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Abstract
Object-oriented languages involve a threefold tradeoff be-
tween runtime efficiency, expressiveness (multiple inheri-
tance), and modularity, i.e. open-world assumption (OWA).
Runtime efficiency is conditioned by both the implementa-
tion technique and compilation scheme. The former specifies
the data structures that support method invocation, attribute
access and subtype testing. The latter consists of the produc-
tion line of an executable from the source code. Many imple-
mentation techniques have been proposed and several com-
pilation schemes can be considered from fully global com-
pilation under the closed-world assumption (CWA) to sepa-
rate compilation with dynamic loading under the OWA, with
midway solutions. This article reviews a significant subset
of possible combinations and presents a systematic, empiri-
cal comparison of their respective efficiencies with all other
things being equal. The testbed consists of the PRM com-
piler that has been designed for this purpose. The considered
techniques include C++ subobjects, coloring, perfect hash-
ing, binary tree dispatch and caching. A variety of proces-
sors were considered. Qualitatively, these first results con-
firm the intuitive or theoretical abstract assessments of the
tested approaches. As expected, efficiency increases as CWA
strengthens. From a quantitative standpoint, the results are
the first to precisely compare the efficiency of techniques
that are closely associated with specific languages like C++
and EIFFEL. They also confirm that perfect hashing should
be considered for implementing JAVA and .NET interfaces.

Categories and Subject Descriptors D.3.2 [Programming
languages]: Language classifications—object-oriented lan-
guages, C++, C#, JAVA, EIFFEL; D.3.3 [Programming
languages]: Language Constructs and Features—classes
and objects, inheritance; D.3.4 [Programming languages]:
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Processors—compilers, linkers, run-time environments; E.2
[Data]: Data Storage Representations—object representa-
tions

General Terms Experimentation, Languages, Measure-
ment, Performance

Keywords binary tree dispatch, closed-world assumption,
coloring, downcast, dynamic loading, interfaces, late bind-
ing, method tables, multiple inheritance, multiple subtyping,
open-world assumption, perfect hashing, single inheritance,
subtype test, type analysis, virtual function tables

1. Introduction
In spite of its 30-year maturity, object-oriented programming
still has a substantial efficiency drawback in the multiple in-
heritance context and it is worsened by dynamic loading.
In a recent article [Ducournau 2008], we identified three re-
quirements that all implementations of object-oriented lan-
guages, especially in this context, should fulfil—namely (i)
constant time; (ii) linear space; and (iii) inlining. Indeed,
object-oriented implementation concerns a few basic mech-
anisms that are invoked billions of times during a 1-minute
program execution. Constant time is the only way to bound
the worst-case behaviour. Space linearity ensures that the
implementation will scale up gracefully with the program
size; we shall see, however, that linearity must be under-
stood in a slightly specific meaning. Finally, the basic mech-
anisms must be implemented by a short sequence of instruc-
tions that must be inlined. This general implementation is-
sue is exemplified by the way the two most used languages,
namely C++ and JAVA, that support both multiple inheri-
tance and dynamic loading, do not meet these criteria. When
the virtual keyword is used for inheritance, C++ provides
a fully reusable implementation, based on subobjects, which
however involves many compiler-generated fields in the ob-
ject layout and pointer adjustments at run-time1. Moreover,
it does not meet the linear-space requirement and there was,
until very recently, no efficient subtype testing available for
this implementation. JAVA provides multiple inheritance of
interfaces only but, even in this restricted setting, current

1 The effect of omitting the virtual keyword is discussed below.



interface implementations are generally not time-constant
(see for instance [Alpern et al. 2001a]). The present research
was motivated by the following observation. Though object-
oriented technology is mature, the ever-increasing size of
object-oriented class libraries and programs makes the need
for scalable implementations urgent and there is still con-
siderable doubt over the scalability of existing implementa-
tions.

The implementation of object-oriented languages relies
upon three specific mechanisms: method invocation, subtype
testing and attribute access. Method invocation implies late
binding; that is the address of the actually called procedure
is not statically determined at compile-time, but depends on
the dynamic type of a distinguished parameter known as the
receiver. Subtyping and inheritance introduce another origi-
nal feature, i.e. run-time subtype checks, which amounts to
testing whether the value of x is an instance of some class C
or, equivalently, whether the dynamic type of x is a subtype
of C. This is the basis for so-called downcast operators. An
issue similar to late binding arises with attributes (aka fields,
instance variables, slots, data members according to the lan-
guages), since their position in the object layout may depend
on the dynamic type of the object.

Single vs. Multiple Inheritance. Message sending, at-
tribute access and subtype testing need specific implemen-
tations, data structures and algorithms. In statically typed
languages, late binding is usually implemented with tables
called virtual function tables in C++ jargon. These tables
reduce method calls to pointers to functions, through a small
fixed number, usually 2, of extra indirections. It follows
that object-oriented programming yields some overhead, as
compared to usual procedural languages. When static typing
is combined with single inheritance—this is single subtyp-
ing—two major invariants hold; (i) a reference to an object
does not depend on the static type of the reference; (ii) the
position of attributes and methods in the tables does not
depend on the dynamic type of the object. These invari-
ants allow direct access to the desired data and optimize
the implementation. Hence, all three mechanisms are time-
constant and their constant is small and optimal. The code
sequence is short and easily inlinable. Finally, the overall
memory occupation is linear in the size of the specialization
relationship; this can be understood as a consequence of the
fact that constant-time mechanisms require some compila-
tion of inheritance. Otherwise, dynamic typing or multiple
inheritance make it harder to retain these two invariants.

Implementation is thus not a problem with single sub-
typing. However, there are almost no such languages. The
few examples, such as OBERON [Mössenböck 1993], MOD-
ULA-3 [Harbinson 1992], or ADA 95, result from the evolu-
tion of non-object-oriented languages and object orientation
is not their main feature. In static typing, some commonly
used pure object-oriented languages, such as C++ or EIFFEL
[Meyer 1992, 1997], offer the programmer plain multiple

inheritance. More recent languages like JAVA and C# offer
a limited form of multiple inheritance, whereby classes are
in single inheritance and types, i.e. interfaces, are in multi-
ple subtyping. Furthermore, the absence of multiple subtyp-
ing was viewed as a deficiency in the ADA 95 revision, and
this feature was incorporated in the next version [Taft et al.
2006]. This is a strong argument in favour of the importance
of multiple inheritance. Hence, there is a real need for effi-
cient object implementation in the multiple inheritance and
static typing context. The multiple inheritance requirement
is less urgent in the dynamic typing context. An explana-
tion is that the canonical static type system corresponding to
a language like SMALLTALK [Goldberg and Robson 1983]
would be that of JAVA, i.e. multiple subtyping. Anyway, dy-
namic typing gives rise to implementation issues which are
similar to that of multiple inheritance, even though the so-
lutions are not identical, and the combination of both, as in
CLOS [Steele 1990], hardly worsens the situation. This arti-
cle focuses on static typing and multiple inheritance.

Compilation Schemes. Besides the implementation tech-
niques, which concern low-level data structures and code
sequences, the overall run-time efficiency strongly depends
on what we call here compilation schemes that involve the
production of an executable from the source code files and
include various processors like compilers, linkers and load-
ers. We consider that the object-oriented philosophy is best
expressed under the open-world assumption (OWA). Each
class must be designed and implemented while ignoring how
it will be reused, especially whether it will be specialized
in single or multiple inheritance. OWA is ensured by sepa-
rate compilation and dynamic loading/linking. However, as
JAVA and C++ exemplify it, we do not know any implemen-
tation of multiple inheritance under the OWA that would be
perfectly efficient and scalable, i.e. time-constant and space-
linear. In contrast, the closed-world assumption (CWA), that
is ensured by global compilation, allows both efficient im-
plementations and various optimizations that partly offset
the late binding overhead. This approach is exemplified by
the GNU EIFFEL compiler [Zendra et al. 1997, Collin et al.
1997]. A variety of combinations fall between these two
extremes. For instance, the program elements can be sepa-
rately compiled under the OWA while the executable is pro-
duced by an optimized global linker [Boucher 2000, Privat
and Ducournau 2005]. Alternatively, some parts of the pro-
gram, namely libraries, can be separately compiled under the
OWA, whereas the rest is globally compiled under the CWA.
A last example is given by adaptive compilers [Arnold et al.
2005] that can be thought of as separate compilation under
a temporary CWA, which can be questioned when further
loading invalidates the assumptions—partial recompilation
is thus required. In this paper, we do not consider adaptive
compilers and we mostly consider compilation schemes that
do not involve any recompilation.



Implementation techniques and compilation schemes are
closely related; when excluding recompilations, not all pairs
are compatible. Compilation schemes can be ordered from
full OWA to full CWA and the compatibility of techniques
w.r.t. schemes is monotonic; when a technique is compatible
with a scheme, it is also compatible with all schemes that are
more closed than the considered one.

