a handler H for E is de-
fined on CL, then execute H. Else go to the next

framel3 (i.e. C's sender) and loop.

This algorithm allows all the above quoted applications of
class-handlers to work and eliminates their drawback as far as
(1) our default handlers are defined on exception classes (cf. §
7.3) (in the previous example, a class handler on Clwould be
invoked) and (2) expression handlers can be defined when con-
text dependent answers are needed. It allows classes to trap ex-
ceptions propagated out of their methods but gives a priority to
handlers attached to expressions within these methods. It has
been implemented in Smalitalk-80 v2.4 thanks to the dynamic
pseudo variable thisContext which provides at any time a poin-
ter towards an object representing the current context.

6.4. How to store handlers on classes.

We have implemented class-handlers as some kind of me-
thods (instances of the class ClassHandler which is a subclass of
CompiledMethod). Instances of ClassHandlers are not associa-
ted with selectors and should not be called by message sending
but only by the system after an exception has been raised.
Besides, while looking for handlers, we have to determine very
rapidly whether a class is protected against a particular excep-
tion. For these two reasons, we do not store class handlers in
the standard method dictionaries but in a slot named classHand-
lers defined on ClassDescription and owned by each class. In or-
der to achieve inheritance of class-handlers and to increase the
access speed, their inheritance is statically computed, i.e. a
class handler created on C is propagated and copied at define
time on all C subclasses'4. The idea is to get, with one slot ac-
cess, an ordered collection of all the class-handlers defined on
and inherited by a class. This solution was easy to achieve in
our first Lore implementation and we have ported it in
Smalltalk. Another approach would be to use caches, we do not
have yet investigate in that direction.

12 allowing to associate handlers with expressions (cf.§.7.1)
13 The real algorithm is a little more complex since we have to
ensure that when exception are signaled within handlers (either
expression or class ones), handlers are not recursively invoked.
14 This technique has been used to speed up the method look-up,
a detailed description can be found in [Caseau 87].
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7. Protocols for defining handlers.

We describe here how to define the three kind of handlers
provided in the system.

7.1. Expression handlers.

Expressions handlers can be attached to any kind of
Smalltalk expressions by using the method when:do: defined
on BlockClosure, with the following syntax:

(<protected expression>]
when; <exception-name>
do: [<handler parameter> | <handler body>]

The first argument is the exception to be trapped and the se-
cond one is the handler block. Since blocks are implemented as
lexical closures, handlers are automatically executed in the
lexical environment in which they have been defined. The
method when:do: creates a new context in the stack (that will be
used to search handlers) and executes its receiver. Defining an
expression handler costs two lexical closures and one method
invocation.

Here is a first example showing a way to use a stack able to
increase its allocated space. It highlights the ability to access
the environment in which the handler is defined.

[aStack push: anlnteger]
when: Overflow

do: [:anOverflow | aStack grow. anOverflow retry].

The following example highlights the ability to trap a low
level exception and to propagate a higher level one. It ex-
presses that a process may only be suspended if it belongs to
the collection of active processes.

[ActiveProcessList remove: aProcess]
when: ItemNotFound
do: [:anltemNotFound | ProcessWasInactive signal}

Here is a final example using exit and retry where two
handlers are attached to the same expression using the method
when:do:when:do:. Up to five handlers can be attached to the
same expression with the same semantic than in Clu or Ada. The
idea is here to create an evaluation loop protected against all
exceptions in order to design either a top-level or a workspace.
The only way to exit the loop is to signal the exception
LoopExit.

{[true] whileTrue: [self body]]
when: LoopExit
do: [aLoopExit: | aLoopExit exitWith: #bye]
when: ExceptionalEvent
do: [anExcEvent: | anExcEvent handlesByDefault.
anExcEvent rery]

7.2. Class handiers.

Class handlers can be attached to any Smalitalk class by
using the method when:do:, defined on ClassDescription, with
the following syntax:
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<protected class>
when: <exception-name>
do: "<handler parameter> | <handler body>'

The first argument is the exception to be trapped and the se-
cond one is the handler string. This method when:do: first calls
the smalltalk compiler to compile the handler string in the en-
vironment of the protected class so that instance and class va-
riables defined on the class can be used within the handler. Then
it inserts the created handler in the handler collection of the
class and of its subclasses. For each class, class-handlers are or-
dered compared to the exceptions they are defined for. Class-
handlers cost nothing while exceptions are not signaled, they
only are taken into account at signaling time.

Here are some illustrations of the previously described stack
examples (cf.§.6.1) which show (1) how to control at the class
level which exceptions will be propagated outside of methods
defined on class Stack? (2) how to implement growing stacks by
trapping exceptions on a new created Stack subclass.

Stack
when: #(Overflow EmptyStack)
.do: ":exceptionObject | exceptionObject signal'
when: ExceptionalEvent
do: 'exceptObject: | StackInternalException signal’

GrowingStack
when: overflow
do: "anOverflow | self grow. anOverflow retry’

Our last example is a minimal vision of encapsulators
[Pascoe 86], used to perform actions around the transmissions
to encapsulated objects. The slot encapsulated is defined on the
class Encapsulator.

Encapsulator
when: DoesNotUnderstand
do: 'e: | lresulti
<before actions>
result <- encapsulated
perform: (e messageSelector)
withArguments: (e messageArgs)
<afler actions>
e resumeWith: #supplyValue: with: result

7.3. Default handling and debugging.

Default handlers are methods defined on exceptions. They are
invoked as shown in the top-level loop example (cf.§.7.1).
Here is the most general default handler, defined on
ExceptionalEvent, that can of course be parameterized on each
exception. The method notify reports the exceptional event, its
context an displays some propositions for interactive hand-
ling.

