
Exception Handling in Object Oriented Systems
Alexander Romanovsky1, Christophe Dony2, Jørgen Lindskov Knudsen3,

and Anand Tripathi4

1Department of Computing Science, University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU, UK

alexander.romanovsky@ncl.ac.uk

2Université Montpellier-II and LIRMM Laboratory,
161 rue Ada, 34392 Montpellier Cedex 5, France

dony@lirmm.fr

3Department of Computer Science, University of Aarhus,
Åbogade 34, DK-8200 Århus N, Denmark

jlk@daimi.au.dk

4Department of Computer Science, University of Minnesota
Minneapolis, MN 55455, USA
tripathi@cs.umn.edu

Abstract. Exception handling continues to be a challenging problem in object
oriented system design. One reason for this is that today’s software systems are
getting increasingly more complex. Moreover, exception handling is needed in
a wide range of application systems, sometimes requiring domain-specific
models for handling exceptions. Also, concurrency, distribution, and code mo-
bility add new dimensions to the existing challenges in this area. The integra-
tion of exception handling mechanisms in a design needs to be based on well-
founded principles and formal models to deal with the complexities of such
systems and to ensure robust and reliable operation. It needs to be pursued at
the very start of a design with a clear understanding of the ensuing implica-
tions at all stages, ranging from design specification, implementation, opera-
tion, maintenance, and evolution. This workshop was structured around the
presentation and discussion of the various research issues in this regard to de-
velop a common understanding of the current and future directions of research
in this area.

1 Summary of Objectives and Results
Modern object oriented systems are getting more complex and they have to cope with
an increasing number of exception conditions representing abnormal situations or fail-
ures. The most general way of dealing with these problems is by incorporating excep-
tion handling techniques in the design. Over the past decade, several models and
mechanisms for handling exceptions have been proposed and developed for object ori-
ented (OO) languages and systems, but there are still many open problems in applying
them in practice due to the complexity of exception code design and analysis, due to
lack of methodologies supporting proper use of exception handling, and by not ad-
dressing exception handling at proper phases of OO system development.

Traditionally, over the past 30 years, the research in exception handling has centered
around the design and implementation of programming languages. More recently,
there has been an increase in research activities dealing with exception handling mod-
els and mechanisms in a wide range of application systems such as databases and
transaction processing systems, workflow systems, distributed object management

systems, and concurrent systems. Besides the development of application-driven and
domain-specific models for exception handling, the research activities in this area
have been driven by the need for formal models of exception handling mechanisms to
facilitate design and analysis of large-scale OO systems. The aim of this workshop
was to bring together the active and leading researchers in this area to develop a com-
mon understanding of the important research directions that are central to the various
strands of research in this area. The last workshop on this topic at an ECOOP confer-
ence was about 10 years ago, therefore, we felt a clear need to provide a forum for the
exchange of ideas to assess the important problems and future directions for research
in this area.

We aimed at discussing important topics of developing and using exception handling
techniques in OO systems and languages. We invited participants interested in discuss-
ing their research on exception handling in areas related to OO systems, in particular:
formal models, distributed and concurrent systems, practical experience, new applica-
tion areas, mobile object systems, new OO paradigms (e.g., OO workflows, transac-
tions), design patterns and frameworks, practical languages (Java, Ada 95, Smalltalk,
BETA), open architectures, fault tolerance.

The workshop was attended by 17 researchers who participated in the presentation and
discussion of 14 position papers. These presentations and discussions were grouped
into four thematic sessions. The first session (five presentations) addressed linguistic
issues in the context of contemporary models and exploration of new ideas, the topics
included reviews of various models for exception handling in programming lan-
guages, fault tolerant computing, aspect-oriented programming and distributed object
management systems. The focus of the second session (three presentations) was on se-
mantics and implementation issues. Presented works were related to type theory based
formal specification - the semantics of the Java exception handling model, to the im-
pact of exceptions on code optimization in compiling Java programs, and to the rela-
tionships between triggers in database systems with the conventional notions of ex-
ceptions. The focus of the third session (four presentations) was on issues related to
concurrency, distribution, and mobility. These presentations addressed exception
handling in mobile agent systems and concurrent transaction-oriented systems. The
global topic of the fourth session (two presentations) was the design, achievement and
evolution of OO systems in the presence of exception handling mechanisms.

