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This paper presents the insights we gained in our research
aimed at integrating exceptions and exception handling into
the entire software development life cycle. We argue that
exceptions are of different nature depending on the level of
abstraction that the system under development is looked at.
We outline a mapping relating exceptions at a high level
of abstraction to exceptions and other software artifacts at
lower levels of abstraction, and show that some exceptions
introduced at a low level of abstraction also require the def-
inition of corresponding exceptions at a higher level of ab-
straction in the case where transparent handling at the low
level is not possible. Finally, we list the potential benefits
of integrating exception handling into the entire software
development life cycle.
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1. INTRODUCTION
Exceptions originated at the programming language level,

and although the ideas of exceptions and exception handling
have been known for over 40 years, these concepts are cur-
rently not an integral part of standard software development
methodologies. Exceptions are mostly used during the im-
plementation phase, if at all, and even then there are often
no clear guidelines of when and how to use them.

Object-orientation also originated at the programming lan-
guage level. Nowadays, however, object-orientation is ap-
plied at all phases of software development. An object is
always an entity that has it’s own identity, and encapsu-
lates state and behavior. However, the notion of object has
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slightly different meanings depending on the development
phase in which it is used. At the requirements engineering
phase, objects represent domain concepts, e.g., external ac-
tors that interact with the system under development, or en-
tities encapsulating state which allows the system to reason
about the problem domain. Objects at the software archi-
tecture level usually represent components that partition the
system into modules that interact at run-time through well-
defined interfaces. Sometimes, the partitioning into com-
ponents can also be used to distribute the application onto
multiple machines. At the design phase, a solution imple-
menting the specified problem is designed. To this aim, ob-
jects are created with well-defined responsibilities and state.
Algorithms to achieve the desired behavior are devised, and
are realized by interacting objects. Finally, at the imple-
mentation phase, the individual objects are implemented by
elaborating the program statements that achieve the desired
functionality for each operation or method.

Using the concept of object throughout the entire soft-
ware development process is very beneficial. Although the
meaning of an object changes throughout the development
activities, object-orientation provides traceability from the
requirements phase down to the implementation phase by
relating objects at different levels. Of course, the mapping
between objects from one phase to the other is not always
one-to-one. Often, a requirements-level object is realized us-
ing many design objects. Furthermore, during software ar-
chitecture and detailed design, new objects are added that
realize a specific solution. Nevertheless, object-orientation
provides a unified structuring methodology that has proven
to streamline software development considerably.

We and others [1, 10] believe that integrating exceptions
into the entire software development process can provide
similar advantages. This paper presents the insights we
gained over the last few years in our research efforts that
were aimed towards achieving this goal.

The rest of the paper is structured as follows: section 2
presents background on exceptions and exception handling,
on the idealized fault-tolerant component and on exceptions
within the software development life cycle; section 3 looks
at the nature of exceptions and handlers at various phases
of software development; section 4 presents the mapping we
established between exceptions at the different levels of ab-
straction; section 5 outlines the expected benefits of inte-
grating exceptions into the software development life cycle,
and the last section draws some conclusions.
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this by raising an 

 

interface exception

 

, otherwise it executes the request and produces a
reply. If an 

 

internal exception

 

 or 

 

local exception

 

 signaling an error occurs, error pro-
cessing is activated in an attempt to handle the error. If it can be dealt with, normal pro-
cessing in the component resumes; if not, the component itself signals its failure by a

 

failure exception

 

. It is immaterial whether exceptions are true exceptions in the sense
of exceptions provided by programming languages or are indicated using exceptional
replies to requests. It is even possible that some entity external to the system compo-
nent observes its failure and initiates appropriate error processing in the users of the
component.

 

2.6 Classification of Concurrent Systems

 

The subsequent parts of the paper present and review the most commonly used soft-
ware fault tolerance techniques, classied based on the different forms of concurrency
they support: sequential techniques, independent or loosely-coupled concurrent tech-
niques, competitive- and collaborative concurrent techniques, and hybrid techniques.

 

3   Sequential Techniques

 

3.1 Robust Software

 

Robust software is often not considered part of software fault tolerance, since it does
not use any for of redundancy. However, it represents the base for achieving any form
of dependability.

