
Link-Time Static Analysis
for Efficient Separate Compilation

of Object-Oriented Languages

Jean Privat
privat@lirmm.fr

Roland Ducournau
ducour@lirmm.fr

LIRMM
CNRS — Université Montpellier II

161 rue Ada
34392 Montpellier cedex 5, France

ABSTRACT
Compilers used in industry are mainly based on a sepa-
rate compilation framework. However, the knowledge of
the whole program improves efficiency of object-oriented
language compilers, therefore more efficient implementation
techniques are based on a global compilation framework.
In this paper, we propose a compromise by including three

global compilation techniques (type analysis, coloring and
binary tree dispatching) in a separate compilation frame-
work. Files are independently compiled into standard binary
files with unresolved symbols. The program is build by link-
ing object files: files are gathered and analyzed, some link
code is generated then symbols are resolved.

1. INTRODUCTION
According to software engineering, programmers must

write modular software. Object-oriented programming has
become a major trend because it fulfills this need: heavy use
of inheritance and late binding1 is likely to make code more
extensible and reusable.
According to software engineering, programmers also need

to produce software in a modular way. Typically, we can
identify three advantages: (i) a software component (e.g.
a library) should be distributable in a compiled form; (ii) a
small modification in the source code should not require a re-
compilation of the whole program; (iii) a single compilation
of a software component should be enough even if it is shared

1Instead of applying a function to arguments, a message is
sent to an object, the receiver. The program behavior, i.e.
the code which is executed, depends on the value of receiver.
From an implementation point of view, it follows that the
static function call of procedural language must be replaced
by something more dynamic since the control flow jumps to
an address extracted from the receiver value.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE ’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

by many programs. In order to have these advantages, For-
tran has introduced separate compilation: source files are
compiled independently of future uses, then linked to pro-
duce an executable program.
The problem is that the knowledge of the whole program

allows more efficient implementation techniques. Therefore
previous works use these techniques in a global compilation
framework, thus incompatible with modular production of
softwares. Global techniques allow efficient implementation
of the three main object-oriented mechanisms: late binding,
read and write access to attributes, dynamic type checking.
In this paper, we present a genuine separate compila-

tion framework that includes some global optimization tech-
niques. The framework described here can be used for any
statically typed class-based languages [17] like C++ [21],
Java [12] and Eiffel [18], but, it is not applicable to
Self [23] or Smalltalk [11].
The remainder of this paper is organized as follows. Sec-

tion 2 presents the global optimization techniques we con-
sider. Section 3 introduces our separate compilation frame-
work. Results and benchmarks they where obtained from
are presented in section 4. We conclude in section 5.

2. GLOBAL TECHNIQUES
The knowledge of the whole program source code permits

a precise analysis of the behavior of each component and an
analysis of the class hierarchy structure. Each of those al-
lows important optimizations and may be used in any global
compiler.

2.1 Type Analysis
Late binding is considered as a bottleneck in object-

oriented programs. Statistics show that most method calls
are actually monomorphic calls. Type analysis2 can detect
these monomorphic calls and reduces the polymorphism of
others.
A type analysis approximates three sets: the set of the

classes that have instances (live classes), the set of the con-
crete type of each expression (the concrete type is the set of
dynamic types) and the set of called methods for each call
site. These three sets are mutually dependent: called meth-

2Type analysis should not be confused with the Ml type
inference.

B C DA

A C

A B C D

A C

A B C D

A C

d

c

D

CB

A

VFT

Attributes introduced in A

Static

Dynamic

Pointer to methods introduced in Asubtyping table

Instance

Class

Figure 1: Implementation of Classes and Instances

with Coloring

ods depend on the concrete type of the receiver, concrete
types depend on the instantiated classes, and instantiated
classes depend on the called methods. This interdependence
explains the difficulty of the problem [10], and the variety of
solutions [13]. There are many kinds of type analysis, even
simple ones give good result and can detect many monomor-
phic calls [2].