2 Participants
Yolande Ahronovitz Université Montpellier-II, France

 yolande@lirmm.fr
Christophe Dony Université Montpellier-II, France

 dony@lirmm.fr
Sophia Drossopoulou Imperial College, UK

 scd@doc.ic.ac.uk
Bjørn Egil Hansen DNV, UK

 Bjorn.Egil.Hansen@dnv.com
Ricardo Jimenez-Peris Universidad Politécnica de Madrid, Spain

 rjimenez@fi.upm.es
Mik Kersten Xerox PARC, USA

 mkersten@parc.xerox.com
Jörg Kienzle EPFL, Switzerland

 jkienzle@di.epfl.ch
Jørgen Lindskov Knudsen University of Aarhus, Denmark

 jlk@daimi.au.dk

Martin Lippert University of Hamburg, Germany
 lippert@informatik.uni-hamburg.de

Isabella Merlo Universita' di Genova, Italy
 merloisa@disi.unige.it

Anna Mikhailova University of Southampton, UK
 aam@ecs.soton.ac.uk

Alexander Romanovsky University of Newcastle upon Tyne, UK
 alexander.romanovsky@ncl.ac.uk

Cecilia M. F. Rubira University of Campinas, Brazil
 cmrubira@dcc.unicamp.br

Markku Sakkinen Tampere University of Technology, Finland
 msakkine@cs.tut.fi

Andrew Stevens University of Sussex, UK
 andrewst@cogs.susx.ac.uk

Tatyana Valkevych Imperial College, UK
 tanya@doc.ic.ac.uk

Anand Tripathi University of Minnesota, USA
 tripathi@cs.umn.edu

3 Summary of the Call-for-Papers
The call-for-papers for this workshop emphasized its broad scope and our desire to fo-
cus the workshop discussions on problems of "complexity" of using and understand-
ing exception handling: Why programmers and practitioners often believe that it com-
plicates the system design and analysis? What should be done to improve the situ-
ation? Why exception handling is the last mechanism to learn and to use? What is
wrong with the current practice and education?

We invited the researchers interested in this workshop to submit their position papers
aiming at understanding why exception handling mechanisms proposed and available
in earlier OO languages (discussed, for example, at ECOOP'91 Workshop on "Excep-
tion Handling and Object-Oriented Programming"1) are not widely used now. We were
interested in papers reporting practical experiences relating both benefits and obstacles
in using exception handling, experience in using advanced exception handling models,
and the best practices in using exception handling for developing modern applications
in existing practical settings.

The original plan was to have up to 20 participants. We asked each participant to
present his/her position paper, and discuss its relevance to the workshop and possible
connections to work of other attendees. The members of the organizing committee re-
viewed all submissions. The papers accepted for the workshop sessions were posted
on the workshop webpage so the participants were able to review the entire set of pa-
pers before attending the workshop.

Additional information can be found on the workshop web page:
http://www.cs.ncl.ac.uk/people/alexander.romanovsky/home.formal/ehoos.html.

4 List of the Workshop Papers
1. Jørgen Lindskov Knudsen (University of Aarhus). Exception Handling versus Fault
Tolerance

1 Dony, Ch., Purchase, J., Winder. R.: Exception Handling in Object-Oriented Sys-
tems. Report on ECOOP '91 Workshop W4. OOPS Messenger 3, 2 (1992) 17-30

2. Anand Tripathi and Robert Miller (University of Minnesota). An Exception Hand-
ling Model for a Mobile Agent System
3. Andrew Stevens and Des Watson (University of Sussex). The Effect of Java Excep-
tions on Code Optimisations
4. Alexander Romanovsky (University of Newcastle upon Tyne) and Jörg Kienzle
(Swiss Federal Institute of Technology). Exception Handling in Cooperative and Com-
petitive Concurrent Object-Oriented Systems
5. Anna Mikhailova (University of Southampton) and Alexander Romanovsky (Uni-
versity of Newcastle upon Tyne). Supporting Evolution of Interface Exceptions
6. Bjørn Egil Hansen (DNV) and Henrik Fredholm (Computas). Adapting C++ Excep-
tion Handling to an Extended COM Exception Model
7. Yolande Ahronovitz and Marianne Huchard (University of Montpellier). Exceptions
in Object Modeling: Questions from an educational experience
8. Tatyana Valkevych and Sophia Drossopoulou (Imperial College). Formalizing Java
Exceptions
9. Marta Patino-Martinez, Ricardo Jimenez-Peris, and Sergio Arevalo (Univesidad Po-
litecnica de Madrid). Exception Handling in Transactional Object Groups
10. Alessandro F. Garcia and Cecilia M. F. Rubira (University of Campinas). An Ex-
ception Handling Software Architecture for Developing Robust Software
11. Cristina Lopes (Xerox PARC), Jim Hugunin (Xerox PRAC), Mik Kersten (Xerox
PARC), Martin Lippert (University of Hamburg), Erik Hilsdale (Indiana University)
and Gregor Kiczales (University of British Columbia). Using AspectJ™ For Program-
ming The Detection and Handling of Exceptions
12. Jörg Kienzle (Swiss Federal Institute of Technology). Exception Handling in Open
Multithreaded Transactions
13. Elisa Bertino (University of Milan), Giovanna Guerrini (University of Genova),
and Isabella Merlo (University of Genova). Do Triggers Have Anything To Do With
Exceptions?
14. Christophe Dony (University of Montpellier). A Few Interesting Ideas Ignored (in
Java) or Forgotten from the Past

5 Thematic Classification and Summary of Contributions
The workshop program was organized into four sessions. We summarize below the
important ideas that were presented and debated in these sessions.