Robustness is dened as “the extent to which software can continue to operate cor-
rectly despite the introduction of invalid inputs” [8]. Invalid inputs must be dened in
the specication. They include out of range inputs, inputs of the wrong type or format,
corrupted inputs, wrong sequencing of input, and violations of pre-conditions.

Upon detection of such invalid input, several optional courses of action may be
taken: requesting new input from the input source, using the last acceptable value, or
using a pre-dened default value.

Fig. 4:  Idealized Fault-Tolerant Component
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Figure 1: The Idealized Fault-Tolerant Component

2. EXCEPTIONS

2.1 Background on Exceptions and Handlers
An exception describes a situation that, if encountered,

requires something exceptional to be done in order to resolve
it. During program execution, an exception occurrence is a
situation in which the standard computation cannot pursue.
For the program execution to continue, an extraordinary
computation is necessary [7].

A programming language or system with support for ex-
ception handling allows users to signal exceptions and to
define handlers [2]. To signal an exception amounts to de-
tecting the exceptional situation, interrupting the usual pro-
cessing sequence, looking for a relevant handler, and then
invoking it.

Handlers are defined on (or attached to) entities, such as
data structures, or contexts for one or several exceptions.
According to the language, a context may be a program, a
process, a procedure, a statement, an expression, etc. Han-
dlers are invoked when an exception is signaled during the
execution of the use of the associated context or nested con-
text. To handle means to put the system into a coherent
state, i.e. to carry out forward error recovery, and then to
take one of these steps: transfer control to the statement fol-
lowing the signaling one (resumption model [4]), or discard
the context between the signaling statement and the one to
which the handler is attached (termination model [4]), or
signal a new exception to the enclosing context.

2.2 Idealized Fault-Tolerant Component
The Idealized Fault-Tolerant Component (IFTC) [8] is a

concept that was developed to structure the execution of de-
pendable software (see Fig. 1). An IFTC offers services that
may return replies to the component that made a service
request. If a request is malformed, the component signals
this by raising an interface exception, otherwise it executes
the request and produces a reply. If an internal exception
signaling an error occurs, error processing is activated in an
attempt to handle the error. If it can be dealt with, normal
processing in the component resumes; if not, the component
itself signals its failure by an exception.

2.3 Exceptions and Software Development
Lemos and Romanovsky [1] describe the general idea of in-

tegrating exceptions into the software development life cycle

considering exception handling within the software lifecycle

[8]. However, more recent work which deals with obstacles

in a goal-driven approach for requirements engineering has

provided systematic techniques for identifying failure

behaviours in requirements specifications [9]. Another area

in which new approaches have been recently developed for

specifying and designing activities incorporating multiple

parties (objects or processes) and co-operative handling of

exceptional situations is multiparty interactions [10].

The contents of the paper will be as follows. In the next

section exception handling is discussed in the context of the

software lifecycle by classifying the different types of excep-

tions. Section 3 describes the co-operative object-oriented

approach for software development, which relies on a

restricted number of modelling abstractions for describing

software systems. In section 4, we describe how exceptions

and handlers can be represented using the co-operative

object-oriented approach. The feasibility of the whole

approach will be demonstrated in section 4, in terms of the

Production Cell benchmark case study. Finally, in section 5

we present some concluding remarks.

2. EXCEPTIONS AND HANDLERS IN 
THE SOFTWARE LIFECYCLE

Exception handling has been traditionally associated with

the design phase of the software lifecycle, during which all

the effort is made to protect the application software from

faults that may be introduced during requirements, design,

and implementation, or can occur at the support level. The

consequence of such approach is that the appropriate context

in which errors should be detected and recovered is lost, also

it is lost the potential correlation that might exist between the

error states of the different contexts and how these should be

recovered in an optimised way. 

In order to resolve these limitations, the proposed

approach aims to specify exceptions, and their respective

handlers, in the context in which faults occur. Figure 1 repre-

sents the proposed approach that associates exception han-

dling with the phases of software lifecycle. For each

identified phase of the software lifecycle, a class of excep-

tions is defined depending on the abstraction level (or con-

text) of the software system being modelled and analysed.