Languages. In principle, language specifications should
be independent of implementation. However, in practice,
many languages are closely dependent on a precise imple-
mentation technique or compilation scheme. For instance,
the virtual keyword makes C++ inseparable from its
subobject-based implementation [Ellis and Stroustrup 1990,
Lippman 1996], whereas EIFFEL cannot be considered other
than with global compilation, because of its unrestricted co-
variance which would make it unsafe and inefficient with
separate compilation. Therefore, an objective comparison
of the respective efficiencies of these languages is almost
impossible because full specifications are not comparable.
This article focuses on the core of object-oriented program-
ming that is common to all languages. Therefore, the target
languages can be thought of as mainstream languages like
C++, JAVA, C# or EIFFEL. However, these languages only
represent convenient well-known examples. The considered
techniques should actually appear as universal techniques,
that could apply to all languages, apart from general func-
tional requirements like typing (static vs dynamic), inheri-
tance (single vs multiple), compilation (separate vs global)
and linking (static vs dynamic) that markedly hamper the
implementation.

Contributions. Since the beginning of object-oriented pro-
gramming, many implementation techniques have been pro-
posed. Some of them are commonly used in production run-
time systems, in JAVA and C# virtual machines or C++ and
EIFFEL compilers. Many others have been studied in theory,
their time-efficiency may have been assessed in an abstract
framework like [Driesen 2001] and their space-efficiency
may have been tested on some benchmarks made of large
class hierarchies. Most often, however, no empirical assess-
ment has been made or, alternatively, the empirical assess-
ment of the considered technique did not yield a fair compar-
ison with alternative techniques, with all other things being
equal. There are many reasons for such a situation. Imple-
menting an object-oriented language is hard work and im-
plementing alternative techniques is markedly harder—the
compiler needs an open architecture and fair measurements
require perfect reproducibility.

This article is thus a step in a project intended to produce
fair assessments of various alternative implementation tech-
niques, with all other things being equal. The previous steps
included abstract analysis in Driesen’s framework, and sim-
ulation of the memory occupation based on large-scale class
hierarchies [Ducournau 2006, 2008, 2009]. In the past few
years, we developed a new language, called PRM, and a com-

piler with an open modular architecture which makes it rel-
atively easy to test alternative techniques. Early results pre-
sented empirical measures of program efficiency based on
artificial micro-benchmarks [Privat and Ducournau 2005]. In
this article, we present an empirical assessment of the time-
efficiency of a real program on a variety of processors and
according to the underlying implementation techniques and
compilation schemes that are used to produce the executable.
Our testbed involves meta-compiling. It consists of the PRM
compiler, which compiles PRM source code to C code and
is applied to itself. The tests consider the following tech-
niques: (i) coloring [Ducournau 2006] which represents an
extension of the single-subtyping implementation to multi-
ple inheritance under partial CWA; (ii) binary tree dispatch
(BTD) [Zendra et al. 1997, Collin et al. 1997] which requires
stronger CWA; (iii) perfect hashing [Ducournau 2008] that
has been recently proposed for JAVA interfaces under pure
OWA, (iv) incremental coloring [Palacz and Vitek 2003]
also proposed for JAVA interfaces, that is an incremental ver-
sion of coloring which requires load-time recomputations,
(v) caching, which amounts to memoizing the last access
and might improve less efficient techniques. C++ subobjects
are discussed but not tested because they have not yet been
integrated in the testbed.

The contribution of this article is thus reliable time mea-
surements of different executables produced from the same
program benchmark, according to different implementations
and compilations. From a qualitative standpoint, the conclu-
sions are not new, and our tests mostly confirm the intuitive
or theoretical abstract assessments of the tested approaches.
As expected, efficiency increases as CWA strengthens. How-
ever, from a quantitative standpoint, the conclusions are
quite new, as these tests represent, to our knowledge, the first
systematic comparisons between very different approaches
with all other things being equal. Another contribution of
this work is a careful analysis of the testbed to ensure that
all other things are actually equal. Among other results, these
tests give the first empirical assessment of (i) a recently pro-
posed technique, perfect hashing; (ii) the overhead of OWA
vs. CWA; (iii) the overhead of multiple vs. single inheri-
tance; and (iv) a first step towards an empirical comparison
between C++ and EIFFEL implementations.

Plan. This article is structured as follows. Section 2 sur-
veys the implementation techniques that are tested here and
discusses their expected efficiency. Section 3 presents com-
pilation schemes and their compatibility with the different
implementation techniques. Section 4 describes the testbed
and some statistics on the tested program, then discusses
the precise experimental protocol, its reliability and repro-
ducibility. Section 5 presents the time measures and dis-
cusses the relative overhead of the different combinations.
Finally, the last section presents related work, first conclu-
sions and prospects. Preliminary results have been presented
in French in [Morandat et al. 2009].
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Two class hierarchies with associated instances, in single (left) and multiple (right)
inheritance. Solid arrows represent class specialization and dashed arrows represent
instantiation.

Figure 1. Single and multiple inheritance hierarchies

2. Implementation Techniques
Implementation techniques are concerned with object rep-
resentation, that is the object layout and the associated data
structures that support method invocation, attribute access
and subtype testing.

2.1 Single Subtyping
In separate compilation of statically typed languages, late
binding is generally implemented with method tables, aka
virtual function tables (VFT) in C++ jargon. Method calls
are then reduced to calls to pointers to functions through
a small fixed number (usually 2) of extra indirections. An
object is laid out as an attribute table, with a pointer at the
method table. With single inheritance, the class hierarchy is
a tree and the tables implementing a class are straightfor-
ward extensions of those of its single direct superclass (Fig-
ure 2). The resulting implementation respects two essential
invariants: (i) a reference to an object does not depend on the
static type of the reference; (ii) the position of attributes and
methods in the table does not depend on the dynamic type
of the object. Therefore, all accesses to objects are straight-
forward. This accounts for method invocation and attribute
access under the OWA. The efficacy of this implementation
is due to both static typing and single inheritance. Dynamic
typing adds the same kind of complication as multiple in-
heritance, since the same property name may be at different
places in unrelated classes.

Regarding subtype testing, the technique proposed by
[Cohen 1991] also works under the OWA. It involves assign-
ing a unique ID to each class, together with an invariant po-
sition in the method table, in such a way that an object x is
an instance of the class C if and only if the method table of x
contains the class ID of C, at a position uniquely determined
by C. Readers are referred to [Ducournau 2008] for imple-
mentation details, especially for avoiding bound checks.

In this implementation, the total table size is roughly lin-
ear in the cardinality of the specialization relationship, i.e.
linear in the number of pairs (x, y) such that x is a sub-
type (subclass) of y (x � y). Cohen’s display uses exactly
one entry per such pair and the total table size is linear if
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C AB

The single subtyping implementation of the example from Fig. 1-left. Object layouts
(right) are drawn from left to right and method tables (left) from right to left. In the
object layouts (resp. method tables) the name of a class represents the set of attributes
(resp. methods) introduced by the class.

Figure 2. Single subtyping implementation

// attribute access

load [object + #attrOffset], value

// method invocation

load [object + #tableOffset], table
load [table + #methOffset], method
call method

// subtype test

load [object + #tableOffset], table
load [table + #classOffset], classId
comp classId, #targetId
bne #fail
// succeed

method

Offset

attr

meth

Offset

Offset

class

method table

table

value

id
class

object

object layout

The code sequences are expressed in the intuitive pseudo-code proposed by [Driesen
2001]. The diagram depicts the corresponding object representation. Pointers and
pointed values are in roman type with solid lines, and offsets are italicized with dotted
lines. Each mechanism relies on a single invariant offset. The grey parts represent the
groups of attributes and methods introduced by a given class. Cohen’s display amounts
to reserving an entry in the method group for the class ID.

Figure 3. Code sequences and object representation in sin-
gle subtyping

one assumes that methods and attributes are uniformly in-
troduced in classes. Moreover, the size occupied by a class
is also linear in the number of its superclasses. More gener-
ally, linearity in the number of classes is actually not possible
since efficient implementation requires some compilation of
inheritance, i.e. some superclass data must be copied in the
tables for subclasses. Therefore, usual implementations are,
in the worst case (i.e. deep rather than broad class hierar-
chies), quadratic in the number of classes, but linear in the
size of the inheritance relationship. The inability to do bet-
ter than linear-space is likely a consequence of the constant-
time requirement. As a counter-example, [Muthukrishnan
and Muller 1996] propose an implementation of method in-
vocation withO(N +M) table size, butO(log log N) invo-
cation time, where N is the number of classes and M is the
number of method definitions.
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Object layout and method table of a single instance of the class D from the diamond
example of Fig. 1-right.