5.1 Session 1: Linguistic Issues: Existing Models and New Ideas

This session addressed linguistic issues of exception handling. The session was a mix-
ture of presenting existing exception handling models in a new light, presenting exist-
ing models that have unfortunately been ignored for several years, along with new
models of exception handling, such as those needed for applications built using com-
ponent software.

In his talk "Exception Handling versus Fault Tolerance", Jørgen Lindskov Knudsen
discussed the many proposals that have been put forward on defining language con-
structs for handling exceptions. Most of these are dynamic in nature (i.e. the exception
is handled by some component found by examining the dynamic calling sequence

leading to the exceptional occurrence), while others are static (i.e. the exception is
handled by some component found by analyzing the static context of the exception oc-
currence). Jørgen Lindskov Knudsen then discussed dividing error handling into two
distinct disciplines: exception handling and fault-tolerant programming. Exception
handling deals with the handling of well-defined error conditions within a well-
defined system or framework. On the other hand, fault tolerant programming deals
with error handling in all other cases: ill-designed systems, faults in the exception
handling code, errors originating from outside the system or framework. Jørgen Lind-
skov Knudsen then reported his experiences with the static exception handling mech-
anisms of BETA. He elaborated that static error handling is in fact an effective excep-
tion handling mechanism, but also that it is difficult (and in some cases impossible) to
use it for fault tolerant programming. Jørgen Lindskov Knudsen therefore proposed to
introduce a dynamic error handling mechanism to be used for effective fault tolerant
programming. On the other hand, he stressed that the static exception handling model
should be used almost exclusively, since it gives the most well-designed exception
handling, integrated with the OO tradition, and reserve dynamic exception handling
only to those cases where no other error handling solution can be found.

In the second talk Christophe Dony discussed "A Few Interesting Ideas Ignored (in
Java) or Forgotten from The Past". The aim of this talk was to remind the exception
handling community of previous research results, that seem to have been ignored,
more or less, in the current research – ideas that should not be forgotten, and which
might inspire future research. The first idea presented was related to the scope and ex-
tent of handlers. The work carried out for handling exceptions in procedural languages
such as PL/I, Clu, Ada or Mesa, has shown that modularity and the notion of fault-tol-
erant encapsulation rely on a stack oriented handler research, on the ability for sig-
nalers to raise exceptions to the operation callers, and for the callers to handle the ex-
ceptions raised by inner modules. However, Christophe Dony illustrated, that Small-
talk-80, in its standard blue book specification, has shown the utility of attaching
handlers to object classes (let's call them class-handlers), providing an OO style of
handling exceptional situations and of extending and reusing code in which exceptions
are signaled. Christophe Dony also presented a way, implemented in its systems for
the languages Lore and Smalltalk, to combine class handlers and a stack-oriented
handler research discipline to combine both advantages.

Secondly, Christophe Dony presented issues from the exception handling system from
Flavors system. Flavors made it popular to describe exceptions as hierarchically or-
ganized classes on which methods can be defined, allowing them to be called within
handlers to deal with the corresponding exceptional situations in a standard way. De-
rived from this principle, Christophe Dony discussed relationship between meta object
programming (MOP) and exception handling: various system including Flavors, Clos,
ParcPlace Smalltalk, Lore have proposed various MOPs allowing system developers
to adapt a language basic exception handling mechanism to the application particular
needs or to extend the language with new models (e.g. component model).

Finally, Christophe Dony discussed communication protocols between signalers and
handlers. The Flavors system proposed signaling protocols allowing signalers to spe-
cify, each time an exception is raised, which resumption solutions are currently avail-
able. Handler can then choose a specific resumption solution by invoking a corres-
ponding method defined on the current exception class.

The following talk was by Bjørn Egil Hansen on "Adapting C++ Exception Handling
to an Extended COM Exception Model". Bjørn Egil Hansen discussed the BRIX ex-
ception system which was designed with the following objectives: to simplify and

minimise the amount of code needed for exception handling; to increase system ro-
bustness and correctness; and to increase flexibility in system configuration and evolu-
tion. By having a notion of both specified and unspecified exceptions, the BRIX ex-
ception model allows recovery from more situations than those typically specified in
an abstract interface. Exceptions from a component are categorised according to two
orthogonal criteria: (i) component state: controlled or uncontrolled and (ii) cause of
exception: operational or implementation. Only in the case of controlled operational
exceptions should the developer make an effort to mask the exception or to recover
and propagate the exception to increase the overall robustness of the system. For the
other cases this is generally a waste of effort and the cause of the exception should in-
stead be eliminated, i.e. by fixing lower-level bug or allocating required resources.
The BRIX exception system gives extensive support for doing exception handling in
C++ in a COM environment according to the model above, providing mechanisms for:
conversion between COM and C++ exception representation
shorthand notation for various propagation and handling
default mechanisms for typical situations
integration of pre/post-condition checking and general assertion checking
simple user-interaction enabling local handling of exceptions by involving user
rich support for logging of exceptional events, simplifying debugging both during

development and operation and helping operators in identifying lack of resources.