As the software development progresses, new exceptions are

identified and their respective handlers specified. However,

the exceptions identified at the different phases can be

causally and timely related, which might constraint the spec-

ification of their respective handlers. Moreover, it might be

the case that the rationalisation of exceptions might enable

the usage of a single handler for different classes of excep-

tions. At every phase of the software development failure

assumptions have to be revised once the system structure is

decomposed and behaviour refined. This process of revising

failure assumptions, as we progress through the software

lifecycle, might also lead to the refinement of the exceptions

and handlers previously specified. For example, an applica-

tion-related specification, which considers a sensor to be ide-

al, might have to be revised, once the sensor failure

behaviour is considered.

During the requirements phase, the intent is to identify all

the exceptions related to the application (E(a)). At this level

of abstraction the phenomena being modelled and analysed

is essentially related to the environment of the computer sys-

tem. Application-related exceptions correspond to error

states in the application, and the respective handlers (H(a))

for these exceptions should recover the state of the environ-

ment of the computer system into a known consistent state.

In order to demonstrate the different kinds of exceptions that

exist during the software lifecycle, in the following we con-

sider a series of simple examples involving the purchase of a

book via the Internet. If a client is looking for a particular

book and the Internet bookshop does not have the requested

item, then the bookshop can either return the list of all avail-

able books by the same author, or inform about some other

books on the same topic. These two alternative behaviours

can be considered handlers to the application-related excep-

tion of not having the requested book in stock. 

During the design phase, the intent is to identify all the

exceptions related to the design (E(d)), which could further

be partitioned in terms of architectural design and detailed

design. At this level of abstraction the phenomena being

modelled and analysed is essentially related to the software

that controls the application. Design-related exceptions cor-

respond to error states in the application software, and the

respective handlers (H(d)) for these exceptions should recov-

er the state of the application software into a known consis-

tent state. In addition to the handlers for the design-related

exceptions (H(d)), there are also the handlers for the applica-

tion-related exceptions (H(a)), and the handlers associated

with combinations of exceptions of both classes which have

to be treated together (H(a&d)). Examples of design-related

exceptions are those associated with fault tolerance policies,

robust data structures, algorithm-level fault tolerance, and

data-diversity; for instance, an exception is raised whenever

there is no majority voting between diverse versions of the

same software. In terms of the Internet bookshop, the avail-

ability of the service is one of the system’s main require-

ments, hence design-related exceptions, caused by server

crashes or delays in the service, can be handled transparently

from the client by redirecting all requests to an available

server in another location.

During the implementation phase, the intent is to identify

all the exceptions related to the implementation of the appli-

cation software and the support in which the application will

be executed (E(i&s)), e.g., operating system. Implementation
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Figure 1 Exception handling in the software lifecycle

Figure 2: Exceptions in the Software Life Cycle

using the figure shown in Fig. 2.
For each identified phase of the software development life

cycle, a class of exceptions is defined. For instance, during
the requirements phase, the authors propose to identify the
exceptions related to the application (E(a)), and to define
application-specific handlers. The authors give as an exam-
ple the case of an Internet book store: if a client is looking
for a book that is currently unavailable (application-level
exception), the bookstore could return a list of other books
from the same author, or inform about books on the same
topic (application-specific handling).

During the design phase, the intent is to identify all ex-
ceptions related to the design (E(d)), i.e. related to the cho-
sen software architecture or object-interactions. The design-
level handlers for these exceptions should recover the appli-
cation state to a known consistent state. In the Internet
bookstore example, a crashed server (design-related excep-
tion) could be tolerated by routing the following requests to
a backup server.

During the implementation phase, the intent is to identify
all exceptions related to the implementation of the applica-
tion and the support in which the application is executed
(E(i&s)). Implementation-specific handling in the Internet
bookstore example would consist, for instance, in executing
a garbage collector when the free memory on the server is
low.

Lemos and Romanovsky [1] suggest also that there might
be a need for combined handlers, i.e. handlers that are de-
signed to handle situations in which, for instance, appli-
cation and design-specific exceptions have to be addressed
together.