Figure 4. Subobject-based implementation

Notwithstanding efficiency considerations that are indeed
central to this article, the three mechanisms that we consider
(method invocation, attribute access and subtype testing) are
equivalent in the extent that they are reducible to each other.
Obviously, method tables are object layout at the meta-level.
Hence, apart from memory-allocation considerations, they
are equivalent. Moreover, an attribute can be read and writ-
ten through dedicated accessor methods; hence, attribute ac-
cess can always reduce to method invocation (Section 2.7).
An interesting analogy between subtype tests and method
calls can also be drawn from Cohen’s display. Suppose that
each class C introduces a method amIaC? that returns yes.
In dynamic typing, calling amIaC? on an unknown receiver
x is exactly equivalent to testing if x is an instance of C;
in the opposite case, an exception will be signaled. In static
typing, the analogy is less direct, since calling amIaC? is
only legal on a receiver statically typed by C, or a subtype
of C; this is type safe but quite tautological. However, sub-
type testing is inherently type unsafe and one must under-
stand amIaC? as a pseudo-method, which is actually not in-
voked but whose presence is checked. The test fails when
this pseudo-method is not found, i.e. when something else
is found at its expected position. This informal analogy is
important, as it implies that one can derive a subtype testing
implementation from almost any method call implementa-
tion. We actually know a single counter-example, when the
implementation depends on the static type of the receiver, as
in subobject-based implementations (Section 2.2). In the fol-
lowing, we will use this general equivalence in several ways.

2.2 Subobjects (SO)
With multiple inheritance, both invariants of reference and
position cannot hold together, at least if compilation (i.e.
computation of positions) is to be kept separate. For in-
stance, in the diamond hierarchy of Figure 1-right, if the
implementations of B and C simply extend that of A, as
in single inheritance, the same offsets will be occupied by
different properties introduced in B and C, thus prohibit-
ing a sound implementation of D. Therefore, the ‘standard’
implementation (i.e. that of C++) of multiple inheritance in
a static typing and separate compilation setting is based on
subobjects (SO). The object layout is composed of several

// pointer adjustment

load [object + #tableOffset], table
load [table + #castOffset], delta1
add object, delta1, object1

// inherited attribute access

// lines 1-3

load [object1 + #attrOffset], value

// method invocation

load [object + #tableOffset], table
load [table + #methOffset+fieldLen], delta2
load [table + #methOffset], method
add object, delta2, object2
call method

delta1 method delta2

Offset

attr

Offset

cast

method table

table

value

meth

Offset

delta1

table1

delta2

object2

table2

object object1

The diagram depicts the precise object representation restricted to method invocation,
attribute access and pointer adjustment. object is the current reference to the consid-
ered object. delta1 is the pointer adjustment that is required to go from object to
object1 subobjects, e.g. for accessing an attribute defined in the class correspond-
ing to the latter. delta2 is the pointer adjustment that is required to go from object
subobject to that of the class which defines the invoked method.

Figure 5. Code and object representation with subobjects

subobjects, one for each superclass of the object class. Each
subobject contains attributes introduced by the correspond-
ing superclass, together with a pointer to a method table
which contains the methods known by the superclass (Fig.
4 and 5). Both invariants are dropped, as both reference and
position depend now on the current static type. This is the
C++ implementation, when the virtual keyword annotates
each superclass [Ellis and Stroustrup 1990, Lippman 1996,
Ducournau 2009]. It is time-constant and compatible with
dynamic loading, but method tables are no longer space-
linear. Indeed, the number of method tables is exactly the
size of the specialization relationship. When a class is in
single inheritance, its total table size is itself quadratic in
the number of superclasses; hence, in the worst case, the
total size for all classes is cubic in the number of classes.
Furthermore, all polymorphic object manipulations (i.e. as-
signments and parameter passing, when the source type is a
strict subtype of the target type) require pointer adjustments
between source and target types, as they correspond to dif-
ferent subobjects. These pointer adjustments are purely me-
chanical and do not bring any semantics, but they are quite
numerous. They are also safe—i.e. the target type is always a
supertype of the source type—and can be implemented more
efficiently than subtyping tests.

Pointer adjustments can also be done with explicit point-
ers, called VBPTRs, in the object layout, instead of off-
sets in the method tables as in Fig. 5. Although VBPTRs
are more time-efficient since they save an access to method
table at each pointer adjustment, they are also over space-



consuming. Therefore, we only consider here implementa-
tions that rely on offsets in the method table. They are also
closest to most actual implementations.

Usually, pointer adjustments consist of upcasts, i.e. they
involve an assignment from a subtype to a supertype. How-
ever, covariant return types, though type-safe, need down-
casts. Indeed the type returned by the callee is a subtype of
the static type in the caller, but the returned type is statically
unknown in the caller, hence the adjustment must be done as
if it were a downcast. Furthermore, contrary to single inheri-
tance, there is no known way of deriving a subtype test from
the technique used for method invocation. It is no longer pos-
sible to consider that testing if an object is an instance of C
is a kind of method introduced by C, because this pseudo-
method would not have any known position other than in
static subtypes of C. In our tests, we will thus supplement
subobject-based implementations with perfect hashing (Sec-
tion 2.5) for subtype testing.

Empty-subobject optimization (ESO) [Ducournau 2009]
represents a further improvement that applies when a class
does not introduce any attribute—hence the corresponding
subobject is empty—especially when it does not introduce
any method and have a single direct superclass. In this case,
both subobjects can be merged and the statistics presented
in the aforementioned article show that the improvement is
significant. Although the designers of C++ compilers do not
seem to be aware of the possibility of ESO, it is required
in the PRM testbed for efficient boxing and unboxing of
primitive types. Indeed, unlike C++ and like JAVA 1.5 and
EIFFEL, the PRM type system considers that primitive types
are subtypes of some general types like Object or Any.
Unoptimized subobjects would yield heavy boxes.

Subobjects can also apply to JAVA interfaces, with an
improved empty-subobject optimization that relies on class
single inheritance. The technique, detailed in [Ducournau
2009] based on the bidirectional layout of [Myers 1995],
is less expensive than general subobject-based implementa-
tions, though likely not space-linear. It would be interesting
to test it but it is incompatible with our PRM testbed, be-
cause of the distinction between classes and interfaces, and
with current JVMs, because it is not reference-invariant.

When the virtual keyword is not used—we call it non-
virtual inheritance—C++ provides a markedly more effi-
cient implementation with different semantics. In the dia-
mond situation of Fig. 1, this semantics yields repeated in-
heritance of the diamond root. However, repeated inheri-
tance is not a sensible feature because it might force the pro-
grammer to syntactically distinguish between an exponential
number of interpretations—consider a chain of n diamonds.
Hence, one must consider that non-virtual inheritance is not
compatible with both multiple inheritance and OWA. As col-
oring is certainly more efficient than non-virtual implemen-
tation under the CWA, we only consider C++, in the follow-
ing, under the virtual implementation and the OWA.

A C DB

A CC A

D C B A

With the same class diamond as in Fig. 1 and 4, implementation of A and B is
presumed to be the same as in Fig. 2. Hence, the implementation of C leaves a gap
(in grey) for B in anticipation of D. The code sequences and object representation are
the same as in Fig. 3.

Figure 6. Coloring implementation

2.3 Coloring (MC/AC)
The coloring approach is quite versatile and naturally ex-
tends the single inheritance implementation to multiple in-
heritance, while meeting all requirements except compati-
bility with dynamic loading. The technique takes its name
from graph coloring, as its computation amounts to color-
ing some particular graph2. Method coloring was first pro-
posed by [Dixon et al. 1989] for method invocation, under
the name of selector coloring. [Pugh and Weddell 1990] and
[Ducournau 1991] applied coloring to attribute access and
[Vitek et al. 1997] to subtype testing (under the name of
pack encoding). Hereafter, MC denotes coloring when used
for method invocation and subtype testing, and AC denotes
attribute coloring.

The general idea of coloring is to keep the two invariants
of single inheritance, i.e. reference and position. An injective
numbering of attributes, methods and classes verifies the po-
sition invariant, so this is clearly a matter of optimization for
minimizing the size of all tables or, equivalently, the num-
ber of holes (i.e. empty entries). However, this optimization
cannot be done separately for each class; it requires a global
computation for the whole hierarchy. The problem of min-
imizing the total table size is akin to the minimum graph
coloring problem [Garey and Johnson 1979]. Like minimal
graph coloring, the coloring problem considered here has
been proven to be NP-hard in the general case. Therefore
heuristics are needed and various experiments have shown
the overall tractability. Finally, an important improvement
is bidirectionality, introduced by [Pugh and Weddell 1990],
which involves using positive and negative offsets and re-
duces the hole number. Figure 6 depicts the implementation
yielded by unidirectional coloring in the diamond example
from Figure 4. The implementation of classes A and B is
presumed to be identical to that of Figure 2. Hence, comput-
ing the tables for C must reserve some space for B in the
tables of D, their common subclass. Thus, some holes ap-
pear in the C tables and these holes are filled, in D, by all
data specific to B. In bidirectional coloring, all holes would
have been saved by placing C at negative offsets.