The fourth talk in this session "Using AspectJ™ for Programming the Detection and
Handling of Exceptions" was delivered by Martin Lippert. Martin Lippert took an ex-
isting framework written in Java, the JWAM framework, and partially re-engin-
eered some of its exception detection and handling aspects using AspectJ, an as-
pect-oriented programming extension to Java. Aspect-oriented programming (AOP)
has been developed to provide programmers with mechanisms to implement, abstract
and compose crosscutting concerns. AOP language design is based on understanding
the structure of common crosscutting concerns and developing mechanisms that can
capture that structure and can be composed to develop more complex crosscutting
structures. Martin Lippert presented how AspectJ™ was used to re-implement the
design-by-contract checks inside the JWAM framework, resulting in the amount of
code used to implement the contract checks using “contract aspects” – aspects con-
taining only the contract checking code – being considerably reduced. It was also re-
ported, that the contract aspects reduce the risk of forgetting the proper contract
checking implementation in a subclass without losing the possibility to redefine pre-
and post-conditions using sub-aspects. Martin Lippert also reported using AspectJ™
to re-implement some Java exception handling code inside the redundancy framework
since some redundancy was identified in those parts of the framework implementation.
Using an aspect to extract the exception handling code out of the functional imple-
mentation of the class, the exception handling code can be reused for more than one
catch block over more than one class. As a result of the presentation there was some
discussions about some general problems using AOP (e.g. the lack of good tool sup-
port) as well as the improvement of the presented quantitative numbers using not only
the framework but also some applications build on top of the framework for the meas-
urements.

The last talk in this session was given by Cecilia Rubira on "An Exception Handling
Software Architecture for Developing Robust Software". Fault-tolerant OO software
systems are inherently complex and have to cope with an increasing number of error
conditions to meet the system dependability requirements. Dependable OO software
detects errors caused by residual faults and employs fault tolerance measures to re-
store normal computation. The presence of exception handling facilities can reduce

software development efforts since they allow software designers to: represent errors
as exceptions, define handlers to deal with them, and use an adequate strategy for ex-
ception handling when the occurrence of an exception is detected. Moreover, OO sys-
tems may be consisted of various threads (or processes) executing methods concur-
rently on objects. Exceptions are more difficult to handle in concurrent OO systems
than in sequential ones especially because of cooperative concurrency. That is, several
concurrent threads usually cooperate to perform some system activity, giving rise to
very complex concurrent interactions. The present interest in software architectures
and design reuse motivated the authors to develop an exception handling software ar-
chitecture for building fault-tolerant software. A software system quality requirements
(such as dependability and persistence) are largely permitted or restrained by its archi-
tecture; so, the authors' believe that if an appropriate architecture (in particular one
that supports exception handling) is chosen since the outset of the design phase, then a
proper use of exception handling throughout the development life cycle of a system
can be obtained. The proposed architecture provides a generic infrastructure that sup-
ports uniformly both concurrent and sequential exception handling. Moreover, the ex-
ception handling architecture is independent of a specific programming language or
exception handling mechanism, and its use can minimise the complexity caused by
handling abnormal behaviour. The architecture is composed of four well-defined com-
ponents: the Exception component, the Handler component, the Exception Handling
Strategy component, and the Concurrent Exception Handling Action component. The
structural and behavioural aspects of the components are described by means of a set
of design patterns. The proposed patterns allow a clear and transparent separation of
concerns between the application functionality and the exception handling facilities,
easing the task of building fault-tolerant software with high assurance.

The talks and the discussions tried to develop a clear relationship between various
commonly used terms and concepts, particularly in regard to relationship and differ-
ences between error handling and exception handling. Dependability community has
concepts of faults, errors, failures and for these people exception handling is a means
for tolerating faults. Knudsen’s talk characterised exceptions as anticipated failure
conditions within a well-define framework in contrast to errors which are unanticip-
ated conditions that arise due to faults or from outside of the design framework. The
discussions ensuing from the this talk led to the conclusion that the static model of ex-
ception handling chain is found to be adequate in most cases except in cases designing
fault-tolerant systems. Dony’s presentation reminded of many important research con-
tributions made in the past in the area of exception handling in OO systems. These
past contributions in the area of exception handler scope, use of meta object program-
ming, and flexible models to deal with different resumption requirements should not
be forgotten.

5.2 Session 2: Semantics and Implementation

This session addressed issues related to formal descriptions of exception handling
constructs in a modern language such a Java, impact of exception handling on code
optimization during compilations of Java programs, and possible use of exceptions in
Java-based OO database management systems to realize database triggers.