We agree with the authors of [1] that exceptions are of
different nature at each phase of the software development
process. We agree also that new exceptions appear during
each development phase. However, we believe that the re-
lationships among the exceptions and handlers of different
phases are complex and deserve further investigation. The
following section present our notion of exceptions and han-
dlers at each phase of software development.
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3. NATURE OF EXCEPTIONS AND
HANDLING WITHIN EACH DEVELOP-
MENT PHASE

3.1 Exceptions and Requirements Elicitation
During requirements elicitation, an activity that is car-

ried out at the very beginning of the software development
cycle, the focus of the developer is on discovering and docu-
menting essential functionality and behavior of a (software)
system that does not yet exist. Use case [6] or other goal-
oriented approaches are very popular for requirements elic-
itation, since they guide the developer in discovering essen-
tial services that the system under development needs to
provide. A use case describes, without revealing the details
of the system’s internal workings, the system’s responsibili-
ties and its interactions with its environment as it performs
work in serving one or more requests that, if successfully
completed, satisfy a goal of a particular stakeholder. The
external entities in the environment that interact with the
system are called actors. The actor that initiates a use case
in order to pursue a goal is called the primary actor, actors
that the system interacts with in order to provide a service
are called secondary actors.

During the requirements elicitation phase the developer
works at a very high level of abstraction. The system is
looked at as a black box : only the services that the system
offers and the interactions that are necessary to achieve these
services are investigated. In this context, we propose to
define an exception as follows:

Proposition 1 : An exception at the requirements
elicitation phase (at a level of abstraction where
the system is considered a collection of services)
represents any potentially occurring exceptional
situation Es that could prevent the system from
providing the services it normally provides.

Based on our experience, there are two cases of exceptions
at the requirements elicitation phase: 1) context-affecting
exceptions Es(ca) and 2) service-related exceptions Es(sr).

Context-affecting exceptions are situations that change the
context in which the system operates. Certain context changes
might require the system to suspend some of it’s normal ser-
vices for safety reasons, or to provide special exceptional ser-
vices in order to satisfy stakeholder needs while the excep-
tional situation is in effect. These exceptional services can
be seen as handlers for the exceptional situation (Hs(ca)).
For example, in an elevator system where safety is the main
concern, in case of a fire outbreak in the building (excep-
tional situation), the elevator operator or a smoke detector
(exceptional actors) should activate the fire emergency mode
of the elevator control software. During a fire emergency, all
elevator cabins are moved to the ground floor (handler).

Service-related exceptions represent exceptional situations
in which the completion of a particular service or goal may
be threatened. Service-related exceptions have many na-
tures:

• The current system state makes the provision of a ser-
vice impossible;

• Failure of secondary actors that are necessary for the
completion of the user goal;

• Failure of communication links between the system
and important secondary actors;

• Actors violate the system interaction protocol, i.e. they
invoke system services in the wrong order, or at the
wrong time.

If the service-related exception puts the user in danger, then
measures must be taken to put the system in a safe state. If
the service-related exception threatens the successful com-
pletion of the service, reliability is at stake. It should then
be investigated in consultation with the stakeholders if the
system can recover and meet the user goal in an alternative
way or provide some form of degraded service. Handlers
should then be defined that describe the interactions be-
tween the environment and the system needed to address
the exceptional situation (Hs(sr)).

After the occurrence of any exceptional situation, the sys-
tem should evaluate if the encountered problem threatens
the reliability or safety of future service provision. If yes,
then a mode switch is necessary. Switching to a different
operation mode allows the system to signal to the environ-
ment that the services offered by the system have changed,
and reject any requests for services that cannot be performed
with sufficient reliability or safety.

3.2 Exceptions and
Requirements Specification

During requirements specification, one important activity
consists in outlining the system interface. At this level of
abstraction, the system under development is still a black
box, i.e. no internal components are visible to the outside.
The focus is on the messages that are sent to and from the
system.

Applying the ideas of the idealized fault-tolerant compo-
nent (see subsection 2.2) to the system and the actors, we
propose to define exceptions at this level of abstraction as
follows:

Proposition 2 : An exception at the requirements
specification phase Em (at a level of abstraction
where the system is considered a black box with-
out internal structure) is an exceptional message
exchanged between the system and an actor in
the environment (to signal an exceptional out-
come of a service request, or to inform the system
of a significant change in the environment that
could affect the currently provided services), or
the absence of a normal message, or the recep-
tion of a normal message that should not be re-
ceived at this point according to the interaction
protocol.

