
Classifying Prototype-basedProgramming LanguagesC. Dony1, J. Malenfant2 and D. Bardou11 LIRMM | Universit�e de Montpellier II161, rue Ada. 34392 Montpellier Cedex 5, France.E-mail: dony@lirmm.fr2 UR{VALORIA | Universit�e de Bretagne sudCGU de Vannes. 1, rue de la Loi. 56000 Vannes, France.E-mail: Jacques.Malenfant@univ-ubs.frAbstract. The prototype-based programming model has always beendi�cult to characterize precisely. Prototype-based languages are all basedon a similar set of basic principles, yet they all di�er in their precise in-terpretation of these principles. Moreover, if the prototype-based modeladvocates concrete objects as the only mean to model concepts, cur-rent languages promote methodologies reintroducing abstract construc-tions to manage e�ciently groups of similar objects. In the past, wehave proposed two classi�cations of delegation-based languages in or-der to clarify these issues. In the present paper, we come back to thesetwo classi�cations in the light of our recent work. The �rst classi�cationlooks at the primitives of the virtual machine underlying each language;it classi�es languages according to the semantics of these primitives.The second considers the group-oriented constructions provided in eachlanguage; it classi�es languages according to the level of abstractnessof these constructions. The two classi�cations complements each othersand also other existing classi�cations. They allow people to assess moreprecisely the relative merits of the di�erent languages.1 IntroductionA prototype is a typical member used to represent a family or a category ofobjects [15]. Prototype-based languages propose a vision of object-oriented pro-gramming based on the notion of prototype. Since the middle of the eightees,numerous prototype-based languages have been designed and implemented: self[45, 1, 2, 13, 37], kevo [41, 42], agora [40], garnet [33, 34], moostrap [31, 32],cecil [12], omega [5], newton-script [38]. Other languages, such as object-lisp [3] or yafool [19] not quali�ed as prototype-based, nevertheless o�er closelyrelated mechanisms or use prototypes at the implementation level. Finally sys-tems mixing prototypes and classes have also been proposed [22, 21].A very general and informal characterization of prototype-based languages israther simple: they propose a world in which there is one kind of objects equipedwith attributes1 and methods, three primitives to create objects: creation \ex1 We use that term to denote a structural characteristic of an object or \frame".



nihilo", cloning and extension (di�erential copy), and one control structure: mes-sage sending together with a delegation mechanism. Beyond this generalization,all these languages present slight yet profound and interesting di�erences.They are di�erent because they have been developed for di�erent applicationdomains. They are di�erent because they have been inspired on the one hand bythe earlier frame languages used in knowledge representation and on the otherhand by actors languages used in distributed AI. They are also di�erent becausethey have been developed with di�erent goals.{ The �rst goal was to provide simpler descriptions of objects. People's nat-ural way to grasp new concepts is generally to begin by creating concreteexamples rather than abstract descriptions; class-based languages force peo-ple to work in the opposite direction, by creating abstractions (classes) priorconcrete objects (instances).{ The second goal was to o�er a simpler programming model with fewer con-cepts and primitives. Applications in the �elds of user-interfaces [33] andvirtual reality [7, 36] have tried to escape the traditional abstract data typemodel to move towards a less constrained one. For these applications, classeshave been considered as a source of complexity because they are playing toomany roles [8]. The alternative solution is often based on the concept of pro-totypes, more amenable to a form of programming-by-example and providingan alternative to class instantiation and class inheritance [8, 3, 45, 34].{ The last goal was to o�er new capabilities to represent knowledge. Class-based languages constrain objects by disallowing, for example, distinctivebehavior for individual objects among their instances and by forbidding in-heritance between objects to share values of instance variables.Thus, an exact and unique characterization of prototype-based programmingraises a number of issues [17, 26, 4]. Current prototype-based languages di�er inthe semantics of object representation, object creation, object encapsulation,object activation and object inheritance.{ There exists various interpretations of what is a prototype, a concrete ob-ject or an average representative of a concept, which can lead to di�erentlanguages.{ The semantics of the basic mechanisms (cloning, di�erential copy, delegation)is not unique and allows for di�erent interpretations.{ Di�erential copy creates inter-dependent objects and authorizes various in-terpretations concerning the precise nature of the concept of object theyimplement.{ Finally, some of the capabilities o�ered by classes, for example the ability toexpress sharing at a conceptual level, have revealed to be so important forprogram organization that they have been reintroduced in di�erent ways.So, understanding each language, both in terms of their expressive powerand their applicability to speci�c kinds of problems, is not always easy. The



Framename: "whale"category: mammalenvironment: seaenemy: manweight: 10000color: blueFig. 1. Example of Frame
Framename: "Moby-Dick"is-a: whalecolor: whiteenemy: Cpt-HaccabFig. 2. Di�erential descriptionTreaty of Orlando [39] proposes a �rst comparison of class-based and prototype-based languages; we go further by addressing more extensively the issues pendingthe alternative semantics associated to pure prototype-based languages and thelevel of abstration propsed by the di�erent mecahnisms reintroducing class func-tionalities into prototyped-based languages. In the past, we have proposed twocomplementary classi�cations to this end. The goal of the present paper is tocome back to these two classi�cations in order to present and explain their mainclassi�cation criteria, but also to complement them in the light of our recentwork.The rest of the pqper is organized as follos. Section 2 recalls the genesisof prototype-based programming and thus proposes a �rst classi�cation of lan-guages. Section 3 proposes a �rst classi�cation of prototype-based languagesaccording to the vision their conceptor had on them. Section 4 presents the com-parison criteria related to primitive operations and mechanisms that constitutea prototype-based language virtual machine. Section 5 presents the comparisoncriteria related to how programs written in prototype-based languages are orga-nized. Section 6 proposes the two classi�cations of languages according to thepreviously de�ned criteria.2 Genesis of the Prototype-Based Programming ModelTo understand the genesis of ideas is a �rst important step in a classi�cation pro-cess. This section recalls how frame-based and actor languages have inuencedprototype-based ones.2.1 Prototypes and knowledge representationThe concepts of prototype and di�erential description can be found in the frametheory [30] and in some systems inspired from this theory such as the frame-basedlanguages krl [6] or frl [35]. Frames have been designed as an alternative wayto represent knowledge such as typicality, default values or exceptions, whichare di�cult to describe in other formalisms [29]. Frame-based languages use theprototype's theory and they have inuenced some prototype-based languages.Structure. A frame is a set of attributes. Each attribute represents onecharacteristic of the frame and is made of a couple \attribute name - set of