Tatyana Valkevych presented an overview of a formalization of the static and dynamic
semantics of Java related to exceptions in her talk on "Formalizing Java Exceptions".
The most challenging Java feature with respect to exceptions are the dual nature of ex-
ceptions whereby an exception may act as a normal object until explicitly thrown, and
the difference beginning execution of a throw-statement and the actual throwing of the
exception, whereby the latter exception may be different from the exception indicated

after the throw-statement. This talk distinguished between normal execution, from
which no unhandled exception escapes, and abnormal execution, from which an un-
handled exception escapes. At the level of objects, one can distinguish those not
thrown (these exhibit normal behaviour) and those which are thrown (these exhibit ab-
normal behaviour). This work develops an operational semantics that gives a concise
and precise model of Java. In the type system it distinguishes normal types which de-
scribe the possible outcome of normal execution, and abnormal types which describe
the possible outcomes of abnormal execution. The type of a term consists of its normal
type and its abnormal type. In this approach the meaning of the subject reduction the-
orem is stronger than usual: it guarantees that normal execution returns a value of a
type compatible with the normal type of the term, and that abnormal execution throws
an exception compatible with the abnormal type of the term. The formal description
proposed in this talk consists of half a page of operational semantics, which is consid-
erably shorter than several pages in the language manual. The authors made the case
that their description is a good basis for more precise and succinct language manuals
of the future.

In his talk on “Effect of Java Exceptions on Code Optimisations", Andrew Stevens
outlined a support for exception based control flow in Java. This talk showed the ef-
fect of this support on compiler driven static analysis in quantified terms. The frame-
work used to support exceptions in Java programs is shown to exist at three levels; the
language syntax, the bytecode class files and from within the Java Virtual Machine
(JVM). A model was described that divides the types of exceptions that can be raised
into three categories; explicit, implicit-synchronous and implicit-asynchronous. The
explicit exceptions are those described by the 'throw' statement, implicit-synchronous
are those caused by an instruction breaking a semantic rule of the language and impli-
cit-asynchronous are generated by JVM internal errors or a Thread.stop call. The
presentation continued by outlining some standard compiler analysis structures,
namely basic blocks, control flow graphs and call graphs. The effect of the exceptions
on these structures was described as follows. For basic blocks, an instruction that po-
tentially generates an exception marks the end of the block. The control flow graph
and call graph are structures that attempt to map potential routes through the executing
code. Since the destination handler of a raised exception depends on runtime type in-
formation and call context, the flow graphs must mark the destination as unknown (or
dynamic). Further, Andrew Stevens outlined an experiment to show basic block sizes
and flow graph dynamics with implicit exceptions enabled and disabled. The results
show that such exceptions greatly reduce block sizes and increase the dynamics by a
factor or four. Since both these effects can reduce the power of compiler optimisa-
tions, a future system that reduces the number of potential exceptions is described.

The third presentation in this session, "Do Triggers Have Anything To Do With Ex-
ceptions?", was by Isabella Merlo. The OO paradigm is playing a crucial role in get-
ting the programming language and the database fields closer to each other. The Java
programming language is establishing itself as the most popular OO programming
language, and the increasing need of persistently storing Java objects, through minim-
al modifications to applications, led most OO database management systems (OOD-
BMs) to develop a Java version. The ODMG standard also has been enriched with a
Java binding. Current relational and object-relational DBMSs provide an important
functionality, namely triggers. This typical database functionality has no direct coun-
terpart in OO programming languages, and though trigger usefulness has been recog-
nised also in the OO context and a considerable amount of research has been carried
out in the area of active OO databases, triggers are not supported in current commer-
cial OODBMSs. A relevant feature of the Java language is represented by its excep-
tion mechanism, which represents a very powerful mechanism for handling error situ-

ations. Since one of the most relevant functionalities achieved through triggers in the
database context is integrity constraint enforcement, the two notions seem to be poten-
tially related. In her presentation, Isabella Merlo provided an overview of triggers,
then compared it with exception handling. This presentation was followed by a long
discussion on how the two notions can be related, and if the support of exceptions can
offer any help or insight towards the introduction of triggers in Java-based OO data-
base management systems. This certainly remains an open question for further invest-
igation.

The session clearly highlighted the impact of exception handling in generating effi-
cient code through code optimization. Also, in this session the relationship between
triggers and exceptions generated quite an extended debate.

5.3 Session 3: Concurrency, Distribution and Mobility

Developing exception handling models which are adequate for designing modern con-
current, distributed and mobile applications was the theme of the third session consist-
ing of four presentations followed by a discussion.

Anand Tripathi delivered the first position paper entitled “An Exception Handling Mod-
el for a Mobile Agent System”. Ajanta is a Java-based system for programming distrib-
uted applications using mobile agents in which agents encapsulate code and execution
context along with data. A model for exception handling in mobile agent applications in
the Ajanta system was presented. When an agent arrives at a server, the server creates a
thread to execute the agent's method that was indicated in the transfer request. During
its execution, an agent may encounter some exception conditions. Some of these may be
anticipated by the programmer and handled within the agent's code. If, however, an ex-
ception is not handled by the agent, the exception is signalled to its server thread. To fa-
cilitate exception handling, associated with each agent is a guardian object, which is sta-
tionary in the system. The name of the guardian object appears in the agent's tamper-
proof credentials. When an agent encounters an exception that is not handled by its
code, it is co-located with its guardian. In this case the agent carries the exception object
identifying the exception. On co-location, the agent invokes the report method of the
guardian object and passes to the guardian a reference to itself. The guardian can then
examine the agent's state to perform the appropriate recovery actions. Developing of
guardians is a responsibility of the application developers. Ajanta provides some addi-
tional mechanisms using which the guardian can perform application-wide recovery ac-
tions. For example, in an agent-based program consisting of a group of agents, the re-
covery action may require termination of some or all of the agents in a group when one
of the group members encounters a non-recoverable exception. Developing exception
handling mechanisms for mobile systems is a vital and difficult topic, unfortunately mo-
bile system developers do not often pay enough attention to this issue. The research re-
ported in this talk is in many respects unique as it offers a general exception handling
mechanism which takes into account the specific characteristics of such applications and
because it has been designed together with the mobile system.