More precisely, exceptional messages can occur in 3 cases:

1. If an exceptional situation arises in the environment
that threatens system safety or the reliability of cer-
tain services, the (exceptional) actor that detects the
situation should notify the system with the appropri-
ate exceptional message (Em(ca)).

2. In order to complete a service, the system might re-
quest services from secondary actors. If the secondary
actor cannot provide the service, it should notify the
system of the failure (or of the degraded service provi-
sion, if some partial result was achieved) (Em(sr)).
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3. Likewise, when a service is requested from the system,
in the case where the service cannot be provided as
advertised, the system should notify the primary actor
with an appropriate exceptional message (Em(out)).

Case 1 exceptions are asynchronous messages, since the ex-
ceptional situation can occur at any point in time. Case 1
exceptions signal the occurrence of a context-affecting ex-
ception (described in section 3.1) to the system. Case 2 and
3 exceptions on the other hand are synchronous messages,
since the exception is generated as a result of a service re-
quest.

Ideally, every secondary actor would signal its failure to
the system by sending it an exceptional message. However,
it is dangerous to assume that the secondary actors in the
environment and the communication channels are reliable.
Hence, sometimes it is necessary to detect failures of sec-
ondary actors using, for instance, timeouts. Sometimes even
the reception of a normal message can indicate the occur-
rence of a service-related exception. For instance, if an eleva-
tor receives a message notifying the system that the elevator
cabin is approaching the 10th floor, then the system might
conclude that the floor sensor located at the ninth floor is
broken, if the previously received message established that
the elevator cabin was approaching the eighth floor and the
cabin was moving upwards.

Apart from the system interface, requirements specifica-
tion also includes the specification of the conceptual system
state. Parts of the system state, namely that part of the
state that is needed to remember the current system mode,
to keep track of the failures of secondary actors and to ver-
ify the adherence to the system protocol, can be considered
exceptional as well.

As long as the architecture of the system is not known,
run-time interaction between system components cannot be
determined yet. Therefore, a high-level requirements speci-
fication usually describes the functionality of the system by
specifying how service requests affect the conceptual system
state. This can, for instance, be done using pre- and post-
conditions that are attached to (atomic) system operations.
The same strategy can be used to describe the functionality
that should be provided by handlers.

3.3 Exceptions and Software Architecture
During the software architecture phase, the system under

development is split into high-level components that com-
municate using well-defined communication protocols. [11]
identifies several software architecture styles, the most pop-
ular ones being: Client / Server, Layered Architecture, Pipes
& Filters, Event-Based Architecture and Blackboard Archi-
tecture. Since these architectures use different communi-
cation paradigms, exceptions within each architecture are
of different nature. The following paragraphs discuss the
nature of exceptions within each of the above software ar-
chitecture styles.

Client / Server. In a client / server architecture, a client
component sends requests to a server component, which exe-
cutes the request and sends a reply back to the client. This is
exactly the situation covered by the idealized fault-tolerant
component. In this style there are 3 possible situations in
which the server signals an exception to the client: 1) The
client’s request is malformed or does not conform to the
server’s specified protocol. In this case, the server signals

the appropriate interface exception. 2) The request of the
client could only partially be completed. The server signals
the partial service to the client by means of a degraded ser-
vice exception. 3) The server failed in an uncontrolled way
with no guarantees on its internal state. The server signals
a failure exception to the client. Any handling of one of
the above exceptions has to be done in the client. Rigorous
exception handling requires that a client must provide a han-
dler for each potential exception. In case the exception can
not be addressed successfully by the client, the appropriate
exception should be propagated.

Layered Architecture. In a layered architecture style, the
software is partitioned into several nested layers, where an
inner layer provides services to the outer layer. Similar to
the client / server style, we propose to use the idealized
fault-tolerant component ideas within this architecture style.
Rigorous exception handling requires that each outer layer
handles all potential exceptions signaled by the inner layer.
In case the exception can not be addressed successfully by
the layer, the appropriate exception should be propagated.

Pipes & Filters. In a pipes & filters architecture, the sys-
tem is partitioned into several filter components. Each filter
reads from its input port a stream of data, processes it, and
produces a stream of data on its output port. Some filters
also have a control port that can be used to change the way
the filters processes the data. Filter components are con-
nected to each other using pipes. Simple pipes connect the
output of one filter to the input of another filter. Complex
pipes can connect multiple filters by merging or splitting
data flows.