facets". The most common facet, and the only one considered in our examples,is the attribute's value. The �gure 1 shows a de�nition of a frame representinga whale.Di�erential description. Di�erential description makes it possible to cre-ate a new frame by only expressing the di�erences from an existing one2. Thedi�erential description creates a relation between the new frame and the former(its prototype or parent). This relation is implemented by a link generally called\is-a"3. The �gure 2 shows the de�nition of a frame representing Moby-Dick,which looks like the above whale but is white and has a speci�c enemy.Frame hierarchies and inheritance. The is-a relation is an order rela-tion that de�nes frame hierarchies [9]. A frame can inherit from its parent aset of attributes. Frame-based systems propose inheritance hierarchies made ofrepresentatives of concepts, which are conceptually very similar to those builtlater with prototype-based systems. One can generally �nd at the top of thosehierarchies average representatives, such as whale, and at the bottom concreterepresentatives, such as Moby-Dick. What is tremendously important here isthat what is shared are not descriptions, as with class inheritance, but ratherconcrete representations and so bindings of slots to values.2.2 Actor languagesTo represent entities with classless objects [46] has also been proposed in descrip-tions of act 1 [23] although the papers related to this language don't mentionneither the prototype concept, nor its use in the earlier frame-based languages.act 1 provides objects and mechanisms conceptually close to those describedabove and part of the fundamental characteristics of today's prototype-basedlanguage.From our point of view, the main di�erence between the frame-based lan-guage krl quoted above and act 1 is that act 1 is a programming (and not arepresentation) language. Actors thus have attributes (acquointances) and a setof behavior. We will use the term \method" to denote the representation of abehavior and the term \property" to denote either an attribute or a method.Methods are invoked by sending messages to actors4. The �gure 3 shows an ac-tor named point with two attributes and one method. Actors, being classlessobjects, are created by cloning and extending existing ones with three primitivescreate, extend and c-extend [10].Cloning. Although a copy primitive did exist in earlier languages such assmalltalk, act 1 has introduced cloning (shallow copying) as a primitive way2 \The object being used as a basis for comparison (which we call the prototype) pro-vides a perspective from which to view the object being described. (...) It is quitepossible (and we believe natural) for an object to be represented in a knowledge sys-tem only through a set of such comparisons" [6].3 This link may be accessible to the programmer via a related attribute also calledis-a.4 This simpli�ed vision is su�cient here; in fact, methods are grouped in a script andinvoked via pattern matching.
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(object 'extend 'point'((x 5) (y 10))'((norm (lambda () ...))))(point 'create 'point2'((x 3) (y 30))'((move (lambda (newX newY)(setq x newX y newY))))(point2 'extend 'turtle'((heading 0) (y 4))'((forward (lambda (...)...))))Fig. 3. Cloning and extension in act 1.to create new objects. The simple biological metaphor of cloning makes it veryappealing, compared to the traditional way to create objects in class-based mod-els, namely by instantiation. The basic idea is that, given an existing and co-herent object, it is easier to get a new object similar to the �rst one by simplycopying it than to instantiate correctly a new one with coherent initial values forits instqnce variables. Another primitive, called create, combines cloning andaddition of new properties. For example, in Figure 3, point2 is a clone of pointwith new attribute's values and to which a new method has been added.Extension. Di�erential description is conceptually similar to that of framesand is performed by a primitive called extend, which creates a new actor thatwe will call an \extension" of its model. The model is called the proxy and is theequivalent of the parent or prototype in the frame's terminology. The �gure 3shows the de�nition of a (Logo) turtle actor as an extension of point2. A turtleis like a point but as a heading and a forward behavior to move in the directionde�ned by its heading. What we call extension should not be confused with thepossibility to add new attributes to objects.Inheritance and delegation. The relation between an actor and its proxyis really similar to the is-a relation between frames. This relation is implementedby a link named proxy, that we will also call parent in the rest of the paper.An extension can inherit properties of its proxy. The inheritance is achievedwhenever an actor does not know how to handle a message, in which case it(explicit delegation), or the system (implicit delegation), can ask its proxy toanswer for it. The transfer of control to the proxy is called delegation5. Papers onact 1 do not precise the context in which a method is executed after a delegation(the binding of self); this mechanism is however a �rst form of what will becomedelegation in prototype-based languages.5 \Whenever an actor receives a message he cannot answer immediately on the basisof his own local knowledge (...), he delegates the message to another actor, called hisproxy ". [23]



3 Di�erent visions of Prototype-Based ProgrammingThe above systems contain the essence of what has been later called prototype-based programming. The �rst studies that led to the design of classless object-oriented programming languages have been published in the middle of the eigh-tees. They brought to the fore various issues generally related to class-basedprogramming and proposed various solutions based on the use of prototypes.This section recalls these early proposals and thus supports classi�cation basedon the vision their conceptors had and the problems they wanted to solve.3.1 Prototypical instances and cloning - A simpler programmingmodelThe class-based model is complex [8, 22, 21, 39]; classes play di�erent roles6 thatmakes program design di�cult. In reaction to this complexity, in a quest for asimpler programming model, Borning [8] has proposed an informal description ofa classless language in which new objects are produced by copy and modi�cationof prototypes. Once the copy is done, no relation is maintained between thecopied prototype and its clone. The resulting programming model is simple butquite poor in term of sharing and in term of program organization. As far aswe know, the model has not been pursued by its author but has inspired somecomplete cloning- and prototype-based languages such as kevo [42], omega [5]and obliq [11].3.2 Prototypical instances and di�erential description - A new wayto conceive objectsAt the same time, and partially for the same reasons, but also mainly to proposea new way to conceive and de�ne objects, Lieberman has proposed to appliedsome ideas extracted from act 1 to object-oriented programming [24, 25]. Hehas described an informal programming model based on prototypical instances,cloning and di�erential description. Many di�erent languages have been inspiredby his work and share basically the same characteristics: self, object-lisp,newton-script, moostrap, etc. self has attracted the largest developmente�ort and it has been widely distributed.As a prototypical example of such languages, we can give a avor of object-lisp [3], which has a well-known lisp syntax. The �gure 4 shows an object-lispversion of the prototypical \point-turtle" example. Objects have attributes andmethods; they can be cloned and extended. Extension objects have a parent andinherit their properties. Activation is based on message sending (function ask).There is no encapsulation, attributes can be accessed via message sending ((askturtle x)) or through their name within methods. Delegation can occur eitherto retrieve the value of an attribute or to activate a method if the receiver does6 Let us quote: instance descriptors, method libraries, support for encapsulation shar-ing and reuse, support for the architecture of programs, etc.