In his talk "Exception Handling in Cooperative and Competitive Concurrent Object-Ori-
ented Systems" Alexander Romanovsky outlined the exception handling mechanisms de-
veloped for concurrent OO systems and showed likely directions of future research. This
presentation emphasized that considerable effort has been devoted to developing excep-
tion handling models for sequential systems and that a common understanding exists in
many topics in the field. The situation is different in concurrent systems. Although sever-
al schemes combining concurrency and exception handling have been proposed, this re-
search is still scattered and the majority of concurrent systems use sequential exception

handling. It is the author's belief that the latter is abnormal because exception handling
features should correspond to the programming features used in system design. The
choice of a way to introduce exception handling depends on the way concurrent systems
are to be developed and structured because exception handling is an issue of the system
design, and language features should assist in and impose proper design. Exception hand-
ling is closely coupled with program structure and therefore the way in which the dynam-
ic execution of concurrent systems is structured influences possible ways of introducing
exception handling into such systems. Following C.A.R. Hoare, J.J. Horning and B. Ran-
dell, all concurrent systems are classified into cooperative, competitive and disjoint ones,
with the corresponding structuring techniques such as atomic actions, atomic multith-
readed transactions and blocks of code (the latter is effectively identical to the sequential
system structuring). Several schemes have been proposed for introducing first two ap-
proaches into concurrent systems, but only rarely do they incorporate exception handling
features (few examples were discussed in the talk). And even when they do, they neither
provide a general exception handling model nor fit the main principles of OO program-
ming properly. Although this is an area of very active research, there are still many un-
clear points and unsolved problems. A general common understanding does not seem to
exist. Two following presentations, which extend in many ways the seminal research on
Argus system, have addressed some of the topics discussed in the talk.

In the next presentation "Exception Handling in Transactional Object Groups" Ricardo
Jimenez-Peris proposed a model which combines transactions and group communica-
tion and includes an exception handling mechanism. Transactions and group communic-
ation are two fault-tolerance techniques that have evolved separately for a long time.
However, these two techniques are complementary, and distributed systems can benefit
from their integration. In particular, transactional object groups can be used in clustered
systems to provide high availability and high performance transactional services. Rep-
licated object groups can tolerate failures without interrupting running services increas-
ing their availability. Co-operative object groups perform services in parallel taking ad-
vantage of distribution and thus, improving their performance. Exception handling
mechanisms play an important role in this kind of systems. Firstly, exceptions can be
used in combination with transactions to cope with anticipated errors within a transac-
tion by providing automatic backward recovery for unhandled exceptions. Secondly, ob-
ject groups can raise concurrent exceptions due to their concurrent and distributed
nature. In the proposed model exception resolution is used to yield a single exception to
the client when several servers raise exceptions. New exception resolution algorithm is
developed to resolve exceptions at two levels: local and distributed. Local resolution is
first applied to concurrent exceptions raised within an object. Then, distributed resolu-
tion is applied to resolve the resulting exceptions of the object group. This two-level
hierarchical resolution is more rational than a global resolution, because local excep-
tions that are more related among themselves, are resolved first. This talk reported sev-
eral important results which are outcome of an active research effort on extending trans-
actional services with an ability to develop co-operative systems. It is very important
that the authors have realised that new models to be developed in this area should al-
ways include features for disciplined and powerful exception handling

The last talk of the session "Exception Handling in Open Multithreaded Transactions"
was presented by Jörg Kienzle who proposed a new model for providing transaction
support for OO concurrent programming languages. This support is enhanced by a full-
fledge exception handling mechanism incorporated into the transactional support. The
aim of this research is to achieve a smooth integration of the native language concur-
rency and the transactional features, so that the use of the concurrency features provided
by the programming language is not restricted inside a transaction. A new transaction
model called Open Multithreaded Transactions that meets this requirement was presen-

ted. Threads inside such a transaction may spawn new threads, but also external threads
are allowed to join a running transaction. A blocking commit protocol ensures that no
thread leaves the transaction before its outcome has been determined. Exceptions can be
handled locally by each thread. Unhandled exceptions crossing the transaction boundary
cause the transaction to abort. Exceptions are propagated to all participant threads when
a transaction aborts. An Ada 95 implementation of this model is under development
now. Although the discussed results are preliminary, they are important to researchers
and practitioners because of two main reasons: this transactional model offers a good
balance of the ways multiple transaction participants are affected by each other’s excep-
tions and because this model can be applied in any concurrent language (e.g. in Java).