2.2 Coloring
Multiple inheritance is problematic with the standard vir-

tual function table (VFT) implementation. C++ resolves
it by the use of subobjects and an important overhead [16,
8]: (i) in the worst case, the number of method tables is
quadratic (instead of linear) and the size is cubic (instead
of quadratic); (ii) with subobjects, in the dynamic memory
allocated for an instance, the number of attributes can be
less than the number of pointers to VFT; (iii) pointers to
an instance are dependent of the static type of the pointers.
Coloring avoids the overhead of multiple inheritance. It

can be applied to attributes, to methods and to classes for
subtyping check [6, 20, 5, 24, 8]. The implementation of
classes and instances includes two parts (Figure 1): in static
memory, an area for each class with the address of each
method (in the VFT) and the superclass information (in
the subtyping table); in dynamic memory, an area for each
instance with attributes and a pointer to its class. Figure 1
differentiates VFT and subtyping table but in the rest of the
paper, both are merged.
The technique consists in assigning a unique identifier to

each class and a color (an index) to each class, method and
attribute. Colors are assigned in such a way that:

Invariant 1. A pointer to an instance does not depend
on the static type of the pointer. Thus, polymorphic as-
signments and parameter passing are costless (as opposed
to C++ pointer adjustments).

Invariant 2. The color of an attribute (respectively a
method) is invariant by inheritance and redefinition. Thus,
the index of the attributes (respectively methods) does not
depend on the static type of the receiver.

Invariant 3. Two classes with the same color do not
have a common subclass. The subtyping table of a class
contains the identifier of each super-class at the index of this
super-class.

For implantation example, assuming a polymorphic call
site x.f and assuming the color of the f method is ∆f , the
generated code in assembler language looks like:

mov [x + #tableOffset] → table
mov [table + ∆f] → method
call method

The same technique can be used for attribute access and
type check. See section 3.1.3 for code sample.
Finding a coloring that respects the three invariants re-

quires the knowledge of the whole class hierarchy. Minimiz-
ing the size of the table (i.e. minimizing the number of gaps,
in gray in Figure 1) is an NP-hard problem similar to the
minimum graph coloring problem. Happily, class hierarchies
seem to be simple cases of this problem and many efficient
heuristics are proposed in [20, 22].

2.3 Binary Tree Dispatch
SmartEiffel [25] introduces an implementation tech-

nique for object-oriented languages called binary tree dis-
patch (BTD). It is a systematization of some techniques
known as polymorphic inline cache and type prediction [14].
BTD has good results because VFT does not schedule well
on modern processors since the unpredictable and indirect
branches break their pipelines [7].
BTD requires a global type analysis in order to reduce the

number of expected types of each call site. Once the analy-
sis is performed, the knowledge of concrete types permits to
implement polymorphism with an efficient select tree. The
select tree enumerates types of the concrete type and pro-
vides a static resolution for each possible case. This tech-
nique does not need a memory implementation for classes
and the dynamic memory area for an instance contains the
class identifier (an integer) and the attributes.
For example, let’s consider a polymorphic call site x.f

where the concrete type of x is {A, B, C, D}. Assuming the
class identifiers of these classes are, respectively, 19, 12, 27
and 15, assuming their f method implementations are, re-
spectively, fA, fB , fC and fD and assuming the identifier of
the dynamic class of x is idx, the generated code looks like:

if idx ≤ 15 then
if idx ≤ 12 then fB

else fD

end
else

if idx ≤ 19 then fA

else fC

end
end

Obviously, the same technique can be used for attribute
access and type check.

3. SEPARATE COMPILATION
Separate compilation frameworks are divided into two

phases: a local one (compiling) and a global one (linking).
The local phase compiles a single software component

(without loss of generality, we consider the compilation units
to be classes) independently of the other components. We
denote binary components the results of this phase3. Binary

3Traditionally, the results of separate compilation are called
object files. Because this paper is about object-oriented lan-
guages, we chose to not use the traditional name to avoid
conflicts.

B external
model

A source
code

C source
code

Input

ask C model

C external
model

ask B model

A internal
model

Result

A external
model

code
A binary

Figure 2: Local Phase

components are written in the target language of the whole
compilation process (eg. machine language) but they are
not functional because some missing information is replaced
by symbols. The binary components also contain metadata:
debug information, symbol table, etc.
The global phase gathers binary components of the whole

program, collects some metadata, resolves symbols and sub-
stitutes them. The result of this phase is a functional exe-
cutable that is the compiled version of the whole program.
The compilation framework proposed in this paper con-

forms to this general approach.
Other works, [9] and [3], propose a separate compilation

framework with global optimization respectively for Mod-

ula-3 and for functional languages. In both cases, the main
difference with our approach is that their local phases gen-
erate code in an intermediate language. On linking, global
optimizations are performed on the whole program then a
genuine global compilation translates this intermediate lan-
guage into the final language.