(setq point (kindof)) ;Creating an object ex nihilo.(ask point (have 'x 3)) ;Creating an attribute for point.(ask point (have 'y 10))(defobfun (norm point) () ;A method norm for point.(sqrt (+ (* x x) (* y y)))) ;variables are the receiver's ones.(defobfun (move point) (newx newy) ;A method with parameters,(ask self (have 'x (+ x newx)) ;to add two points.(ask self (have 'y (+ y newy))) ;Modifying values of attributes.(defobfun (plus apoint) (p) ;A method to add two points.(let ((newx (+ x (ask p x)))(newy (+ y (ask p y)))(newp (kindof apoint))) ;Creating an extension of the object(ask newp (have 'x newx)) ;passed as parameter.(ask newp (have 'y newy))newp))(setq point2 (kindof point)) ;point2 is an extension of point,(ask point2 (have 'y 4) ;with a new attribute y.(setq turtle (kindof point2)) ;An extension of point2,(ask turtle (have 'cap 90)) ;with a new attribute cap,(defobfun (forward turtle) (dist) ;and a method forward.(ask self (move (* dist (cos cap))(* dist (sin cap))))object-lisp is an extension of Lisp towards objects allowing both message passingand traditional function call. Message passing is implemented by the function ask ;its �rst argument is the receiver and the second a function call where the name of afunction is used as message selector (a method corresponding to that name must exist);the arguments of the function call are the arguments of the message. The followingprimitives are used in the example:{ creating objects \ex nihilo": function kindof without arguments,{ creating extensions: functions kindof (with one argument, which is the extendedobject),{ method de�nition: function defobfun,{ attribute de�nition: method have.Fig. 4. A prototype-based language example { object-lisp.not hold the required property. Delegation can here be described informally inthe following way: \an object that cannot answer a question can delegate it to itsparent, if the parent can answer it, the answer will be performed in the contextof the values of the original object". Thus, compared to act 1, the fundamentalnew points are explicit description of polymorphism and dynamic binding. In ourexample, the method norm is polymorph because it can be applied to a point orto a turtle. Dynamic binding ensures that a method executed after a delegationis applied in the context of the initial receiver (in our example, sending themessage norm to turtle returns 5).



3.3 Classless objects - knowledge representationAnother motivation to study classless languages was a quest for greater exibilityto represent knowledge and express sharing in object-oriented programs.As shown by the frame experience, prototypes o�er new capabilities to rep-resent knowledge di�cult to grasp in class-based languages such as [24, 39, 17]:{ di�erent objects of the same family having di�erent structures and behaviors,{ exceptional objects,{ objects with viewpoints and sharing at the object level,{ incomplete objects to be classi�ed.Such capabilities, although widely used, are more speci�cally the mark ofa family of hybrid languages, combining declarative knowledge representationand programming. Representatives of such languages are garnet [33, 34] (theobject layer of which, named KR, being prototype-based), which is dedicated tographical user interfaces, or yafool [19], which is a knowledge representationlanguage based on frames that can have methods in the sense of traditionalobject-oriented languages.3.4 Class and object hierarchies - Disconnecting subtyping andreuseA last family is made of languages that integrates both prototypes and classes. Ifseveral propositions have been made in this direction and have inuenced actuallanguages, this family has yet to produce a concrete representative.Indeed, one of the �rst proposal embedding object hierarchies [22, 21] hassuggested to mix in a single world classes and instances (called examplars) hav-ing some kind of autonomy. The main purpose of that proposition was relatedto object-oriented program organization; it was meant to experiment a sepa-ration between subtyping hierarchies between classes, and code inheritance hi-erarchies (or implementation hierarchies) between instances. In this proposal,object methods are stored in instances and type interfaces in classes; classes canhave di�erent instances with di�erent implementations of the same method. Forexample, the instances empty-list and non-empty-list of the class list havea di�erent version of the append method. New objects are created by cloninginstances; for example, new lists are created by cloning either empty-list ornon-empty-list. Besides, any instance can inherit from any other, some pri-vate methods necessary for the implementation of the methods that compose itsinterface. The delegation hierarchy between instances is not necessarily isomor-phic to the inheritance hierarchy between classes7.Although such proposals have not been pursued, they have inuenced actuallanguages and represent, in our opinion, a source of new ideas for the applicationsof the prototypes formalism [26, 4].7 By the way, the non isomorphic interface and class hierarchies of java, each classimplementing one interface, is a new form of that idea.