5.4 Session 4: Design and Evolution

The last session was dedicated to the design and evolution of OO programs dealing
with exceptions.

In the first presentation, Yolande Ahronovitz brought to the fore the important issue of
how to design hierarchies of exception classes. Almost all OO languages now represent
exception as classes and occurrences of exceptional situations as instances of these
classes. This idea can be found in Nixon’s thesis and has been developed in various
systems such as the Flavor one in the 1980s, it provides a simple way to define both the
internal representation and behavior of exceptions occurrences with capabilities for
extendibility and reusability. If many things have been said on the benefit of such an
organization, the problem of modeling exception classes has not been studied much:
literature gives good advice, but lacks concepts about how to think up exceptions, and
UML lacks concepts to model exceptions as classes. Anyone that has written an OO
application has been confronted to issues such as the following ones: Should I have an
abstract exception class for my whole application? Should I create an abstract class
"StackException" generalizing all the exceptions related to the "Stack" class I am
designing? Should "StackException" be a subclass of "MyApplicationException" or of
"CollectionException"? Should the various exceptions related to the Stack class be
represented by slots of "StackException" or by subclasses?

Yolande Ahronovitz and Marianne Huchard have proposed a kind of guide, based on
object model elements, for finding exceptions at modeling stage, and for organizing
them into classes hierarchies. More precisely, they have proposed to define a general
exception class ExcTypeX for each type X found in a program, that exception being the
root of all exception classes associated with X. Under this general root are defined a
subroot for each feature associated with X: primitive attribute, method, association
with other type Y. For an association, two subroots are created: one for the exceptions
which encapsulate Y's exceptions and one for the exceptions which are induced by the
association itself. In order to reflect the classes hierarchy of the application, if SX is a
subclass of X, the general root ExcTypeSX is a subclass of ExcTypeX. Exceptions
associated with SX can either be related to its own features, or be specializations of
exceptions defined on inherited features, or be exceptions generated by new constraints
on inherited features. These cases are distinguished in the hierarchy built under
ExcTypeSX. The last case (new constraints on inherited features) is not allowed in
many programming languages (e.g. Java, C++). The way the hierarchy is built gives a
possible solution to handle it. The complete hierarchy must not necessarily be entirely
implemented; yet, it is helpful in accurately handling exceptions. Besides this guide, an
original model of composite exception has also been proposed, to allow users to signal
several problems at the same time.

Towards the end of her presentation, Yolande Ahronovitz raised several important

issues related to her work, and these issues were discussed during the workshop
session. Certainly, the main issue is how to merge the type-based classification of
exceptions, presented in this session, with semantically-based exception hierarchies as
found in other systems. For example, it is usual to classify exceptions according to the
way they can be handled (fatal or recoverable exceptions) or to classify them around
semantic categories (arithmetic exceptions, file-system exceptions). Both
classifications could cohabit provided that the implementation language supports
multiple inheritance.

The second talk of this session was presented by Anna Mikhailova. Her talk on
"Supporting Evolution of Interface Exceptions" focused on problems connected with
the evolution of OO applications in presence of methods signaling exceptions.
Interface exceptions are explicitly declared exceptions that a method can propagate
outside. Evolution in OO systems is achieved via sub-classing and method overriding.
When sub-classing is done without conforming to sub-typing rules, runtime type
exception can occur. That is why languages wanting to statically check that programs
are type safe imposes constraints on subclassing and overriding rules (e.g.
contravariance or at least invariance for methods parameters types). In presence of
exceptions, to be type-safe, an overriding method interface exception should not
include exceptions that are not declared by its corresponding overridden one. Java, for
example, imposes such a rule. Indeed, clients of a server class are only prepared to
handle the exceptions explicitly declared in the interface of this class and might be
unaware of the existence of its subclasses. If a subclass of the server class signals new
exceptions and if it is passed by subtyping to the client, the client might get
invalidated, as it will be asked to handle an unexpected exception. In her talk, Anna
Mikhailova explained, via a convincing example, why it is desirable to introduce new
exceptions in subclasses and proposed two complementary solutions to achieve this in
a type-safe way. To solve the problem of non-conforming interfaces resulting from the
addition of new exceptions, the first proposal uses what she calls "rescue handlers".
Rescue handlers are some kind of class handlers (see section 5.1) and are default
handlers. They are invoked when an exception is signaled within a method of the class
the handler is associated with and when the method client does not itself provide a
handler. Thus, when clients do not know how to deal with new interface exceptions of
their servers, the rescue handler attached to the server class steps in to rescue the
situation. Secondly, while rescue handling is suitable for the top-down system
development approach, when there is a need to introduce an interface exception in a
development step, it is of little help in a bottom-up approach. In this case, the author
proposed to apply a classical forwarding technique (the wrapper pattern) which is an
architectural solution used for solving closely related interface mismatch problems.