3.1 Local Phase
The local phase takes as its input the source code of

a class, and produces as its results the binary code and
two metadata types: the external model and the internal
model (Figure 2). These three parts can be included in a
same file or in distinct files but the external model should
be separately available.

3.1.1 External Model
The external model of a class describes its interface: su-

perclasses and (re-)definitions of methods and attributes.
The local phase compiles classes independently of the final
programs but the compilation of a class needs the interface
of its related classes: superclasses and used classes. Thus,
the external model of these classes must be available or be
generated from the source file. In the latter case, a recursive
generation may be performed.

3.1.2 Binary Code
The binary code contains symbols. As in standard sepa-

rate compilation, symbols are used for addresses of functions
and global variables. In our proposition, we also introduce
other symbols: resolution addresses of late binding sites, at-
tribute colors, class colors, class identifiers, instance sizes,
and class table addresses.
The local phase assigns a unique symbol to each late bind-

ing site. A site x.f(a) associated with a symbol f12 is com-

piled with a static direct call:

push x
push a
call f12

Thanks to coloring, attribute accesses are compiled with
a direct access in instance layout. For example, we assume
that the symbol of the color of the attribute a is ∆a. Reading
the attribute a of the object x in the register val is compiled
as:

mov [x + ∆a] → val

Thanks to coloring, type checks are compiled with a check
in the class table of the instance [5, 24]. For example, we
assume that ∆C and IDC are respectively the symbols for
the color and the identifier of the target class C. Checking
that x is an instance of C or an instance of a subclass of C

is compiled as:

mov [x + #tableOffset] → table
mov [table + ∆C] → class
cmp class, IDC

jne false
check success

jmp end
false:

check fail

end:

The creation of an instance needs a memory allocation
in the heap and an assignment of the class table pointer at
#tableOffset. Thus, two symbols are required, one for the
size of the allocated memory, the other for the class table
pointer.

3.1.3 Internal Model
The internal model of a class describes the behavior of its

methods. There are two kinds of internal models according
to the global type analysis performed at link time: with or
without flow analysis.
In both cases, the internal model of a method gathers

class instantiations, late binding sites, attribute accesses and
type checks. The internal model also associates them with
symbols used in the binary code and with static types used
in the source code.
Using a type flow analysis, the internal model of a method

also contains a graph which represents the circulation of the
types between the entries and the exits of the method. An
entry is the receiver, a parameter, the reading of an at-
tribute, or the result of a method call. An exit is the result
of the method, the writing of an attribute, or the arguments
of a method call. The vertices of the graph are the entries,
the exits, the class instantiations, and some intermediate
nodes that represent expressions and local variables. The
edges of the graph are the inclusion constraints for the con-
crete types associated with each vertex.
An intraprocedural analysis makes it possible to build

these internal diagrams by minimizing their size. The anal-
ysis may be limited to polymorphic types, since the concrete
type of monomorphic types, in particular primitive types, is
statically known. This type circulation graph corresponds
to the template introduced by [1] even if intraprocedural and
interprocedural analysis were not separated in time.

A source
code

B source
code

B

B

external
model

A

B binary

internal

A

A

model

external

internal
model

code
binary

code

symbol
substitution

model
global live

analysis
interclassmodel

coloration

local phase

local phase

global phase

Figure 3: Global Phase

3.2 Global Phase
The global phase is divided into three stages: (i) type

analysis which determines the live code and the live global
model, (ii) coloring, and (iii) symbol substitution in the bi-
nary code (Figure 3).
Type analysis is based on the internal and external mod-

els of all classes. With flow analysis, the internal model
of properties are linked together by connecting their entries
and exits in order to constitute a global constraint network.
In polyvariant analysis [1], the internal models can be dupli-
cated to take into account the call contexts. The live classes
and their live attributes and methods are identified, as well
as the information on the concrete types of the live call sites.
The coloring stage is performed once the live global model