4 Classi�cation criteria related to primitive mechanismsThe classi�cation of the previous section is based on various visions of what isclassless programming and on various application domains for prototype-basedprogramming. We now focus on a classi�cation based on the primitive operationsof prototype-based languages. Beyond a set of similar basic principles (object-centered representation, dynamic addition and deletion of slots, cloning anddelegation), prototype-based languages di�er in the precise interpretation of theprimitives that constitute their virtual machine and in the way programs areorganized. To build some classi�cations reecting those di�erences requires topresent the comparison criteria.4.1 Object RepresentationObjects in prototype-based languages are de�ned by a set of properties. A prop-erty is basically the binding within the object of name to a value8. Propertiesare conceptually of two kinds: attributes or methods. Two main solutions havebeen considered for the representation of objects: (1) to separate the conceptsof attributes and methods or (2) to amalgamate them using the concept of slot.The �rst alternative mimics objects of a traditional class-based approach, thevalue of each attribute can be accessed within methods by referencing its nameand can be changed through assignment. In the second alternative, no distinc-tion is made between variables and methods; instead, an object gets a collectionof slots where a variable can be viewed as a method that simply returns a value.Distinction between variables and methods : are objects representedwith attributes and methods or with slots?Indeed, both alternatives have advantages and disadvantages. The advan-tages of slots are advocated by self [45]: they are more exible, they allowusers to access in the same way attributes and methods, they permit to overridean attribute with a method and conversely a method with an attribute. How-ever, they force to implement an explicit encapsulation mechanism. With thevariables&methods approach, encapsulation of variables can be simply enforced,by establishing standard (smalltalk-like) visibility rules (object-lisp| cf.Fig. 4 | does not provide such rules, variables can be accessed via messagesending).4.2 Criteria related to object creation and evolutionTwo alternatives are possible to create new objects in current languages. Anobject can be created ex nihilo or it can be created from an existing one (bycloning or extending it). Whether or not a primitive to create new objects exnihilo is provided makes up our second criteria.8 A property can also have a type, a domain, facets, . . .



Creation ex nihilo: is it possible to create new objects ex nihilo?If a primitive to create new objects ex nihilo is provided, two new alternativesshow up. We can create empty objects, or objects with an initial structure. Ifwe restrict ourselves to the creation of new empty objects alone, this raises thequestion of what to do with them? Some means must be provided to modifytheir structure in order to build the concrete objects in applications. Indeed,this introduce two other design alternatives, can the structure of objects beextended and/or shrunk dynamically, by adding or deleting properties?Dynamic modi�cation of object structure : can object's structure bemodi�ed?Consider the creation of new objects from existing ones. The �rst solution iscloning. Most languages (except garnet and amulet) provide a primitive forcloning objects. Cloning (cf. Section 2.2) in itself o�ers two alternatives: shallowcloning or deep cloning. However, deep cloning is usually ruled out as an unin-teresting alternative because it is time consuming and provide little interestingproperties on its own. The second solution is extension and is discussed in thenext section.4.3 Extensions and other solutions for life-time sharing betweenobjectsA new alternative appears with the question of extension objects (cf. Sections 2.1and 2.2): are extensions necessary and what do they add to cloning? Some lan-guages do not provide primitives to create extensions of other objects. For ex-ample kevo only allows for cloning and adding new properties to clones. Theobject point2 in �gure 3 is a clone to which a new property has been added; itwould have been possible to de�ne turtle by cloning point2 and by adding thenew object the properties heading and forward.The di�erence between an extension and an augmented clone lies in the wayobjects share properties [17]. From the sharing and reuse point of view, shallowcloning essentially means that immediately after cloning, the corresponding slotsof an object and its clone will point to the same objects. For example, considerpoint and its clone point2 in the same �gure 3, they share the method printand their position by the virtue of pointing to the same value objects throughtheir respective slots print, x and y. However, even if they get the same structureand the same values, they have independent slot bindings; if point is modi�ed forexample, the two objects cease sharing the values of the updated slots. If a newproperty is added to point, point2 will not have it. Hence, shallow cloning en-force \creation-time sharing", characterized by an independent evolution of theclone and the copied object, which prevents objects to be unexpectedly modi�edthrough their clone. The independent evolution applies to slot individually; herepoint and point2 continue to share the method move, even after point2's yslot has been modi�ed.



With extensions, we face \life-time sharing": the extension inherits the prop-erties of its parent and as long as the objects exist, the sharing will continue.In our example, turtle will continue to share the y slot of point2 even if thisslot's value is modi�ed. Moreover, if a new property is added to point2, turtlewill inherit it.Cloning and extension mechanisms are thus di�erent and have distinct ap-plications.Does the language provide both cloning and extension mechanisms?When an extension mechanism is provided, some languages allow new objectsto be extensions of more than one object. There is no conceptual di�erence,this possibility simply raises usual multiple-inheritance problems when accessinginherited properties. Some languages also allow an object to change its parentat run-time; this is called dynamic inheritance in self.Multiple parents : is it possible to have multiple parents?Dynamic inheritance : is it possible for an object to change its parent.When no extension mechanism is provided, achieving life-time sharing be-tween objects requires other \group-widemechanisms". For example, kevomakespossible, via a mechanism that we will call propagation, to add, for example, anew method to all objects of the same clone family [43]. This requires of coursethat such families be handled automatically by the system.If the language provides no extension mechanism, is there apropagation-like mechanism allowing to achieve some kind of life-time sharing.4.4 Message sendingAs in other object-oriented languages, the basic control structure of prototype-based languages is message sending. The alternatives with message sending liein the way methods are searched. In the simplest case, methods are simplysearched in the object that has received the message. However, most prototype-based languages provide a sharing mechanism named delegation. Delegation canbe implicit or explicit.Implicit delegation is used goes hand in hand with a corresponding exten-sion mechanism. Delegation here is a kind of inheritance mechanism allowingto retrieve, access or apply properties of an object, which are in fact owned byits parents. Implicit delegation was �rst introduced by Lieberman [23] (see Sec-tion 2.2) as a message forwarding mechanism, who has accurately described itin [24] (see Section 3.2). With implicit delegation, when an object does not ownthe requested method or attribute, the interpreter automatically delegates thequestion to the object pointed by its parent link.
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parent link

...

...

...

favActor

favFilm

favDirector

JoeFilmEnthusiast

...