It was noted that a general solution to the evolution problem would be to
systematically define an exception signaled in a subclass method as a sub-exception of
an exception signaled in the corresponding superclass method. This would correspond
to the organization of exception hierarchies suggested by Ahronovitz and Huchard.
Unfortunately, this is only possible when the subclass wants to signal a new exception
and not an existing one.

6 Conclusions
The 1970s have seen the development of exception handling systems dedicated to pro-
cedural programming. Such tools and the associated mechanisms have been designed
to enhance software reliability, reusability, readability and debugging. The 1980s have
seen the emergence and dominance of the OO technology that has brought new ways
to make program modular and reusable. During the 1980s and 1990s, exception hand-

ling systems were integrated into all OO languages. The first ECOOP workshop on ex-
ception handling and OO programming held in 1991 was oriented towards the specific-
ation, understanding and implementation of these systems. The wide range of topics
addressed by the participants of this new workshop has shown us many new research
directions for exception handling in OO systems.

The year 2000 workshop proposed a clear representation of many open and challen-
ging problems that need to be understood and addressed by the programming language
designers, software engineers, and application system programmers. Many problems
still exist, and there are many new research opportunities in a variety of emerging ap-
plication domains where exception handling mechanisms have to be application spe-
cific. The main conclusions gained from the presentations and discussions held during
the workshop are as follows:

 The evolution of exception handling models for standard OO programming is still
an open issue:
 A new model for BETA has been presented that proposes an interesting mix

of static and dynamic handler research allowing BETA to deal separately and
differently with failures and exceptions

 Handlers associated with classes, as invented in the 1980s, have disappeared
from C++ and Java.These kinds of handlers could be reinvestigated because
of their intrinsic interest and because it has been shown that they could solve
problems related to evolution in presence of static typing

 More generally, the workshop also reminded the participants that many of the
important past contributions are forgotten and the community should rein-
vestigate their utility

 Today’s tendency is to use statically-typed OO languages and to look for formal
models for the integration and use of exception handling in fault-tolerant systems.
A set of new research activities is advocated towards the definition of exception
handling systems compatible with static and correct typing in OO languages. Be-
sides, the quest for formal models and type safety gives rise to great challenges in
the presence of some models such as the resumption. These models, although in-
teresting in term of expressive power, makes program analyses very complex, and
might therefore be abandoned (or better formalisms should be developed)

 The representation of exceptions by hierarchically organized classes is now quite
a standard but the design issues related to that representation are not solved and
design languages such as UML do not correctly take it into account. There is a
lack of proper frameworks and principles for designing and analyzing exception
hierarchies and exception code in large-scale systems. The separation of the main
code of the program from the exception code is an old issue for which new ad-
vances can be considered thanks to new techniques for the separation of concerns
in programming, such as aspect-oriented programming

 New linguistic mechanisms are needed which take into account recent develop-
ments in designing new excerption handling mechanisms for concurrent, distrib-
uted, web and mobile OO systems. Future languages intended for such applica-
tions should incorporate adequate exception handling mechanisms

 Exception handling mechanisms should be adequate to the language paradigm
and the main language features (e.g. inheritance, concurrency), to the system de-
velopment techniques, to the way systems are structured and to the application-
specific characteristics of the system to be designed

 Safety of exception handling mechanisms is the prime concern which should be
taken into account while developing new mechanisms, because exception hand-

ling mechanisms are often chosen for developing modern complex applications
with high dependability requirements

 Exception handling is not just a linguistic issue. There is a need in applying dis-
ciplined exception handling at all phases of the system development. To do this
properly the methodologies should support a smooth transition between models
used at different phases

 Another promising direction of the research in this area is to enforce good devel-
opment techniques which use exception handling with a set of well-developed ar-
chitectural and design patterns and idioms; this can serve as a sound solution
complementing research focused solely on developing new linguistic approaches

 New flexible exception handling mechanisms applicable in all phases of system
development should be developed; such mechanisms should be both general and
flexible enough to allow for simple adjustment or customization

 It is difficult to expect that the research community will come up with a linguistic
mechanism which can solve all current and future problems, this is why research
on integration of exception handling mechanisms found in different languages,
systems and methodologies (e.g. Java and CORBA) is getting more important

The workshop was a clear success in its primary goal of creating a forum to discuss
and debate the important research directions in the area of exception handling in object
systems. The wide range of topics addressed by the participants was a clear representa-
tion of many open and challenging problems that need to be understood and addressed
by the programming language designers, software engineers, and application program-
mers.

Finally and most importantly, this workshop reinforced everyone’s view that such
meetings are of tremendous value to the research community to provide a forum for
direct and quick exchange of ideas on the importance of various issues and problems
facing the community. The participants felt that it would be beneficial to have another
meeting on this topic in the next 2-3 years.

Acknowledgements: The authors want to thank the participants for making this workshop a
success with their unique contributions. This report reflects the viewpoints and ideas that were
contributed and debated by all these participants. Without their contributions, neither the work-
shop nor this report would have materialized.