ExceptionalEvent methodFor: defaultHandling!

handlesByDefault
self notify. ... interactive debugging entty point
self retry. ... Reenter the current top-level loop

Propositions [Moon&al83] are another idea to exploit ex-
ception hierarchies. Default handlers display all the proposition
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UndefinedObject>>Dolt

1 doesNotUnderstand the message: plusse
Smallinteger(Integer)>>arithmeticOperation:

;| Complier(SmalltalkComplier)>>evaluateiinrrecelver:notifying:fFail:

Complier(SmalitalkCompiler

debug gifFalk

StringHolderController>>dof
Supply message value
SupplyiNewSelector
1Supply 2 new r&ceiver '

Abort

Fig.5 : A Notifier taking into account propositions.

defined on and inherited by the current exception. A proposition
is a couple of two method names, one to display a string and one
execute a corresponding action. Propositions are stored for each
exception in the slot named propositionsdefined on
ExceptionClass. Here is (cf.fig.5) our adaptation of the standard
Smalltalk-80 notifier taking into account propositions and
showing what happens when DoesNotUnderstand is signaled.

The hierarchy of exceptions induces a style of exception
handling: all applications programs using the EHS will inherit
the same basic debugging environment. The object-oriented re-
presentation of exception has many other applications related
to debugging [Lieberman 87] [Dony 89].

8. Related Work.

Our basic representation of exceptions and our protocol for
signaling are directly inspired from Zetalisp. We have added the
meta-class ExceptionClass in order to define the method signal
and the slot propositions. We have defined all protocols for
handling on exception classes; in Zetalisp, all lisp control
structures can be used within handlers to achieve various kind of
non local moves, thus handling is not generic and various si-
gnaling primitives are to be used to signal either fatal or pro-
ceedable exceptions. Besides, there exists no way to attach
handlers to classes.

{Borgida 86} [PP 89] or [Koenigéal90] are other object-
oriented systems where exceptions are represented by classes,
we do not have enough room to describe them. In most other
EHS dedicated to OOLs, the ability to create and structure data is
not yet exploited to manage exceptional event. Exception are
not first-class objects, can neither be organized hierarchically
nor own properties. Thus, we will now focus on signaling and
handling possibilities.

Smalltalk-80 in its basic specification [Goldberg&al83] is
the example of a language where handlers can only be attached
to classes and are methods invoked by standard message sen-
ding. The system is simple (both to use and to implement) and
efficient since it only uses message sending and method defini-
tion which are basic operations. We have outlined the interest
and the drawbacks of this solution. Modularity is restricted by

the impossibility of attaching dynamic handlers to expressions
or statements.

A second category of languages consists in extensions of
existing ones (for example Clos) implemented without modifi-
cations of, or additions to, the existing exception handling me-
chanisms, they do not provide any solutions to associate hand-
lers with classes. Other languages also built on top of existing
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ones (such as Loops or ObjVlisp), chose a compromise: some
exceptions relative to object manipulations are raised and hand-
led as in Smalltalk-80 , while the others are raised and handled
by the original system. As the two systems are not connected, it
is for example impossible to associate a handler for does-not-
understand to an expression, and a handler for divide-by-zero to
a class.

Objectworks Smalltalk v2.5 supplies both the original EHS
describe throughout this paper and a new EHS allowing to asso-
ciate handlers with expressions. The two systems have been
connected in version 2.5; some exceptions (e.g. doesNotUn-
derstand) are still signaled in the old way by the virtual machine
and the method doesNotUnderstand on class Object now convert
the exception by signaling it with the new protocol. Anyway,
the above described drawback of class handlers (static scope, cf.
§ 6.2) still applies, in our exemple, a class handler defined on
class C1 would not be invoked.

Eiffel [Meyer 88] is the only system where handlers being
associated with both instructions (methods bodies) and classes
are taken into account by the same propagation algorithm. The
semantic of propagation is nearly the same as in our system
(although they are otherwise very different e.g. concerning the
knowlede representation and the handling capabilities). When
an exception occurs, a rescue clause (handler) associated to the
current method is searched, if none exists a rescue clause is sear-
ched in the current class. If none exists the exception is pro-
pagated to the method caller. One main difference with our class-
handlers is that, since rescue clauses trap all exceptions, a
method rescue clause always has precedence over a class rescue
clause even if the second one is more relevant to handle the
exception.

9, Conclusion.

We have proposed an original exception handling system
which synthesize the qualities of existing systems. It uses the
object-oriented knowledge representation to solve many classi-
cal exception handling issues. It takes into account the specifi-
cities of object-oriented programming. It inherits the qualities
of object-oriented systems, namely reusability and extendibi-
lity.

We have attempted to build a powerful and a reasonably
simple system with two control structures for defining handlers,

three basic methods for handling and three basic exception
classes.

Exceptions are classes organized in a hierarchy. Slots can be
used to parameterize exceptions. The hierarchy allows a single
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handler to caich any set of unexpectedly raised exceptions.
Default handlers can be defined on exception classes, they are
easy 1o localize and to parameterized. Handler can be associated
with expressions and with classes. Exceptions are raised along
the invocation chain. A class can thus control which exceptions
will be propagated out of its methods, a method can handle
lower level exceplions raised by inner method activations and
provide context dependent answers. All handlers have a unique
argument which is the instance of the created exception.
Handling is a generic operation since it can only be performed
by sending messages to this object or by signaling a new ex-
ception. Since handling capabilities rely on the signaled excep-
tion, a unique signaling primitive is provided.

The kernel exception classes and their associated protocols
can be seen as well as a usable EHS or as a laboratory for desi-
gning some new ones. All methods of the system can be either
hidden or redefined on new subclasses to design for example
sub-systems in which resumption is impossible or with diffe-
rent rules for searching handlers[Levin77].
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