...

stamina

weight

30

11-11-11-11

age

age := age + 1

8 Octave street

Johnname

phone

JoePerson

JoeSportsman

growOld

address

Fig. 7. A representation of a person with three objects.turtle, but rather point2 to provide default values for the turtle's variables,which are not rede�ned. An object has at least as many properties as its parent,each of these properties is identi�ed by the same name within the context of anyof the two objects and has the same default value9. If the entities are distinct,the objects cannot share properties but only property values.What about delegation? With this interpretation, an object should not bemodi�ed by sending an assignment message to one of its descendants. For ex-ample, an assignment message for the slot y sent to turtle should not result inpoint2's y value modi�cation as shown in Figure 5 but rather in the de�nitionof the y variable in turtle as shown in Figure 6. In other words, assignmentmessages (or write access to attributes in methods bodies) should not be dele-gated but should eventually entail a local rede�nition of the attribute. Parent (ordelegation) links can in this case be intended as \is-like-a" links. Delegation thengrants read access to variables but no more write access to the parent proper-ties. The frontiers between objects are then clearer: in our example point2 andturtle can be considered as two di�erent objects because they can evolve almoston their own. The only way to modify the value of the point2's y variable is toexplicitly send a message to point2. Although this will also modify the y slot'svalue for turtle, this may be acceptable in a sense, since this value is intendedto be a default one.In terms of sharing, such an interpretation of variable assignment amounts torestrict, between an extension and its parent, property sharing to value sharing(the object turtle does not share with point2 the property named y but thevalue of that property as long as it is not rede�ned on turtle).Delegation as a sharing mechanism between representation of view-point on the same entity. In a second interpretation, that we will call :9 Lieberman has also suggested objects as default behavior and value repositories fortheir children in [24].



\property sharing interpretation", an extension object and its parent can beseen as di�erent parts of the same domain entity. In such a case, properties ofthe parent can be seen as full properties of the extensions. To split a representa-tion in several objects in a delegation hierarchy is a natural way of representingviewpoints.For example, consider objects collectively representing a person | say \Joe"| in a delegation-based system as shown in Figure 7 [17, 27, 4]). The objectJoePerson holds the basic information about the person (its address, age, nameand phone and a method growOld while the object JoeSportsman, an exten-sion of JoePerson holds information related to Joe as a sportsman. CreatingJoeSportsman as an extension object instead of simply adding the slots salaryand company to JoePerson also leaves the door open for other extensions, e.g.Joe as a �lm enthousiast. Any modi�cations to JoePerson are automaticallyseen by its extensions. Also, changes to the person Joe can be made throughits extension objects. For example, if the employee changes its personal address,the change will naturally be made at the person level and will be e�ective for allextensions of this person. As in a description hierarchy, the most general view-points are those denoted by the objects near the top of the hierarchy whereasthe most speci�c viewpoints are those denoted by the objects which are leavesof the hierarchy. In our example, person is a more general viewpoint on Joe thaneither sportsman or �lm enthusiast.What about delegation?With this interpretation, it is coherent that an objectmay be modi�ed by sending an assignment message to one of its descendants.For example, asking JoeSportsman to change its age can (and even has to) resultin a modi�cation of the attribute age of JoePerson.In terms of sharing, this interpretation is an application of property sharingbetween objects. The address or age properties, not only their values, are sharedby the objects JoePerson, JoeSportsman and JoeFilmEnthusiast. Propertysharing is a characteristic of the extension mechanism and is achieved throughthe delegation mechanism.Interpretation of the extension mechanism : When the language pro-poses an extension mechanism, is it with a \property sharing" or\value sharing" interpretation?A short analysis. Fully analysing these choices goes beyond the scope if thispaper. A �rst partial analysis can be found in [17] and more recent ones in [27,28, 16].Let us just insist that the \property-sharing" interpretation raises some en-capsulation issues when used in a "point-turtle" like example, indeed delegationestablishes a so strong link between the objects point2 and turtle that theycannot any more be considered as representing distinct entities. Conversely, itenables split representations. A split representation is a set of objects linkedby delegation, representing a single entity of the domain such as the personJoe. There is, as far as we know, in today's prototype-based languages, no way
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whiteFig. 8. Di�erential creation of the prototype o2 representing Fred from the prototypicalinstance of elephants also representing Clyde.to handle split representations as �rst-class objects, entities for which we havecoined the name split objects . Handling split objects in a language would meanto create them, refer to them, clone them and otherwise deal with them as withother objects. This is an open issue on which we are currently working [4, 27].Besides, the \value-sharing" interpretation partially eliminates encapsulationissues by making parents independent of their extensions but it also restrictthe expressive power of the language by forbidding split representation withviewpoints.5 Classi�cation criteria based on program organizationDespite the basic principles of prototype-based programming, which advocatesconcrete objects as the only mean to model concepts, current languages haveintroduced mechanisms to deal with groups of similar objects. The three mostcommon ones are: prototypical instances, traits objects, and maps.Early in the foundation of prototype-based programming, Lieberman has pro-posed the mechanism of prototypical instances to share properties among objectsrelated to a similar concept. The essential idea is to use the �rst concrete ex-ample of a concept as the representation of the concept itself. The well-knownelephant example illustrates this (Fig. 8). Here, the object o1 represents theelephant Clyde, which is the �rst elephant we have encountered. Clyde is there-fore chosen as the representation of the concept of elephant. It is grey, has fourlegs and two ears. When the white elephant Fred appears, delegation allows usto di�erentially create Fred as an object o2, having o1 as parent and simplyrede�ning the slot color to be white.Traits and maps have been invented in the prototype-based language self[44]. A traits object is a repository for methods (and \semi-global" variables)applying to the whole group of its delegating objects. The trait-based program-ming model [44] proposes to segregate the slots of a prototypical object in twoparts: the representation part and the protocol part. Typically, the protocol partconsists of slots holding method values while the representation part will consist
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5Fig. 10. A point example using a traits object.of slots holding either object identi�ers or constant values, but this need notto always be the case. In our �rst example (Fig. 9), the representation part ofa point object would include the slots x and y, while the protocol part wouldinclude the slots display and add. A traits object is an object holding the pro-tocol part, the idea being that this object can be shared among several copiesof the representation part (themselves represented as objects, see Fig. 10).Traits encourage the creation of delegation hierarchies that look like an in-heritance one in its higher levels made of traits. At the leaves, we �nd concreteobjects, somewhat like the instances in class-based programming. Trait-basedprogramming leaves more exibility in the creation of objects, and traits are notclasses: they are less exible and less abstract. An operation traitof returningthe �rst parent traits of an object can be provided; testing whether two ob-jects support the same protocol then boils down to test if the two objects' traitsare the same or have a common parent. In this sense, trait-based programmingemphasizes the notion of similar behavior among objects.A map factors structural information out of objects in a clone family, i.e. agroup of structurally identical objects obtained by cloning one another. Maps,illustrated in Figure 11, are similar to standard prototypes, except that the slotvalues are replaced by indexes giving the relative position of the slot values inthe object, now represented merely as a vector of slot values. In fact, self goesbeyond that by putting in the map the values of immutable slots, an existingconcept in this language. When an object receives a message, the selector is usedto look up the map to �nd a slot index, a value or a method. If a value is found, it
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0Fig. 11. The point example using maps.is returned; if a method is found, it is applied in the context of the receiver; if anindex n is found, the content of receiver's nth slot is retrieved and either returnedif it is a value or applied if it is a method. In self, maps are created automaticallybehind the scene and if an object is cloned, the two clones will share the samemap. They give self the same space e�ciency in the representation of objectsas the one of class-based languages. Because maps are not object in self, theyhave no direct inuence on its programming methodology.5.1 GeneralizationPrototypical instances, traits and maps are speci�c mechanisms used in existinglanguages to structure programs. Compared to the original objectives of theprototype-based model, we have argued [26] that they are going against the verynotion of prototype-based programming as it has been originally de�ned. Butfrom them emerge a much richer notion of delegation-based programming. In fact,delegation-based languages exhibit much more diversity than it �rst appeared,because these new mechanisms impose slightly di�erent programming models,which can hardly be put under the same \prototype-based" hat.This approach allows us to complement existing classi�cations, such as theone presented in the previous section, but also the ones of Wegner [46] andthe Treaty of Orlando [39]. Wegner identi�es the class of object-centered pro-gramming languages as classless object-based languages, within which he singlesout delegation-based languages, i.e. \classless objects with delegation"10. In ourpoint of view, Wegner's classi�cation underestimates the diversity of classlessobject-based languages, indeed because it is an attempt to characterize the wholedesign space of object-oriented language. Moreover, at the time of his writing,delegation-based languages were still underinvestigated. It is in this sense thatwe complete his classi�cation, being more precise in one of his original class.10 A little confusion appears in [26], where object-based languages are understood asalways classless.