is obtained. A heuristic [20, 22] produces the values of the
identifiers and the colors of the live classes, methods and
attributes, as well as the size of the instances. Computing a
coloring at link-time was first proposed by [20] but, to our
knowledge, this has never been implemented.
The last stage substitutes values to symbols. Colors com-

puted during the coloring stage are substituted to the cor-
responding symbols. For each late binding site, the symbol
is replaced according to the polymorphism. On a monomor-
phic site, the symbol is replaced by the address of the single
method: the result is a direct call. On a polymorphic site,
the symbol is replaced by the address of a resolver. Re-
solvers are small link-time generated functions that select
the correct method. With BTD implementation, resolvers
only contain a select tree where leaves are static jumps to
the correct function. With VFT implementation, resolvers
only contain a jump to the required method in the function
table.

4. BENCHMARKS

4.1 Description
The following benchmarks compare our compilation

framework with a pure global compiler and a pure sepa-
rate compiler. We also compare three implementation tech-
niques: VFT with subobjects, VFT with coloring and BTD.

4.1.1 Languages and Compilers

g++ is the GNU C++ compiler from gcc, the GNU Com-
piler Collection. It uses the standard C++ implemen-
tation with VFT and subobjects. As a part of gcc,
it generates executables written in machine language.
Because our benchmark programs use multiple inher-
itance and late binding, the virtual keyword is used

both with inheritance and method definition4 and the
instances are manipulated through pointers5.

SmartEiffel is the GNU Eiffel compiler. It uses a fast
flow independent type analysis and implements object-
oriented mechanisms mainly with BTD. It compiles
programs into C then uses a C compiler to build an
executable program.

prmc is our compiler for Prm, an Eiffel subset toy lan-
guage. It has two compilation modes for polymorphic
late binding: either with VFT and coloring or with
BTD. It implements attribute accesses with coloring
and typechecks with subtyping table and coloring. As
SmartEiffel, it compiles programs into C then uses
a C compiler to build an executable program. Cur-
rently, prmc performs a simple RTA [2] type analysis
(without flow analysis) and partially removes the dead
code6.

For SmartEiffel and prmc, we use gcc as a C com-
piler. Hence, the three object-oriented language compilers
use the same back-end for machine code generation. Our
benchmarks are performed on a Bi-Xeon CPU 1.80GHz.
gcc, version 4.0.0, is used with two options: -O2 and
-fomit-frame-pointer. SmartEiffel, version 1.1, is ad-
ditionally used with -boost and -no gc. The 2.2 version of
SmartEiffelgives the same results.

4.1.2 Programs
In order to ensure the relevance of the results, the pro-

grams of the benchmark must meet two requirements :

• The same programs must be available for each lan-
guage.

• A program must focus on only one of the three object-
oriented mechanism.

With a small script program, we generates an identical
small program for each language. Each program is based on
a repetition of actions of the same type on different receivers.
It consists of three parts: class definitions, an initialization
sequence and a loop.

• Classes are generated. In order to avoid some arti-
facts, five isomorphic class hierarchies are generated.
Each class in the hierarchy (re-)defines methods and
introduces a new attribute. The number of classes in
each hierarchy is a parameter of the script.

• For each hierarchy, we define a simple array7 where
elements are statically typed by the root of the hierar-
chy. Then the array is filled with a random sequence

4In C++, the virtual keyword is used to avoid repeated
inheritance, and late binding requires that methods are de-
fined with the virtual keyword.
5C++ late binding also requires that receivers are either
pointers (∗) or references (&).
6The granularity is the binary file, so the global phase only
removes binary files that contain only dead functions and
dead classes. Future versions will remove more dead code.
7g++, SmartEiffel and prmc handle native C arrays. We
do not use the high-level collection of the language library
(for instance the Vector class of the C++ standard tem-
plate library) since their implementation are not equivalent
in each language.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80

Si
ze

 o
f t

he
 E

xe
cu

ta
bl

e
(k

B
)

Number of Classes

g++
SmartEiffel
prmc w/ btd
prmc w/ vft

Figure 4: Size of Stripped Executables

of instances. For each language we generate the same
random sequence.