In addition to a standard output port, some filters also
have an error port. In exceptional situations, the filter com-
ponent can output data to the error port. Hence, an excep-
tion in the pipes & filters architecture is represented by data
flowing through an error output port. A pipe can be used
to connect an error output port to the input or control port
of some other filter. That filter (and the following filters, if
any) can then handle the exception.

Event-Based Architecture. In an event-based architecture,
the individual components are not statically connected. In-
stead, a set of event types are declared that components can
instantiate, in which case all components that expressed in-
terest for that event type receive a notification. Communi-
cation is hence anonymous, i.e. the receivers of an event do
not know who sent it.

In the event-based architecture style, exceptions are rep-
resented by event types that are only instantiated to signal
the occurrence of an exceptional situation that needs to be
addressed. Any component that is registered to be notified
of the exceptional event can provide handling functionality.

Blackboard Architecture. In a blackboard architecture, com-
munication between components is centered around a data
repository – the blackboard. Components observe the data
posted on the blackboard, and as soon as they find data that
they can process, they remove the data from the board, pro-
cess it, and put the result back on the board.

In a blackboard architecture, an exceptional situation man-
ifests when the data on the blackboard satisfies a certain
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exceptional condition. Typically, a handler component re-
peatedly scans the data on the blackboard, and, if it deter-
mines that the exceptional condition is satisfied, it executes
its handling functionality.

In order to accommodate the different architecture styles,
the definition of exceptions at the software architecture phase
has to be fairly general:

Proposition 3: An exception at the software ar-
chitecture phase (at a level of abstraction where
the software is partitioned into coarse-grained
components that communicate using different com-
munication stlyes) is any exceptional output Ec

produced by a software component to signal to
other components the occurrence of an excep-
tional situation. The nature of the exception de-
pends on the concrete architecture chosen:

• Client / Server : An exceptional reply is sent
from the server to the client when a service
request is malformed, or when the request
was only partially completed or failed.

• Layered Architecture: An exceptional reply
is sent from an inner layer to the enclosing
layer when a service request is malformed,
or when the request was only partially com-
pleted or failed.

• Pipes & Filter : Data is output on an error
port.

• Event-Based Architecture: An exceptional
event is sent.

• Blackboard Architecture: The data on the
blackboard satisfies an exceptional condi-
tion.

Any component that reacts to the exceptional
output is a “handler” component.

If exception handling is applied rigorously at the software
architecture phase, then the components become error-con-
tainment regions, i.e. modules from which an erroneous
state can not spread unnoticed to other parts of the ap-
plication. Filho et al. show in [3] how to extend an ar-
chitecture description language (ADL) with exception flow
information. Their approach proposes to map the enhanced
architecture descriptions to Alloy [5], a formal modeling lan-
guage and tool. This allows the developer to automatically
validate the conformance of the architecture to specified ex-
ception handling and propagation rules.

3.4 Exceptions and Design
During the design phase, a solution that implements the

functionality of each individual component is designed. In
an object-oriented design (or any other design that provides
modules with interfaces and encapsulation capabilities), the
functionality of the system is implemented by a set of objects
that send each other messages. Typically, responsibilities
are assigned to objects, and each object then encapsulates
the state and behavior related to that responsibility.

Just like in the client / server architecture, each object can
be designed according to the concepts introduced by the ide-
alized fault-tolerant component. It should raise an interface
exception if the service request is malformed, and return an
exception to signal a partial or failed request execution.

Proposition 4 : An exception at the design phase
(at a level of abstraction where each software
component has to provide its functionality using
a set of interacting modules) is an exceptional
response Eop propagated out of a module to sig-
nal the fact that an operation could not be com-
pleted as requested. An exception could occur in
the following situations:

• The caller module’s request is malformed
or does not conform to the callee module’s
specified protocol. In this case, the callee
signals the appropriate interface exception.

• The request of the caller module could only
partially be completed. The callee module
signals the partial service to the caller by
means of a degraded service exception.

• The callee module failed in an uncontrolled
way with no guarantees on its internal state.
The callee signals a failure exception to the
caller.