We propose to classify delegation-based programming languages accordingto the number of di�erent kinds of objects and the number of di�erent kinds oflinks they manipulate. For example, the parent-of link of delegation is one linkmanipulated in all delegation-based programming languages. Similarly, a trait-based programming language manipulates two kinds of objects: concrete onesand traits. We argue that the number of kinds of links and objects manipulatedin a language bears important insights into the nature of its programming model.We explore four classes of delegation-based languages: languages with one kindof object and one kind of link, ones with two kinds of objects and one kind oflink, ones with two kinds of objects and two kinds of links and �nally ones withone kind of object and two kinds of links. This classi�cation is founded on fourillustrating languages, the formal semantics of which have been developed andthoroughly examined [26].Prototype-based languages have always been criticized for their lack of man-ifest organization in programs. Our new classi�cation brings to the fore theexistence of delegation-based languages with a more and more structured pro-gramming model, forming a continuum between pure prototype-based languagesand class-based ones. Not only this shows that the organization of a programcan be made more explicit without sacri�cing an object-centered programmingmodel, it also suggests a step by step (possibly automatic) transformation ofprototype-based programs into class-based ones, a programming methodologyadvocated before [46, 39].5.2 Languages based on one kind of object and one kind of linkDelegation-based languages where the space of objects is completely homoge-neous and where delegation is used for sharing, correspond to the usual notionof prototype-based languages. All objects are equally �rst-class entities: they canbe created dynamically, they can be sent a message, they are all mutable, theycan be passed as parameters and returned as results. All of them can be used asparent and cloned. We categorize these languages as having one kind of objectand one kind of link, namely the parent-of link.5.3 Two kinds of objects, one kind of linkTypically, a language with one kind of object and one kind of link will evolvetowards one with two kinds of objects when some objects become exceptionalcompared to others. Objects can become exceptional because of a particularprogramming methodology that must be supported at the language level inorder to have all its strength. They also become exceptional when their \�rst-classness" is severely restricted, such as being immutable or abstract (in thesense that they cannot answer messages). They may not be cloned or used asparents. We illustrate this category of languages with a trait-based programminglanguage.The trait-based programming model is a good example for this class of lan-guages, having two kinds of objects, prototypes and traits, and one kind of link,