• A loop that repeats actions on each element of the
array. The generated code looks like:

for i from 0 to many do
for j from 0 to arraylength do

action1 on array1[i]
action2 on array2[i]
...
action5 on array5[i]

end for
end for

According to an option of the script, the action per-
formed may be a method call, an attribute access or a
cast. See the Appendix for an example of a program
generated for C++.

For each benchmark, we measure the quantity of time
needed by the program according to the size of the concrete
type of the array items (i.e. the size of the hierarchy minus
one as the arrays contain only subclasses). Experiments
show that initialization time is negligible.

4.2 Results
First of all, we examine the size of the compiled programs.

Figure 4 shows the size of stripped executables of simple
generated programs. The programs contain class definitions
in a binary hierarchy in single inheritance, the instantiation
of these classes and a late binding site. The x range is the
number of classes and the y range is the size in kilobytes.
As expected, C++ generates large binaries (because the size
of VFT with subobjects is cubic). SmartEiffel generates
the smallest binaries because prmc does not remove all the
detected dead code. However, the difference between prmc

with BTD and prmc with VFT is not significant (because
the size of VFT with coloring and the size of BTD code are
both quadratic).
Our second benchmark, Figure 5, tests late binding: the

actions performed in the loop are simple method calls.
SmartEiffel and prmc compile monomorphic call sites
with a static direct call. C++ uses VFT even on monomor-
phic call sites but the processor seems to manage them effi-
ciently. Comparing VFT with BTD, BTD is more efficient

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90

T
im

e
(s

)

Size of the Concrete Type of the Reicever

g++
SmartEiffel
prmc w/ btd
prmc w/ vft

Figure 5: Late Binding

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

T
im

e
(s

)

Size of the Concrete Type of Receiver

g++
SmartEiffel

prmc

Figure 6: Attribute Access

for oligomorphic call sites8 because of the processor static
jump prediction but VFT is more efficient for megamor-
phic9 call sites because of the complexity (O(1) for VFT
and O(log(n)) for BTD). As expected, SmartEiffel and
prmc with BTD have the same performance. These results
are conform with [26]. The C++ overhead is due to the
subobject implementation and cache misses.
For the attribute access benchmark, Figure 6, we read

and write attributes introduced in a superclass of the static
type of the receiver. The coloring gives the best results to
prmc. The C++ implementation with subobject is less ef-
ficient. The SmartEiffel case requires an explanation: on
attribute access, if the classes of the concrete type store the
attribute at the same offset, the implementation is a direct
access as with coloring [25]. If not, the implementation is a
call to a function that uses a select tree and gets the cor-
rect attribute. However, SmartEiffel global compilation
is fully compatible with coloring, and a global compilation
scheme with coloring should be, at least, as efficient as prmc.
Type checking performances are measured with a type

casting benchmark (Figure 7). The programs try to down-
cast each object of the array into the first subclass of the
root hierarchy. Since in this benchmark, each hierarchy is a
binary hierarchy, there is a 50 per cent chance the cast suc-

8We say that a call site is oligomorphic when the concrete
type of the receiver is small.
9We say that a call site is megamorphic when the concrete
type of the receiver is big.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

T
im

e
(s

)

Size of the Concrete Type of the Casted Expression

g++
SmartEiffel

prmc

Figure 7: Type Downcast

cesses. We use the dynamic cast construction with C++

and the ?= construction with Eiffel and prmc. Since the
C++ type check implementation is complex and requires
a function call, its performances are not good. SmartEif-

fel and prmc both have good performances even if Smart-
Eiffel is better for oligomorphic sites and prmc better for
megamorphic sites. However, contrary to late binding, the
difference is small.

5. CONCLUSION
We present in this article a genuine separate compilation

framework for statically typed object-oriented languages in
multiple inheritance. It includes three global techniques of
optimization and implementation: type analysis, coloring,
and binary tree dispatch. Our proposition is a compromise
between efficiency and modularity. It brings the efficiency
of these global techniques without losing the advantages of
separate compilation.
In comparison with classical separate compilation, the

space and time reductions are significant. The type anal-
ysis detects monomorphic, oligomorphic and megamorphic
method calls. Then the numerous monomorphic call sites
are implemented by a direct and static call. The oligomor-
phic call sites can be resolved by an efficient binary tree
dispatching. And the megamorphic call sites drop the ex-
pensive subobject VFT implementation thanks to coloring.
Comparing with pure global compilers, the performances