3.5 Exceptions and Implementation
During the implementation phase, the constraints of the

implementation platform have to be taken into account, e.g.
constraints imposed by the operating system or the hard-
ware. Modern programming languages usually provide a set
of predefined exceptions to signal violations of platform con-
straints, e.g. ReadOnlyDevice or OutOfMemory exceptions,
to the program. They are signaled by the language run-time
support, i.e. the libraries that encapsulate operating system
services.

Proposition 5: An exception at the implementa-
tion phase (at a level of abstraction where each
operation provided by a software design module
is composed of a set of executable statements) is
an exception Est signaled by the operating sys-
tem or language run-time when an implementation-
related exceptional situation prevents the execu-
tion of a statement.

4. MAPPING BETWEEN EXCEPTIONS AT
DIFFERENT PHASES

The previous section has established that exceptions are
represented in different ways within each software develop-
ment phase. Although the nature of exceptions changes de-
pending on the level of abstraction that a developer is work-
ing on, there exist interesting relationships between the ex-
ceptions of each phase. Fig. 3 illustrates these relationships.

The most obvious mapping between exceptions is top-
down. Exceptions and handlers (depicted E and H in Fig.3)
at a high level of abstraction usually encompass many ex-
ceptions and handlers at lower abstraction levels. This is
illustrated in Fig. 3 by means of arrows pointing downwards.

A context-affecting exceptional situation Es(ca) is mapped
to one or several exceptional messages Em(ca) sent by excep-
tional actors to the system in order to notify it of the context
change. Likewise, an exceptional service defined as a han-
dler Hs(ca) maps to a handler operation Hm(ca) triggered
by the exceptional message(s). However, if the service con-
sists in multiple interactions between the environment and
the system, only the first input-output interaction sequence
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Figure 3: Mapping Between Exceptions at Different Development Phases

is actually a handler operation triggered by an exceptional
message. The following interaction steps of the exceptional
service are triggered by “normal” messages and provided by
standard operations (depicted N in Fig. 3). For example,
in case of a fire outbreak in the elevator, the fire detec-
tor (exceptional actor) sends the FireDetected exceptional
message to the system. The system handles that message
by instructing the motor of the elevator cabin to move to-
wards the ground floor. Subsequently, the ground floor sen-
sor sends a “normal” message to the system when it detects
that the cabin is arriving at the ground floor. This triggers
the execution of normal system behavior, during which the
system instructs the motor to stop.

A service-related exceptional situation Es(sr) is mapped
to zero or more exceptional messages Em(sr) (zero if the ex-
ception is represented by the absence or abnormal sequenc-
ing of normal messages). For each service-related excep-
tional message, a corresponding handler Hm(sr) describes
the first interaction steps involved in handling the excep-
tion. Subsequent interactions sequences, if any, are most
likely triggered by normal messages. If a requested service
cannot be provided, then the system should raise a corre-
sponding exceptional output message Em(out).

The mapping of exceptional messages to exceptional com-
munications between components is less straightforward. If
a component is responsible for communication with a sec-
ondary actor, then it communicates the failure of the actor
to the other components using exceptions. Therefore, some
(but not all) service-related exceptional messages Em(sr)
are related to exceptional communications Ec(sr) at the ar-
chitecture level.

It is also possible that new architecture-related exceptions
Ec(ar) have to be introduced into the system because of the
chosen software architecture. For instance, in a distributed
client / server system, it is possible that a server crashes
and cannot be reached anymore. Client components can
of course define handlers Hc(ar) for such exceptions that
try to achieve the desired behavior in a different way. For
instance, a crashed server can be tolerated by sending an
identical request to a backup server. If the architecture-
related exceptions cannot be handled by a component in

such a way that the functionality of the failing component
can be compensated for, then it is impossible to provide
the service, and hence the environment has to be notified of
the problem. This requires the addition of new exceptional
output messages Em(out) at the requirements specification
level. It is hence possible that exceptions at a lower level of
abstraction affect the higher level! This is shown in Fig. 3
by bold arrows pointing upwards.