delegation. In prototype-based programming, while assumed to be a concreteobject, the traits object will fail if sent messages since presumably the corre-sponding methods will try to send the receiver (self) messages accessing therepresentation part, which will fail. In fact, for trait-based programming to workproperly, most traits objects must never receive messages. And we propose thatthe language must make sure that it happens like that.5.4 Two kinds of objects, two kinds of linksLanguages with one kind of link will typically have a delegation, or parent-oflink, which implements sharing akin to inheritance. Adding a second kind of linksuggests introducing a structural description link similar to the class-of link. Intraditional prototype-based languages, each object being one-of-a-kind, it getsboth its slot names and slot values. When a large number of structurally identicalobjects are created, it becomes tempting to share the structural information, aline of reasoning that pushed the self team to invent maps [14].A map-based language is constructed by making maps true objects. Becausetheir slots contain indices to be reinterpreted in the context of the receiver, maps,as objects, cannot answer messages. So we make them abstract objects unableto answer messages. With maps represented as objects, it becomes possible totake advantage of them in the programming methodology. A map-based languageencourages a programming methodology where the notion of structurally similarobjects becomes very important. In such a language, we can speak about a groupof structurally identical objects. Map-based operations to add or delete a slot toall objects in a clone family, etc. should be implemented.5.5 Two kinds of links, one kind of objectTypically, a language with two kinds of links and one kind of object can beobtained by some rationalization of a language with two kinds of objects (andtwo kinds of links). For example, consider the map-based language proposedearlier. Can we transform maps in order to make them standard objects capableof answering messages without impairing the programming model? The answer isyes. The problem with maps begins when we send them messages whose resultneeds a reinterpretation in the context of a concrete object in order to makesense. But maps don't need to be implemented like standard prototypes. Asimple idea, illustrated in Figure 12, is to replace the map by a descriptor objectwith one slot called slotsDict, which points to an object implementing a slotdictionary. The slot dictionary is not an ordinary prototype (despite a similar yetnot identical aspect in Figure 12), but rather an object similar to smalltalk'smethod dictionary. We draw it as a box with round corners and it is actually anobject answering at:hsome selectori returning its associated value and at:hsomeselectori put:hsome valuei messages like a smalltalk dictionary.The advantage of this representation is that now we can send legitimatemessages to descriptors, namely slotsDict, as well as to slot dictionaries. In
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method for adding pointsFig. 12. The point example using descriptors.fact, our descriptors look pretty much like smalltalk classes. A descriptor-based language similar to the previous map-based one can be designed verysimply. In order to preserve an object-centered programming model, descriptorsshould be created automatically, like maps were. Nonetheless, descriptors are somuch like classes that we are at the frontier between abstraction-centered andobject-centered programming here. An important missing feature that makesthe language still promoting an object-centered programming model is the lackof a sharing mechanism between descriptors that would have a semantics similarto inheritance. By taking care not to introduce such a link between descriptors,we don't encourage programmers to design their applications mainly arounddescriptors (see [28] for more information about descriptors).5.6 But what's in a link?The characterization by the number of links is an important measure of thecomplexity of a language, but since this classi�cation was �rst published, ex-amples have proved that the nature of these links is also important. Amulet,for instance, de�nes four di�erent delegation semantics called modes. Clearly,classifying Amulet has having four kinds of links would bring little insight intothe nature of the language.This suggests another level of classi�cation: classifying the links themselves.We have identi�ed two main family of links: comparative links (like, delegation,inheritance, etc.) and descriptive links (is-a, class-of, map-of, descriptor-of, etc.).Other family of links could also be added, especially reective links such as abehavior-of found in reective languages [31, 40]. Kinds of links ars thereforebetter understood in our classi�cation as kinds of families of links.
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Fig. 13. An historical taxonomy [17].6 Classifying Existing Languages6.1 First classi�cation based on primitives mechanismsThe taxonomy shown in Figure 13 is extracted from [17] and is only shown here togive an historical perspective that reects our understanding of prototype-basedlanguages at that time11. It takes into account how objects are represented,how they can be created and modi�ed and the form of delegation (implicit orexplicit) proposed by the language. Four existing prototype-based languages wereclassi�ed in this taxonomy: self, object-lisp, act 1 and examplars.self and ObjectLisp are members of the language families (L8) and (L2)respectively, both extended with implicit delegation. From the point of view ofthat taxonomy, they only di�er in the representation of objects; self uses slotswhile object-lisp uses variables and methods. examplars is best characterizedby the family illustrated by (L13): prototypes have variables and methods, thestructure of prototypes cannot be modi�ed dynamically, new objects are createdex- nihilo or by copying existing ones, the parent link is named "superExemplar"and delegation is implicit along this link. However since it is an hybrid language11 This classi�cation is also operational one implemented as a smalltalk class hi-erarchy. The hierarchy can be used to interpret expressions of simulations of theclassi�ed languages. This smalltalk program, named Prototalk, is in fact a frame-work allowing to rapidly implement a simulation of any prototype-based language[18].



also providing classes, some of its characteristics are out of the scope of our tax-onomy. act 1, described in Section 2.2, can be attached speci�c characteristics.Objects can have variables and a script. Messages to objects are examined by thescript in which various actions can be performed, including explicit delegationto other objects in the system. When the script rejects a message, there is animplicit delegation to the parent of the receiver, the script of which being in turnexecuted. These functionalities can be classi�ed in an extension of the language(L5) for which the evaluator is also able to deal with explicit delegation orders.6.2 Second classi�cation based on the semantics of primitivesThis section now proposes a comparative table taking into account the wholeset of criteria presented in Section 4. Most of the entries have been explained,let us simply quote a few particularities.For what concerns the interpretation of the extension mechanism, languagessuch as garnet or yafool only propose the \value sharing interpretation" whileothers such as self or object-lisp only propose the \property sharing" one.Others, such as newton-script propose both by allowing to create the twokind of extensions implemented by two links named proto or parent. Anotherapproach (encapsulated inheritance) is proposed by agora which permits eachobject to control the creation of its future extensions and the read/write accessthey will have on the attributes of the extended object [40]. We have quotedthe advantages and drawbacks of both interpretations; besides, mixed solutionsraise the issue of managing both kind of delegation links.6.3 Abstraction-based Classi�cationThe �gure 15 summarizes our second classi�cation. We have represented �vecategories of languages: four described here with one example language in each,and one corresponding to Wegner's classless object-based languages, in whichhe classi�es Ada [20]. The list of possible languages in each class is by no meanclosed. For example, another path towards a language with two kinds of objectsbut one kind of link appears when considering the status of prototypical ob-jects in Lieberman's �rst proposal. In Lieberman's mind, the standard way torepresent a concept is to provide a prototypical instance of this concept (Clydeis the prototypical elephant) to which other objects of the same concept candelegate for default properties. Because modifying a prototypical object has animportant, and often undesirable, e�ect on all other objects delegating to it, wecan make them immutable objects, hence stressing their particular role. In theClyde{Fred example, Clyde would no longer be mutable, therefore making itimpossible to indirectly modify Fred by mutating Clyde. A safe version of such alanguage designed in this line provides another example of a language with twokinds of objects and one kind of link.It is also worth noting that the classi�cation using the number of kinds ofobjects and links needs not to be restricted to object-centered languages.We have