2 This graph is a conflict graph with a vertex for each class and an edge
between any two vertices that have a common subclass and thus must have
their attributes (resp. methods or class IDs) stored at distinct offsets, since
attributes (resp. methods or class IDs) of both classes coexist in objects
(resp. method tables) of the common subclass.



load [object + #idOffset], id
comp id, id0
bgt #branch1
comp id id1
bgt #branch2
call #method1
jump #end
branch2:
call #method2
jump #end
branch1:
comp id id2
bgt #branch3
call #method4
jump #end
branch3:
call #method3
end:

Figure 7. Binary tree dispatch (BTD2)

A detailed presentation of coloring is beyond the scope
of this paper and readers are referred to [Ducournau 2006]
for a review of the approach. The point to get is 2-fold; (i)
in practice, object layout, method tables and code sequences
are exactly those of single subtyping, except for the pres-
ence of holes; (ii) this is obtained by rather sophisticated
algorithms which require complete knowledge of the class
hierarchy. Actually, we have exchanged multiple inheritance
for dynamic loading.

2.4 Binary Tree Dispatch (BTD)
Not all object-oriented implementations are based on VFT.
In SMART EIFFEL, the GNU EIFFEL compiler, method ta-
bles are not used. Instead, objects are tagged by their class
identifier and all three mechanisms, particularly method in-
vocation, are implemented using balanced binary dispatch
trees [Zendra et al. 1997, Collin et al. 1997]. However,
the approach is practical only because the compilation is
global, hence all classes are statically known. Furthermore,
type analysis restricts the set of concrete types [Bacon and
Sweeney 1996, Grove and Chambers 2001] and makes dis-
patch efficient. BTD is also an interesting example of the
possible disconnection between code length, thus inlining,
and time efficiency. Indeed, here, both values are in an expo-
nential relationship, hence proving that not all efficient code
sequences are inlinable. Anyway, BTD is not time-constant.

The efficiency of BTD relies on the conditional branching
prediction of modern processors. Thanks to their pipe-line
architecture, well-predicted branchings are free. On the con-
trary, mispredictions break the pipe and cost about 10 cycles
or more, and most undirect branches are mispredicted—this
misprediction cost thus holds for all VFT-based techniques.
Readers are referred to [Driesen 2001] for a more in-depth
analysis. An overall consequence is that BTD is statistically
more efficient than VFT when the number of tests is small. It
depends, however, on the statistical distribution of dynamic
types on each call site, and it is easy to construct worst-case
artificial programs whereby all predictions fail, making VFT
far better than BTD. In the following, BTDi will denote BTD

of depth bounded by i. BTD0 corresponds to static calls and
BTD∞ denotes unbounded BTD. Figure 7 depicts a dispatch
tree of depth 2.

Overall, BTD is efficient when the number of expected
types and competing methods is low—the corresponding
call sites are then called oligomorphic—but coloring should
be preferred when this number is higher, for megamorphic
call sites. An interesting tradeoff involves combining BTDk

and coloring, with k not greater than 3 or 4. This makes
the resulting technique time-constant and inlinable. Further-
more, method tables are restricted to the subset of methods
that have a megamorphic call site. BTD also applies to sub-
type testing and attribute access but, in the context of global
compilation, coloring is likely better.

2.5 Perfect Hashing (PH)
In a recent article [Ducournau 2008] we proposed a new
technique based on perfect hashing for subtype testing in a
dynamic loading setting. The problem can be formalized as
follows. Let (X,�) be a partial order that represents a class
hierarchy, namely X is a set of classes and � the special-
ization relationship that supports inheritance. The subtype
test amounts to checking at run-time that a class c is a su-
perclass of a class d, i.e. d � c. Usually d is the dynamic
type of some object and the programmer or compiler wants
to check that this object is actually an instance of c. The
point is to efficiently implement this test by precomputing
some data structure that allows for constant time. Dynamic
loading adds a constraint, namely that the technique should
be inherently incremental. Classes are loaded at run-time in
some total order that must be a linear extension (aka topo-
logical sorting) of (X,�)—that is, when d ≺ c, c must be
loaded before d.

The perfect hashing principle is as follows. When a class
c is loaded, a unique identifier idc is associated with it and
the set Ic = {idd | c � d} of the identifiers of all its su-
perclasses is known. If needed, yet unloaded superclasses
are recursively loaded. Hence, c � d iff idd ∈ Ic. This
set Ic is immutable, hence it can be hashed with some per-
fect hashing function hc, i.e. a hashing function that is in-
jective on Ic [Sprugnoli 1977, Czech et al. 1997]. The pre-
vious condition becomes c � d iff htc[hc(idd)] = idd,
whereby htc denotes the hashtable of c. Moreover, the car-
dinality of Ic is denoted nc. The technique is incremental
since all hashtables are immutable and the computation of
htc depends only on Ic. The perfect hashing functions hc are
such that hc(x) = hash(x, Hc), whereby Hc is the hashtable
size defined as the least integer such that hc is injective
on Ic. Two hash functions were considered, namely modu-
lus (noted mod) and bit-wise and3. The corresponding tech-
niques are denoted hereafter PH-mod and PH-and. However,
these two functions involve a time/space efficiency tradeoff.
The former yields more compact tables but the integer divi-

3 With and, the exact function maps x to and(x, Hc − 1).



// preamble

load [object + #tableOffset], table
load [table + #hashingOffset], h
and #interfaceId, h, hv
mul hv, #2*fieldLen, hv
sub table, hv, htable

// method invocation

load [htable +#htOffset], iOffset
add htable, iOffset, itable
load [itable +#methOffset], method
call method

// subtype testing

load [htable +#htOffset-fieldLen], id
comp #interfaceId, id
bne #fail
// succeed

h

method tablehashtable

hashing
offset

Id

interface

offset
method

method

table

hv

htOffset

iOffset

ioffset

The preamble is common to both mechanisms. The grey rectangle denotes the group
of methods introduced by the considered interface.

Figure 8. Perfect hashing for JAVA interfaces

sion latency may be more than 20 cycles, whereas the latter
takes 1 cycle but yields larger tables.

In a static typing setting, the technique can also be ap-
plied to method invocation and we did propose, in the afore-
mentioned article, an application to JAVA interfaces. For this,
the hashtable associates, with each implemented interface,
the offset of the group of methods that are introduced by
the interface. Figure 8 recalls the precise implementation in
this context. The method table is bidirectional. Positive off-
sets involve the method table itself, organized as with sin-
gle inheritance. Negative offsets consist of the hashtable,
which contains, for each implemented interface, the offset
of the group of methods introduced by the interface. The ob-
ject header points at its method table by the table pointer.
#hashingOffset is the position of the hash parameter (h)
and #htOffset is the beginning of the hashtable. At a posi-
tion hv in the hashtable, a two-fold entry is depicted that con-
tains both the implemented interface ID, that must be com-
pared to the target interface ID, and the offset iOffset of
the group of methods introduced by the interface that intro-
duces the considered method. The table contains, at the posi-
tion #methodOffset determined by the considered method
in the method group, the address of the function that must
be invoked. In a forthcoming paper [Ducournau and Moran-
dat 2009], we improve the technique in several directions,
especially with a new hashing function that combines bit-
wise and with a shift for truncating trailing zeros (PH-
and+shift). It reduces the total hashtable size at the ex-

// preamble

load [object + #tableOffset], table
load [table + #ctableOffset], ctable
load [targetTable + #classColor], color
add ctable, color, entry

// method invocation

load [entry + #2], iOffset
add table, iOffset, methgr
load [methgr + #methOffset], method
call method

// subtype test

load [table + #clenOffset], clen
comp clen, color
ble #fail
load [entry], id
comp id, #targetId
bne #fail
// succeed

method

meth

Offset

class

Color

method table

color table

table

id iOffset

color
clen

ctable

clen

iOffset

The preamble is common to both mechanisms. The implementation resembles PH,
apart from the fact that the interface position results from a load instead of being the
result of specific hashing. The location of the color can be the method table of the
target class that is not represented here. The loads concern different memory areas
and they can yield 3 cache misses. Moreover, the recomputable color table requires an
extra indirection, together with its size (clen) and bound checking for subtype testing,
and the color itself requires memory access (not represented in the diagram).

Figure 9. Incremental coloring for JAVA interfaces

pense of a few extra instructions that are expected to be run
in parallel.

To our knowledge, PH is the only constant-time technique
that allows for both multiple inheritance and dynamic load-
ing at reasonable spatial cost and applies to both method in-
vocation and subtype testing. Subobject-based implementa-
tion has the same properties but applies only to method invo-
cation. Moreover, the space requirement of perfect hashing
is far lower than that of subobjects.