Similarly to what happens at the component level in a
client / server setting, exceptions are used by modules within
the design of an individual component in order to signal
the failure or exceptional outcome of a method call to the
calling module. As a result, some of the exceptional re-
sponses Eop(sr) are related to a service-related exceptional
message Em(sr) or an exceptional communication among
components Ec(sr). New exceptions Eop(d) also arise due
to the chosen design solutions. If handling cannot be done
using handler operations Hop(d) within the component, then
the exception has to be propagated to other components
by means of an exceptional (design-related) communication
Ec(d). Finally, if the problem cannot be handled transpar-
ently at the architecture level, the problem has to be signaled
to the environment with a corresponding exceptional output
message Em(out).

Some service-related exceptions Em(sr) map even down
to an implementation-level exception Est(sr). For instance,
a message that is sent to a secondary credit card company
actor can raise a CommunicationException when execut-
ing the statement that tries to contact the company server.
Therefore, new statement exceptions Est(imp) related to
specific implementation decisions have to be defined, to-
gether with handlers that address the situation. For ex-
ample, an application executing on a computer might en-
counter an OutOfMemory exception when trying to allocate
a big data structure on an execution platform with mem-
ory constraints. Again, if the problem cannot be dealt with
within the design module, the appropriate design-level ex-
ceptional response should be signaled to the caller module,
which might result in new architectural exceptional commu-
nications Ec(imp), and in rare occasions in new exceptional
output messages Em(out), if transparent handling of the
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implementation platform problem is not possible.

5. POTENTIAL BENEFITS
Integrating exceptions into the entire software develop-

ment life cycle promises many benefits.

Separation of Concerns. The obvious benefit is clear sep-
aration of concerns. Handlers make it possible to sepa-
rate exceptional behavior from normal behavior, and ex-
ceptions unambiguously define the conditions in which nor-
mal processing is interrupted and exceptional processing be-
gins. Separation of concerns not only improves readability of
the software development artifacts, but also facilitates other
software development activities, e.g. debugging.

Prioritizing. Separating the handlers from the normal be-
havior allows the developer to define special policies and
priorities for anything that addresses exceptional situations.
For example, handlers at the requirements elicitation and
specification phase can be classified into handlers that en-
sure system safety or handlers that increase system reliabil-
ity [9]. If this classification is established, the developer can
set clear guidelines that specify that, for instance, safety is
more important than reliability. Such a decision affects the
software development activity as well as run-time execution
of the software. The project manager could, for instance, de-
cide to spend more development and testing time on safety-
critical components. At run-time, safety-related exceptions
and handlers can execute with higher priority, i.e. they can
interrupt even reliability-related activities.

Traceability. The previous section has highlighted the re-
lationships among exceptions and handlers at different soft-
ware development phases / levels of abstraction. Document-
ing these relationships during the development process pro-
vides valuable traceability information. It allows the de-
veloper to propagate high-level decisions down to the lower
levels of abstraction, or, conversely, to understand the global
exceptional execution context when working on software en-
tities at lower levels of abstraction.

6. CONCLUSION
This paper has investigated the relationship between ex-

ceptions and the different phases of software development.
We argued that exceptions are of different nature depending
on the level of abstraction that the system under develop-
ment is looked at.

At the highest level of abstraction, where the system is
just composed of a set of provided services, exceptions are
exceptional situations that prevent the system from provid-
ing normal service. At the requirements specification level,
where the system interface is the main focus and the sys-
tem itself still has no internal structure, exceptions are ex-
ceptional messages that flow between the environment and
the system. At the software architecture phase, where the
system is partitioned into a set of communicating compo-
nents, exceptions take the form of any means of exceptional
communication among components. During detailed design,
where each component is designed as a set of communicat-
ing modules, exceptions are exceptional response messages
sent to signal the failure of a service provided by a module.
Finally, at the implementation level, where the behavior of

each module is implemented using a set of programming
statements, exceptions are pre-defined exceptions raised by
libraries or the language run-time.

We have outlined a mapping between the exceptions at
the different levels of abstraction. The mapping is consis-
tent with, but far more complex than the one presented
in [1]. We also showed that some exceptions at a low level
of abstraction can require the definition of corresponding
exceptions at a higher level of abstraction in the case where
transparent handling at the low level is not possible.

Finally, we outlined the potential benefits of integrating
exception handling into the entire software development life
cycle. If these benefits are indeed observable when applied
to a real software development project remains to be inves-
tigated.
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