Self Object Lisp Garnet(KR) Amulet(ORE) Agora MoostrapCreation ex nihilo yes no yes no no yesCloning yes yes no no yes yesExtension mechanism yes yes yes yes yes optionalDynamic modi�cation ofobject structure yes yes yes yes no (possibleat metalevel) yesDistinction betweenvariables et methods no yes no no yes no (slots)Interpretation of exten-sion mechanism propertysharing propertysharing value shar-ing 4 slot perslot di�er-ent kinds ofsharing encapsulatedinheritance propertysharingSharing mechanism delegation delegation delegation delegation delegation(mixin-methodsbased) delegationSingle/multiple parents multiple single multiple simple simple(mixins) simple ormultipleDynamic inheritance yes yes no yesOther language charac-teristics traits andlobby basedorganiza-tion inheritancehierarchy inheritancehierarchyand com-positionhierarchy inheritancehierarchy reexivekernel (halland traits)NewtonScript Kevo Omega Obliq YafoolCreation ex nihilo yes no no yes yesCloning yes yes yes yes (multiple) yesExtension mechanism yes no no no yesDynamic modi�cation ofobject structure yes yes yes for proto-types no forothers no yesDistinction betweenvariables et methods no yes yes no noInterpretation of exten-sion mechanism property shar-ing and valuesharing type-like shar-ing value sharingSharing mechanism delegation propagation propagation concatenation delegationSimple/multiple parents double simple simple multiple multipleDynamic inheritance yes no ?Other language charac-teristics inheritancehierarchy andROM-de�nedprototypes compositionhierarchy andclone families type hierarchy aliases anddistributedprogramming Models and in-stances . . .Fig. 14. Languages comparison.already noted that our descriptor-based language is at the frontier of abstraction-centered programming. If we take this language and add an inheritance linkbetween descriptors, we end up having a language with one kind of objects butthree kinds of links (parent-of, descriptor-of and descriptor inheritance) whichcannot be characterized as object-centered. Moreover, consider a language wheremetaclasses are �rst-class objects as Cointe's ObjVlisp. Such a language hastwo kinds of objects (instances and classes, since metaclasses are simply classeswhose instances are classes) and two kinds of links: instantiation and inheritance.However, it is certainly not object-centered. We have used our classi�cation to
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(Ada, following Wegner)Fig. 15. The second classi�cation with example languages.characterize object-centered programming languages, but it is not restricted tothis class of languages.An interesting work now is to assess existing languages in the light of ourclassi�cation. For example, in our view self is not prototype-based but it is cer-tainly object-centered. It is our opinion that using the notion of object-centeredprogramming with abstract objects presented here, the design of self can bepositively enhanced. Our preferred path of upgrade would be to introduce traitsas abstract objects like in Section 5 but to make maps �rst-class objects in theline of our descriptors (Section 5 and [26]). This would make self a delegation-based programming language with two kinds of objects and two kinds of links.7 PerspectivesA domain, in order to be considered mature, must provide a comprehensive andintelligible description of its basic principles, its roots, its foundations, its alter-native designs and its concrete realizations. It is our hope that our work sincethe beginning of the nineties has help to convey people in the �eld of prototype-based programming and their potential users some of this deep understanding.To this end, we have used traditional scienti�c processes: observation, compar-ison and classi�cation. The two major contributions are the two classi�cations,which have clarify the design alternatives behind prototype-based languages,but also the richness of their di�erent programming models as well as their posi-tion in the larger domain of object-oriented programming. These contributions



complement existing work, and especially the Treaty of Orlando and Wegner'sclassi�cation.Besides this classi�cation e�ort, our work has also open some new researchperspectives. The explicit de�nition of the kinds of sharing, life-time and creation-time sharing, achieved by cloning and delegation has shown that the two mech-anisms are irreducible to each other. It has also led us to identify the problemof self, which occurs when frontiers between objects are blurred by teh sharingof slot bindings between them. In turn, the self problem has led us to identifyon major use of delegation, which is to create split representations of domainentity using �rst-class split objects. Split objects consider as a whole a set ofindividual objects delegating to each other that represent one single domain en-tity. The kind of sharing allowed by delegation gives unique properties to splitobjects that make them especially useful in object-oriented databases and otherpersistent applications.A second perspective is open by our second classi�cation. We have introduceda general notion of object-centered programming, which admits some kinds ofabstract devices, such as traits and maps, provided that the programming modelis still dominated by the object-centered subset of the language, i.e. the majorapplication design activity revolves around the creation of concrete objects. Byrecognizing the potential for abstract objects di�erent from classes yet capableof structuring object-centered programs, we have reconcile prototypes and ab-stractions. Corollarily, we have brought to the fore the existence of more andmore structured delegation-based languages forming a continuum between pureprototype-based languages and class-based ones.For a long time, proponents of the prototype-based approach have suggestedsoftware development methodologies evolving from a liberal designs, using pro-totypes, towards a more a more structured one to end up with a completelystructured applications using classes. Our work not only highlights the poten-tial for several object-centered programming models, but also suggest a concretepath of evolution where prototype-based programs could be turned into class-based ones by successive transformations from less structured to more structuredobject-centered programs.If prototype-based programming has still to �nd its place in the realm ofsoftware development, it is our convictions that split objects and object-centeredprogramming have an essential role to play in its future.References1. O. Agesen, L. Bak, C. Chambers, B.W. Chang, U. H�lzle, J. Maloney, R.B. Smith,D. Ungar, and M. Wolczko. The SELF 3.0 Programmer's Reference Manual. SunMicrosystems Inc. and Stanford University, 1993.2. O. Agesen, L. Bak, C. Chambers, B.W. Chang, U. H�lzle, J. Maloney, R.B. Smith,D. Ungar, and M. Wolczko. The SELF 4.0 Programmer's Reference Manual. SunMicrosystems Inc. and Stanford University, 1995.3. Apple Computer, Inc. Macintosh Allegro Common Lisp Reference Manual, Version1.3, 1989.
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