2.6 Incremental Coloring (IC)
An incremental version of coloring (denoted IC) has been
proposed by [Palacz and Vitek 2003] for implementing inter-
face subtype testing in JAVA. For the sake of comparison, an
application to method invocation in the same style as for PH
has been proposed in [Ducournau 2008]. As coloring needs
the CWA, IC can require some load-time recomputations.
Hence, its data structures involve extra indirections and sev-
eral unrelated memory locations that should increase cache
misses (Figure 9). Readers are referred to [Ducournau 2008]
for a discussion on implementation details.

2.7 Accessor Simulation (AS)
An accessor is a method that either reads or writes an at-
tribute. Suppose that all accesses to an attribute are through



// attribute access

load [object + #tableOffset], table
load [table + #classOffset+fieldLen], attrGroupOffset
add object, attrGroupOffset, attgr,
load [attgr + #attrOffset], value

Offset
attr

attrGroup
Offsetid

class

Offset
class

Offset
attrGroup

method table

table

valueobject

object layout

The diagram depicts the precise object representation with accessor simulation coupled
with class and method coloring, to be compared with Fig. 3. The offset of the group
of attributes introduced by a class (attrGroupOffset) is associated with its class ID
in the method table and the position of an attribute is now determined by an invariant
offset (attrOffset) w.r.t. this attribute group.

Figure 10. Accessor simulation with method coloring

an accessor. Then the attribute layout of a class does not have
to be the same as the attribute layout of its superclass. A class
will redefine the accessors for an attribute if the attribute has
a different offset in the class than it does in the superclass.
True accessors require a method call for each access, which
can be inefficient. However, a class can simulate accessors
by replacing the method address in the method table with
the attribute offset. This approach is called field dispatching
by [Zibin and Gil 2003]. Another improvement is to group
attributes together in the method table when they are intro-
duced by the same class. Then one can substitute, for their
different offsets, the single relative position of the attribute
group, stored in the method table at an invariant position,
i.e. at the class color with coloring (Fig. 10) [Myers 1995,
Ducournau 2009]. With PH and IC, the attribute-group off-
set is associated with the class ID and method-group offset
in the hash- or color-table, yielding 3-fold table entries.

Accessor simulation is a generic approach to attribute ac-
cess which works with any method invocation technique;
only grouping can be conditioned by static typing, since at-
tributes must be partitioned by the classes which introduce
them. It is, however, meaningless to use it with subobject-
based implementation (SO) which provides two different ac-
cesses to attributes according to whether the receiver static
type (rst) is the attribute introduction class (aic) or not.
The former is identical to attribute coloring (AC), whereas
the latter is identical to accessor simulation (AS) with
method coloring (MC). For instance, in Fig. 5, rst 6=aic.

Among the various techniques that we have described,
some apply only to method invocation and subtype testing,
e.g. perfect hashing and incremental coloring. Hence, these
techniques can be used for JAVA interface implementation.
Accessor simulation is a way of applying them to full mul-
tiple inheritance. It can also replace attribute coloring, if

// method invocation

load [object + #tableOffset], table
load [table + #cacheMethId_i], id
comp id, #targetId
beq #hit
store #targetId, [table + #cacheMethId_i]
// usual sequence of PH or IC (4-5 instructions)

store iOffset, [table + #cacheMethOffset_i]
jump #end
hit:
load [table + #cacheMethOffset_i], iOffset
end:
add table, iOffset, itable
load [itable + #methodOffset], method
call method

// subtype testing

load [object + #tableOffset], table
load [table + #cacheTypeId_i], id
comp id, #targetId
beq #succeed
// usual sequence of PH or IC (6-8 instructions)

store #targetId, [table + #cacheTypeId_i]
succeed:

Figure 11. Separate caches in method tables

holes in the object layout are considered to be over space-
consuming.

2.8 Caching and Searching (CA)
An implementation policy that is often applied to dynamic
typing or JAVA interfaces involves coupling some implemen-
tation technique (that is expected, here, to be rather naive
and inefficient) with caching for memoizing the result of the
last search. For instance, with JAVA interfaces, the underly-
ing technique could be PH or IC and the method table would
cache the interface ID and the group offset of the last suc-
ceeding access [Alpern et al. 2001a,b, Click and Rose 2002].
Of course this cache might be used for any table-based sub-
typing technique and for all three mechanisms, at the ex-
pense of caching three data, namely class ID and method and
attribute group offsets. Finally, the cache may be common to
all three mechanisms, or specific to each of them. Obviously,
the improvement is a matter of statistics and those presented
in [Palacz and Vitek 2003] for subtype testing show that, ac-
cording to the different benchmarks, cache miss rates can
be as low as 0.1% or more than 50%. Fig. 11 presents the
code sequences of caching for method invocation and sub-
type testing—they are markedly longer than for the original
implementations. Moreover, the worst case remains rather
inefficient and the best case is hardly better than PH-and for
method invocation and identical to Cohen’s display for sub-
type testing. Like IC and unlike all other techniques, caching
also requires method tables to be writable, hence allocated in
data memory segments.

Cache-hit rates can be further improved with multi-
ple caches (CAn). For instance, with n caches, classes
(or interfaces) are statically partitioned into n sets, for in-
stance by hashing their name. In the method tables, the
cache data structure (i.e. the offsets #cacheTypeId_i,
#cacheMethId_i and #cacheMethOffset_i) is then repli-



cated n times. Finally the code of each call site is that of
Fig. 11, with the cache structure, i.e. the index i, correspond-
ing to the #targetId of the given site. Hence the cache miss
rate should asymptotically tend towards 0 as n increases—
however, the best and worst cases are not improved. In this
approach, the tables of the underlying implementation are
only required to contain class or interface IDs for which
there is a collision on their proper cache.

In our tests, we will also consider PH when it is coupled
with caching. One might expect, for instance, that caching
degrades PH-and but improves PH-mod.

3. Compilation Schemes
Compilation schemes represent the production line of exe-
cutable programs from the source code files. They can in-
volve various processors such as compilers, linkers, virtual
machines, loaders, just-in-time compilers, etc.

3.1 Under Pure OWA—Dynamic Loading (D)
As already mentioned, object-oriented philosophy, espe-
cially reusability, is best expressed by the OWA. Pure OWA
corresponds to separate compilation and dynamic loading—
this scheme will be denoted D hereafter. Under the OWA,
a class C (more generally, a code unit including several
classes) is compiled irrespective of the way it will be used
in different programs, hence ignoring its possible subclasses
and clients4. On the contrary, a subclass or a client of C must
know the “model” (aka “schema”) of C, which contains the
interface of C possibly augmented by some extra data—e.g.
it is not restricted to the public interface. This class model is
included in specific header files (in C++) or automatically
extracted from source or compiled files (in JAVA). Without
loss of generality, it can be considered as an instance of some
metamodel [Ducournau and Privat 2008]. The code itself is
not needed.

Separate compilation is a good answer to the modular-
ity requirements of software engineering; it provides speed
of compilation and recompilation together with locality of
errors, and protects source code from both infringement
and hazardous modifications. With separate compilation, the
code generated for a program unit, here a class, is correct for
all correct future uses.

3.2 Under Pure CWA—Global Compilation (G)
Complete knowledge of the whole class hierarchy offers
many ways of efficiently implementing multiple inheritance.
CWA presents several gradual advantages: (i) the class hier-
archy is closed and the models of all classes can be known
as a whole; (ii) the code of each class is also known; (iii) the
program entry point can also be known.

When only (i) holds, a simple class hierarchy analysis
(CHA) [Dean et al. 1995b] provides a rough approxima-

4 A client of C is a class that uses C or a subclass of C, as a type annotation
(e.g. x : C) or for creating instances (new C).

tion of the call graph that is sufficient for identifying many
monomorphic call sites. With global compilation (scheme
denoted G), when the program entry point is known (point
(iii)) and the language does not provide any metaprogram-
ming facility, a more sophisticated type analysis precisely
approximates the receiver concrete type at each call site, thus
making it easy to identify mono-, oligo- and mega-morphic
sites, so that each category can be implemented with the
best technique, respectively, static calls, BTDi and color-
ing. Well-known algorithms are RTA [Bacon et al. 1996] and
CFA [Shivers 1991].

Moreover, dead code can be ruled out and other optimiza-
tions like code specialization [Dean et al. 1995a, Tip and
Sweeney 2000] can further reduce polymorphism—the for-
mer decreases the overall code size but the latter increases it.
We do not consider them here.

3.3 Separate Compilation, Global Linking (S)
The main defect of coloring is that it requires complete
knowledge of all classes in the hierarchy. This complete
knowledge could be achieved by global compilation. How-
ever, giving up the modularity provided by separate compi-
lation may be considered too high a price for program op-
timization. An alternative was already noted by [Pugh and
Weddell 1990]. Coloring does not require knowledge of the
code itself (point (ii) above), but only of the model of the
classes (point (i)), all of which is already needed by separate
compilation. Therefore, the compiler can separately generate
the compiled code without knowing the value of the colors
of the considered entities, representing them with specific
symbols. At link time, the linker collects the models of all
classes and colors all of the entities, before substituting val-
ues to the different symbols, as a linker commonly does. The
linker also generates method tables.