stay honorable. However, from the point of view of effi-
ciency, even if the quality of the type analysis is the same,
SmartEiffel and other global compilers keep a strong ad-
vantage with their code specialization techniques: method
inlining, customization [4] or heterogeneous generic class
compilation [19]. At least, like global compilers, our frame-
work removes the justification of the two uses of the virtual
keyword in C++ because the overhead of multiple inheri-
tance (virtual inheritance) and monomorphic late binding
(virtual functions) are mainly removed.
The question about shared libraries linked at load-time or

dynamically loaded at run-time stays open. As a standard
separate compilation framework with unresolved symbols,
techniques with indirection tables are usable [15] but in our
case, on the one hand the global analysis should be per-
formed on load-time, and on the other hand, their efficiency
is currently speculative.
The last open question is about the time overhead of the

global phase (link), since it includes some static analysis
and code generation. Our prototype, prmc is poorly imple-
mented in a dynamic language. Hence, it can not be used
to give a precise answer to the question. However, it seems
that the overhead is quite small : less than 20% of the to-
tal compilation of a small program (local phases + global
phase).

6. REFERENCES
[1] Agesen, O. Concrete Type Inference: Delivering

Object-Oriented Applications. PhD thesis, Stanford
University, 1996.

[2] Bacon, D. F., Wegman, M., and Zadeck, K.

Rapid type analysis for C++. Tech. rep., IBM
Thomas J. Watson Research Center, 1996.

[3] Boucher, D. Analyse et Optimisations Globales de
Modules Compilés Séparément. PhD thesis, Université
de Montréal, 1999.

[4] Chambers, C., and Ungar, D. Customization:
Optimizing compiler technology for SELF, a
dynamically-typed object-oriented language. In Proc.
OOPSLA’89 (New Orleans, 1989), ACM Press,
pp. 146–160.

[5] Cohen, N. Type-extension type tests can be
performed in constant time. Programming languages
and systems 13, 4 (1991), 626–629.

[6] Dixon, R., McKee, T., Schweitzer, P., and

Vaughan, M. A fast method dispatcher for compiled
languages with multiple inheritance. In Proc.
OOPSLA’89 (New Orleans, 1989), ACM Press.

[7] Driesen, K., and Hlzle, U. The direct cost of
virtual function calls in c++. In Proc. OOPSLA’96
(1996), SIGPLAN Notices, 31(10), ACM Press,
pp. 306–323.

[8] Ducournau, R. Implementing statically typed
object-oriented programming languages. Tech. Rep.
02-174, L.I.R.M.M., 2002.

[9] Fernandez, M. F. Simple and effective link-time
optimization of Modula-3 programs. In SIGPLAN
Conference on Programming Language Design and
Implementation (1995), pp. 103–115.

[10] Gil, J., and Itai, A. The complexity of type analysis
of object oriented programs. In Proc. ECOOP’98
(1998), E. Jul, Ed., LNCS 1445, Springer-Verlag,
pp. 601–634.

[11] Goldberg, A., and Robson, D. smalltalk: the
language and its implementation. Addison-Wesley,
Reading, MA, 1983.

[12] Gosling, J. The Java language specification.
Addison-Wesley, Boston, 2000.

[13] Grove, D., and Chambers, C. A framework for call
graph construction algorithms. ACM Trans. Program.
Lang. Syst. 23, 6 (2001), 685–746.

[14] Hölzle, U., Chambers, C., and Ungar, D.

Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In Proc.
ECOOP’91 (1991), P. America, Ed., LNCS 512,
Springer-Verlag, pp. 21–38.

[15] Levine, J. R. Linkers and Loaders.
Morgan-Kauffman, October 1999.

[16] Lippman, S. Inside the C++ Object Model.
Addison-Wesley, New York (NY), USA, 1996.

[17] Masini, G., Napoli, A., Colnet, D., Léonard, D.,

and Tombre, K. Object-Oriented Languages.
Academic Press, London, 1991.

[18] Meyer, B. Eiffel - The language. Prentice-Hall, 1997.

[19] Odersky, M., and Wadler, P. Pizza into Java:
Translating theory into practice. In Proc. POPL’97
(1997), ACM Press, pp. 146–159.