3.4 Separate Compilation, Global Optimization (O)
[Privat and Ducournau 2005] propose a mixed scheme which
relies on some link-time type analysis. As the class hierar-
chy is closed, CHA can be applied, which will determine
whether a call site is monomorphic or polymorphic. Link-
time optimization is possible if, at compile-time, the code
generated for a call site is replaced by a call to a special sym-
bol, which is, for instance, formed with the name of the con-
sidered method and the static type of the receiver. Then, at
link-time, a stub function—called a thunk as in C++ imple-
mentations [Lippman 1996]—is generated when the call site
is polymorphic. For monomorphic sites, the symbol is just
replaced by the name of the called procedure, thus yielding
a static call.

More sophisticated type analyses are possible if a model
of internal type flow, called an internal model—in con-
trast, the model discussed in Section 3.1 is called external
model—is generated at compile time [Privat and Ducournau
2005]. [Boucher 2000] proposed a similar architecture in a
functional programming setting.
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subobjects SO � � ∗ ∗ ∗
perfect hashing PH ◦ • ∗ ∗ ∗
incremental coloring IC ◦ • ∗ ∗ ∗
caching CA ◦ • ∗ ∗ ∗
method coloring MC ? • • � •
binary tree dispatch BTD ? ? • � •
attribute coloring AC ? • • � •
accessor simulation AS ◦ • • � •

•: Tested, ◦: Extrapolated, �: Not yet tested, ∗: Non-interesting, ?: Incompatible

Table 1. Compatibility between compilation schemes and
implementation techniques

An hybrid scheme (H) would involve separate compila-
tion of common libraries, coupled with global compilation
of the specific program and global optimization of the whole.

3.5 Compilation vs. Implementation
Table 1 presents the compatibility between implementation
techniques and compilation schemes. Table 2 recalls the ex-
pected efficiency that can be deduced from previous ab-
stract studies. Efficiency must be assessed from the space
and time standpoints. Space-efficiency assessment must con-
sider code length, static data (i.e. method tables) and dy-
namic data (i.e. object layout). Time-efficiency assessment
must consider run- and compile-time together with load- or
link-time—remember that our tests consider only run-time
efficiency.

Not all compatible combinations are interesting to test.
For instance, all techniques that are compatible with the
OWA are less efficient than coloring and BTD. Testing them
in O, H and G schemes would thus be wasting time. More-
over, for these techniques, there is no practical difference be-
tween D and S in our testbed because it cannot reproduce the
memory-allocation effects of dynamic loading. Hence, S is
the right scheme for comparing the efficiency of implemen-
tation techniques like SO, PH, IC and MC. O, H and G are
the right ones for comparing MC and BTD. Moreover, with
O and G, the comparison can also consider various type anal-
ysis algorithms (CHA, RTA or CFA) and polymorphism de-
grees for BTD. AC and AS can be compared in all schemes
but D and the comparison closely depends on the underly-
ing method invocation technique. Coupling AC with PH or
IC is, however, possible as it provides an assessment of the
use of the considered method invocation technique in the re-
stricted case of JAVA interfaces. On the contrary, coupling
these techniques with AS amounts to considering them in a
full multiple inheritance setting. In contrast, the H scheme
has not been tested, partly for want of time, and partly be-
cause of the difficulty of distinguishing between libraries and
program. Overall, several tens of combinations can be tested
and we present only the most significant.

Space Time
Code Static Dyn. Run Compile Load/Link

SO – – – – – – ++ ++
IC – + +++ – ++ – –
PH-and – – +++ – ++ +
PH-mod – + +++ – – ++ +
PH-and +CA – – – – +++ – – ++ +
PH-mod +CA – – – +++ – ++ +
MC ++ ++ +++ ++ + –
BTDi<2 +++ +++ +++ +++ ++ – –
BTDi>4 – – – +++ +++ – – – – – –
AC ++ ++ + ++ + –
AS + + +++ – + +

+++: optimal, ++: very good, +: good, –: bad, – –: very bad, – – –: unreasonable

Table 2. Expected efficiency
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Some compiler source is compiled by some compiler executable, according to different
options, thus producing different variants v1, .., vn, of the same executable compiler
(solid lines). Another compiler source (possibly the same) is then compiled by each
variant, with all producing exactly the same executable (dashed lines), and the duration
of this compilation (i.e. the dashed lines) is measured.

Figure 12. The PRM testbed

4. Compilation Testbed
These experiments are original as they compare different
implementation techniques in a common framework that
allows for a fair comparison with all other things being
equal.

Tested Program. We have implemented all these tech-
niques in the PRM compiler, which is dedicated to exhaustive
assessment of various implementation techniques and com-
pilation schemes [Privat and Ducournau 2005]. The bench-
mark program is the compiler itself, which is written in PRM
and compiles the PRM source code into C code. There are
many compilers in the picture, so Figure 12 depicts the pre-
cise testbed. In these tests, the C code generated by the PRM
compiler and linker is the code of the considered techniques
in the considered compilation scheme. This code can be gen-
erated at compile- or link-time according to the scheme.

The PRM compiler is actually not compatible with dy-
namic loading (D) but the code for PH or IC has been gen-
erated in separate compilation (S) exactly as if it were gen-
erated at load-time, with hash parameters and tables being
computed at link-time. In this case, all PRM link-time opti-
mizations are deactivated. Hence, although these tests rep-
resent a kind of simulation, they must provide reliable ex-



number of static dynamic
class introductions 532 —

instantiations 6651 35 M
subtype tests 194 87 M

method introductions 2599 —
definitions 4446 —
calls 15873 1707 M

BTD 0 124875 1134 M
1 848 61 M
2 600 180 M
3 704 26 M
4..7 1044 306 M
8 32 228 K

attribute introductions 614 —
accesses 4438 2560 M
rst=aic 2996 1903 M
accessor 361 229 M

pointer upcasts 9133 783 M
adjustments downcasts 3254 1393 M

The “static” column depicts the number of program elements (classes, methods and
attributes) and the number of sites for each mechanism. The “dynamic” column
presents the invocation count at run-time (in millions or thousands). Method call sites
are separately counted according to their polymorphism degree with CHA, i.e. the
BTD depth that can implement them. Attribute accesses are separately counted when
the access is made through an accessor or on a receiver whose static type (rst) is
the attribute introduction class (aic) (Section 2.7). The former is a special case of
the latter. Like rst=aic, pointer adjustments only concern subobjects (SO). Upcasts
consist of all polymorphic assignments and parameter passings, when the source type
is a strict subtype of the target type, together with equality tests, when the two types
are different. Downcasts consist of covariant return types.

Table 3. Characteristics of the tested program

trapolation. Only the effect of cache misses is likely under-
estimated, especially for incremental coloring. Here all color
tables are allocated in the same memory area, whereas load-
time recomputations should scatter them in the heap.

Table 3 presents the static characteristics of the tested pro-
gram, i.e. the PRM compiler, namely the number of different
entities that are counted at compile-time, together with the
run-time invocation count for each mechanism. The Table
details statistics of method call sites according to their poly-
morphism degree, that is the BTDi that can implement them
according to the CHA type analysis. A call site is counted in
BTDi if its branch number is between (2i−1 + 1) and 2i.

Finally, the cache-hit rate has been measured (Table 4)
when coupling perfect hashing (PH) with caching (CA). Of
course, it does not depend on the specific technique that is
associated with CA. Cache hits and monomorphic calls rep-
resent dual data. Monomorphism is a permanent link-time
feature of a call site that always calls the same method,
whereas a cache hit is a momentary run-time characteris-
tics of a method table that is used for an access to some data
that is introduced by the same superclass as in the previous
access. With attribute coloring (AC), the measured cache-
hit rate is between 60 and 80% according to whether the
cache is common or separate, single or multiple. As ex-
pected, multiple separate caches have better efficiency. The
effect of separate caches is more marked with accessor simu-

cache with AC with AS
number separate common separate common

1 68 63 62 39
2 71 64
4 79 67

The cache-hit rate is presented (in percentage), with attribute coloring or accessor
simulation, with separate caches or a common cache for all mechanisms, and according
to the number of caches.

Table 4. Method table cache-hit rate

lation (AS), with the cache-hit rate increasing from less than
40% to more than 60%. With separate caches, the observed
cache-hit rates are about the average of those reported by
[Palacz and Vitek 2003]. Multiple caches are needed because
the cache is used here for all classes, whereas its use was re-
stricted, in the aforementioned paper, to interfaces.

The dynamic statistics from Tables 3 and 4 have been
used for selecting variants that would be interesting to mea-
sure. Indeed, it would be vain to compare the execution times
of variants that present very close statistics.

Test Significance. These statistics show that the program
size is significant and that it makes intensive usage of object-
oriented features. Moreover, the high number of monomor-
phic calls (about 79 or 64% of calls sites, according to
whether static or dynamic statistics are considered) is con-
sistent with statistics that are commonly reported in the liter-
ature. Of course, the validity of such experiments that rely on
a single program might be questioned. This large and fully
object-oriented program intensively uses the basic mecha-
nisms that are tested, namely a total of more than 4 billions
invocations of all three mechanisms. Moreover, as the exper-
iments compare two implementations with all other things
being equal, the sign of the differences should hold for most
programs and only the order of magnitude should vary, at
least when the difference is not close to 0 and when the com-
parison focuses on a single parameter, i.e. in the same row or
column in Tables 5 and 6. Our argument for supporting this
claim is that the differences only concern the tested code se-
quences and the related cache misses. All other things are
equal. Moreover the behaviours of all implementations are
very similar from the cache standpoint, apart from BTD,
since it does not access method tables, and IC, because it
accesses extra memory areas. For the former, both consid-
erations act in the same direction, i.e. bounded BTD are in-
trinsically faster with less cache misses. For the latter, the
testbed is unable to take all load-time effects into account,
hence it underestimates the cost of cache misses. IC is thus
likely the only exception to our claim and we will take it into
account in our conclusions.

This single-benchmark limitation is also inherent to our
experimentation. The PRM compiler is the only one that
allows such versatility in the basic implementation of object-
oriented programs. The compensation is that the language



has been developed with this single goal, so its compiler is
the only large-scale program written in PRM.

A last objection can be raised, namely that the PRM com-
piler might be too inefficient to draw any firm conclusions. In
the following, we consider relative differences, of the form
(test − ref )/ref . Of course, if the numerator is small and
the denominator is overestimated, for instance if the PRM
compiler was one order of magnitude slower than it could
be, the results might be meaningless. Therefore, we must
also convince readers that the PRM compiler is not too in-
efficient. This is, however, much more difficult to prove,
since it requires an external comparison that cannot be done
with all other things being equal. The GNU EIFFEL com-
piler, SMART EIFFEL, represents, however, a convenient ref-
erence because it involves a similar meta-compilation frame-
work. It uses global compilation (G) and is considered very
efficient—see Section 2.4. Both languages are fully-fledged
object-oriented languages that provide similar features, and
both compilers have close characteristics such as type anal-
ysis and the same target language. Thus we compared the
compilation time of both compilers, from the source lan-
guage (EIFFEL or PRM) to C. The compilation times were
quite similar, about 60 seconds on the considered processor.
Although this does not mean that the PRM compiler is as ef-
ficient as SMART EIFFEL, it is however a strong indication
that it is not too inefficient. Of course, further improvements
will strengthen our results.

Runtime Reproducibility. Tested variants differ only by
the underlying implementation technique, with all other
things being equal. This is even true when considering exe-
cutable files, not only the program logic. Indeed, the compi-
lation testbed is deterministic, that is two compilations of the
same program by the same compiler executable produce ex-
actly the same executable. This means that (i) the compiler
always proceeds along the program text and the underlying
object model in the same order; (ii) the memory locations of
program fragments, method tables and objects in the heap
are roughly the same. Thus two compiler variants differ only
by the code sequences of the considered techniques, with
all program components occurring in the executables in the
same order. Moreover, when applied to some program, two
compiler variants (vi and vj) produce exactly the same code.
Hence, the fact that all dashed arrows point at the same ex-
ecutable (Fig. 12) is not only a metaphor. Incidentally, this
determinism ensures that the compiler bootstrap represents
an actual fixpoint. All claimed program equalities have been
checked with the diff command on both C and binary files.
Overall, the effect of memory locality should be roughly
constant, apart from the specific effects due to the consid-
ered techniques5.

5 In early tests, compilation was not deterministic and there were marked
variations in execution times between several generations of the same vari-
ant. Hence, the variation between different variants was both marked and
meaningless.

Therefore, in principle, the statistics shown in Table 3
should not depend on compilation variants, though some
of them interest only some specific variants. However, in
spite of the compilation determinism, a compiled program is
not exactly deterministic for these fine-grained statistics. In-
deed, hashing object addresses is inherently not determinis-
tic. Hence, two runs of the same program can produce differ-
ent collisions. As hash structures are PRM objects, the pre-
cise run-time statistics (column “dynamic” in Table 3) are
not exactly reproducible. The variations are actually very
low (less than one to a thousand) and do not affect the
measures. Above all, it does not modify the program logic
because all hash structures used by the PRM compiler are
order-invariant—that is all iterations follow the input order.

Processors. The tests were performed on a variety of pro-
cessors (Tables 5 and 6):

• I-2, I-4, I-5, I-8 and I-9, from the Intel R© PentiumTM

family;
• A-6 and A-7 are AMD R© processors; all x86 are under

Linux Ubuntu 8.4 with gcc 4.2.4;
• S-1 is a SUN R© SparcTM, under SunOS 5.10, with
gcc 4.2.2;

• P-3 is a PowerPC G5, designed by IBM R© and Apple R©,
under Mac OS X 10.5.3, with gcc 4.0.1.

Non-Linux linkers presented technical drawbacks that cur-
rently hinder global optimizations (O) on processors S-1
and P-3. All tests use Boehm’s garbage collection [Boehm
1993] and the test on processor I-8 has also been run without
GC, for the sake of comparison. The measure itself is done
with Unix function times(2) which considers only the time
of a single process, irrespective of the system scheduler—
this is required by multicore technology. Two runs of the
same compiler on the same computer should take the same
time were it not for the noise produced by the operating
system. A solution involves running the tests under single-
user boot, e.g. Linux recovery-mode. This has been done for
some processors (e.g. I-2, I-4, I-8) but was actually not pos-
sible for remote computers. Finally, a last impediment con-
cerned laptops. Modern laptop processors (e.g. I-5 and I-8)
are frequency-variable. The frequency is low when the pro-
cessor is idle or hot. When running a test, the processor must
first warm up before reaching its peak speed, then it finishes
by slowing down and cooling. Thus the peak speed can be
very high but only for a short duration. Inserting a pause be-
tween each two runs seemed to fix the point and I-8 now
provides one of the most steady testbeds.

Overall, we assume that the difference between two runs
of the same executable is pure noise and this noise does
not depend on the specific variant, but only on the test time
and duration. As the noise is not symmetrical—it is always
positive—we took, for each measure, the minimum value
among several tens of runs.



processor
frequency
L2 cache
year

S-1

123.2s

UltraSPARC III
1.2 GHz
8192 K
2001

I-2

87.4s

Xeon Prestonia
1.8 GHz
512 K
2001

P-3

62.3s

PowerPC G5
1.8 GHz
512 K
2003

I-4

43.3s

Xeon Irwindale
2.8 GHz
2048 K
2006

I-5

34.8s

Core T2400
2.8 GHz
2048 K
2006

technique scheme
MC-BTD∞ RTA G
MC-BTD2 RTA G
MC-BTD∞ CHA O
MC-BTD2 CHA O
MC S
IC D
PH-and D
PH-and+shift D
PH-mod D
PH-mod+CA4 D

AC AS AS/AC

-22.6 -11.5 14.4
-22.2 -10.9 14.6

*** *** ***
*** *** ***

0 9.8 9.8
13.7 34.1 17.9
13.4 35.4 19.5
14.7 38.0 20.3
81.1 226.0 80.0
33.1 121.0 66.1

AC AS AS/AC

-10.9 -2.2 9.7
-11.7 -3.8 10.6

-2.9 1.4 4.5
-5.4 -2.8 2.8

0 5.7 5.7
5.3 14.5 8.7
2.5 14.5 11.6

10.6 25.5 13.6
28.6 104.3 58.8
21.1 81.2 49.6

AC AS AS/AC

*** *** ***
-28.4 -13.0 21.5

*** *** ***
*** *** ***

0 18.2 18.2
13.4 27.2 12.1
8.1 24.9 15.6

13.4 35.5 18.9
49.1 146.1 65.1
24.7 87.5 50.3

AC AS AS/AC

-13.3 -1.0 14.1
-13.7 -1.3 14.4
-3.0 4.9 8.2
-5.9 2.3 8.7

0 7.9 7.9
4.3 16.6 11.8
4.2 19.0 14.2
6.9 28.7 20.4

55.2 172.0 75.2
28.1 98.2 54.7

AC AS AS/AC

-8.9 2.9 13.0
-10.2 -0.8 10.5

2.7 19.4 16.2
-2.7 14.2 17.3

0 11.1 11.1
7.7 28.5 19.2
6.2 31.4 23.8

10.3 45.3 31.8
24.4 106.3 65.8
21.4 82.7 50.5

Each subtable presents the results for a precise processor, with the processor characteristics and the reference execution time. All other numbers are percentage. Each row describes a
method invocation and subtype testing technique. For all techniques, the first two columns represent the overhead vs pure coloring (MC-AC-S), respectively with attribute coloring
(AC) and accessor simulation (AS). The third column is the overhead of accessor simulation vs attribute coloring.
*** Results are currently unavailable. On P-3, BTD2 is replaced by BTD0.