[20] Pugh, W., and Weddell, G. Two-directional record
layout for multiple inheritance. In Proc. ACM Conf.
on Programming Language Design and
Implementation (PLDI’90) (1990), ACM SIGPLAN
Notices, 25(6), pp. 85–91.

[21] Stroustrup, B. The C++ Programming Language.
Addison-Wesley, Reading (MA), USA, 1986.

[22] Takhedmit, P. Coloration de classes et de
propriétés : étude algorithmique et heuristique.
Mémoire de dea, Université Montpellier II, 2003.

[23] Ungar, D., and Smith, R. SELF: The power of
simplicity. In Proc. OOPSLA’87 (Orlando, 1987),
N. Meyrowitz, Ed., ACM Press, pp. 227–242.

[24] Vitek, J., Horspool, R., and Krall, A. Efficient
type inclusion tests. In Proc. OOPSLA’97 (1997),
SIGPLAN Notices, 32(10), ACM Press, pp. 142–157.

[25] Zendra, O., Colnet, D., and Collin, S. Efficient
dynamic dispatch without virtual function tables: The
SmallEiffel compiler. In Proc. OOPSLA’97 (1997),
SIGPLAN Notices, 32(10), ACM Press, pp. 125–141.

[26] Zendra, O., and Driesen, K. Stress-testing Control
Structures for Dynamic Dispatch in Java. In 2nd Java
Virtual Machine Research and Technology Symposium
(JVM 2002), San Francisco, California, USA (Aug.
2002), Usenix — The Advanced Computing Systems
Association, pp. 105–118.

APPENDIX
A. BENCHMARK PROGRAM
This appendix contains a part of the late binding program

for 8 live classes generated for C++. We consider only two
hierarchies instead of five in the real benchmarks.

/******************

* file classes.h *

******************/

// First binary hierarchy of 9 classes

class C1 { // root class (is dead)

public:

virtual void foo0(int x);

virtual void foo1(int x);

int a1;

};

class C2 : public virtual C1{

public:

virtual void foo0(int x);

virtual void foo1(int x);

int a2;

};

class C3 : public virtual C1{

public:

virtual void foo0(int x);

virtual void foo1(int x);

int a3;

};

class C4 : public virtual C2{

public:

virtual void foo0(int x);

virtual void foo1(int x);

int a4;

};

// etc.

// Second binary hierarchy of 9 classes

class C10 { // root class (is dead)

public:

virtual void foo0(int x);

virtual void foo1(int x);

int a1;

};

// etc.

/********************

* file classes.cpp *

********************/

#include "classes.h"

// Since the following methods will be called

// with a negative argument, they will do nothing

void C1::foo0(int x) { if (x > 0) a1 = x; }

void C1::foo1(int x) { if (x > 0) a1 = x; }

void C2::foo0(int x) { if (x > 0) a2 = x; }

void C2::foo1(int x) { if (x > 0) a2 = x; }

void C3::foo0(int x) { if (x > 0) a3 = x; }

void C3::foo1(int x) { if (x > 0) a3 = x; }

void C4::foo0(int x) { if (x > 0) a4 = x; }

void C4::foo1(int x) { if (x > 0) a4 = x; }

// etc.

/*************************

* file message_send.cpp *

*************************/

#include <stdlib.h>

#include "classes.h"

int actions(C1 ** tab0, C10 ** tab1)

{

// Long loop

for(int n=0; n<125000; n++)

{

for(int i=0; i<400; i++)

{

// late binding

tab0[i]->foo0(-1);

tab1[i]->foo1(-2);

}

}

}

// Initialization

int main(void)

{

// Allocations

C1 ** tab0;

C10 ** tab1;

// Allocate the first array

tab0 = (C1 **)calloc(400, sizeof(C1*));

// Fill the array with random instances

// (from C2 to C9) for the first array

tab0[0] = new C8();

tab0[1] = new C2();

tab0[2] = new C5();

tab0[3] = new C2();

tab0[4] = new C8();

tab0[5] = new C2();

tab0[6] = new C7();

tab0[7] = new C5();

tab0[8] = new C3();

tab0[9] = new C5();

// etc.

// Run the actions

action(tab0, tab1)

return 0

}