Table 5. Execution time according to implementation techniques and processors

5. Results and Discussion
Tables 5 and 6 present, for each tested variant and processor,
the time measurement and overhead with respect to the full
coloring implementation (MC/AC). Overall, notwithstand-
ing some exceptions that will be discussed hereafter, these
tests exhibit many regularities.

Difference Magnitude. Before discussing measures, it is
important to correctly interpret the overhead magnitude. The
differences are all the more significant since all measures in-
clude the time consumed by garbage collection (GC), which
is roughly the same for all variants as it does not rely on
any object-oriented mechanism. In order to provide an es-
timation of the collector cost, the last column of Table 6
presents the same test with a deactivated GC, on processor
I-8. It turns out that garbage collection takes between 14.5
and 15 seconds with all variants but MC-BTD-O, i.e. almost
50% of the reference time. Hence, all overheads are roughly
doubled. Strangely enough, with MC-BTD-O, garbage col-
lection takes only 13.4 seconds. We cannot explain this dif-
ference. Of course, the GC overhead depends on executable
and memory sizes. This test was performed on a computer
equipped with 2 G-bytes of memory, which is sufficient for
running all variants without swapping. These measures must
not be used to deny the usefulness of garbage collection. On
a real-life computer, the tested program should share mem-
ory with many other programs and 2 G-bytes could not be
dedicated to it. Moreover, Boehm’s collector is conserva-
tive and not optimized for the simple object representations
that are tested. A type accurate collector would be markedly
more efficient [Jones and Lins 1996].

Overall, below 1%, a difference is likely meaningless,
hence decimal digits must be handled with care. In con-
trast, 10% represents a marked difference, since considering
the object-oriented part doubles the overhead. Finally, 50%
overhead is dramatic.

Compilation Schemes.

• As expected, global compilation (G) was found to be
markedly better than separate compilation (S). The high
ratio of monomorphic calls explains this result, since the
difference between MC-S and MC-BTD0-G results only
from monomorphic calls and BTD2 hardly improves it.

• In contrast, link-time optimization (O) provides only a
small improvement. This means that the gain resulting
from 64% of static calls is almost offset by the thunk
overhead in the 36% of polymorphic calls. This is un-
expected because one might have thought that pipelines
would have made the thunk almost free, apart from cache
misses.

• Dynamic loading (D) yields clear overhead compared to
S; it represents the overhead of multiple versus single in-
heritance in a dynamic loading setting. Apart from AMD
processors, this overhead is, however, slighter than be-
tween S and G.

• Summing both overheads makes the difference between
G and D impressive, about 15% with multiple subtyping
(AC) and 40% with full multiple inheritance (AS).

Global Optimization Levels (O and G). In contrast with
the significant differences between compilation schemes,
the differences between global optimization levels, e.g. type
analysis algorithms or BTD depths, are too weak to allow
us to draw firm conclusions. This is a consequence of the
statistics in Table 3, which show that the main improvement
should come from monomorphic calls (BTD0) which repre-
sent 64% of method calls. In contrast, BTD1 and BTD2 only
amount to 20% of BTD0 and the expected improvement
would be less than proportional, because of mispredictions,
hence hardly measurable on most processors. Finally, when
i > 2, the number of BTDi is too low to conclude whether



processor
frequency
L2 cache
year

A-6

34.0s

Athlon 64
2.2 GHz
1024 K
2003

A-7

32.8s

Opteron Venus
2.4 GHz
1024 K
2005

I-8

30.4s

Core2 T7200
2.0 GHz
4096 K
2006

I-9

18.5s

Core2 E8500
3.16 GHz
6144 K
2008

I-8

15.7s

without
GC

2 G-bytes
technique scheme
MC-BTD∞ RTA G
MC-BTD2 RTA G
MC-BTD∞ CHA O
MC-BTD2 CHA O
MC S
IC D
PH-and D
PH-and+shift D
PH-mod D
PH-mod+CA4 D

AC AS AS/AC

-12.5 2.9 17.6
-12.5 1.1 15.5

5.8 27.8 20.8
3.4 27.3 23.1

0 15.8 15.8
14.9 40.1 21.9
15.2 52.4 32.2
19.5 64.4 37.6
80.1 235.4 86.2
40.4 141.2 71.8

AC AS AS/AC

-13.7 9.9 27.3
-13.1 10.7 27.3

4.0 23.3 18.6
2.0 22.8 20.4

0 15.2 15.2
12.6 38.9 23.3
16.8 57.3 34.7
18.8 61.5 36.0
73.4 221.5 85.4
38.3 129.3 65.8

AC AS AS/AC

-9.4 7.5 18.6
-9.7 7.0 18.5
1.1 12.1 10.8

-1.8 10.1 12.2
0 11.3 11.3

7.7 29.7 20.5
5.1 30.0 23.7
7.8 43.6 33.2

19.5 108.7 74.7
19.6 81.3 51.6

AC AS AS/AC

-10.3 0.6 12.1
-9.7 0.6 11.5
1.8 15.0 12.9

-2.5 13.0 16.0
0 10.3 10.3

8.0 29.7 20.1
6.2 30.1 22.6
8.3 43.3 32.3

17.6 85.7 57.9
20.8 74.6 44.5

AC AS AS/AC

-19.2 12.7 39.5
-18.5 12.9 38.6
10.2 31.0 18.9
5.4 27.9 21.3

0 21.6 21.6
14.8 56.5 36.4
9.6 55.9 42.2

14.1 81.9 59.4
35.2 209.1 128.6
37.4 155.7 86.1

Last column presents measures on processor I-8 without garbage collection.

Table 6. Execution time according to implementation techniques and processors (cont.)

BTDi is an improvement on coloring or not. Thus we present
only the statistics for BTD∞ and BTD2.

With both G and O, the observations confirm this expec-
tation. Therefore, this testbed is certainly unable to finely
tune the optimal level of BTD for a given processor and it
is doubtful that any testbed could do it, since the optimal
closely depends on the specific type-flow of programs. Thus
the decision must be drawn from abstract considerations.
BTD1 should always be better than MC, since a mispre-
dicted conditional branching has the same cost as an undi-
rect branching. BTD2 should likely be better than MC, since
a single well-predicted branching makes it better. BTD3 and
BTD4 probably represent the critical point. It would seem
that BTD∞ often improves on BTD2 in G but not in O. This
is consistent with the fact that dispatch trees are inlined in
G, hence predictions are proper to a given call site, whereas
they are shared in the thunks of O. Indeed, sharing increases
branching mispredictions. In contrast, the code is far smaller
with sharing (Fig. 7). Of course, this discussion should be
reconsidered with processors without branching prediction,
e.g. on small embedded systems.

Similar conclusions hold with type analysis algorithms.
As CHA, in spite of its simplicity, gives very good results,
more accurate approximations cannot change the conclu-
sions. Hence, we do not present the statistics of polymor-
phism and run-time measures with RTA and CFA.

With G, the solution would be to use the best tradeoff
between accuracy and compilation time, for instance with an
explicit or implicit option that would allow the programmer
to choose between various optimization levels. With O, the
solution might be to use the simple CHA algorithm, which
does not require any other data than external models and
simplifies the overall architecture.

Dynamic Loading (D). The comparison between the dif-
ferent techniques compatible with dynamic loading mostly
confirms previous theoretical analyses. When used for method
invocation and subtype testing, PH-and yields very low
overhead of about 3-8% on most processors. This could be

explained by the few extra loads from a memory area that
is already used by the reference technique, hence without
extra cache misses, plus a few 1-cycle instructions; these
extra cycles represent real overhead that is, however, slight
in comparison with the overall method call cost. The extra
instructions of PH-and+shift entails extra overhead, that is
higher than expected since the extra instructions could have
been done in parallel. Incremental coloring (IC) is close to
PH-and, but not better. With accessor simulation, the dif-
ference is below the measurement precision. In contrast, the
overhead of PH-mod is much higher and highly variable, be-
tween 17 and 80%, when only used for method invocation
and subtype tests.

Overall, PH-and outclasses all considered alternatives for
method invocation and subtype testing from the time stand-
point. It is also better than PH-and+shift and not worse
than PH-mod from the space standpoint (Fig. 7). In view of
the respective load-time costs and of the underestimation of
IC cache misses, PH-and should also be preferred over IC.
This complete win is rather unexpected and PH-and should
provide very high efficiency in JAVA virtual machines for
implementing interfaces. When used for attribute access, the
overhead becomes less reasonable.

In contrast, the integer division overhead is higher than
expected on many processors and it confirms that PH-mod
should be reserved for processors that have very efficient
integer division, contrary to many processors tested here
which use the floating-point unit for integer division.

Cache (CA). As mentioned above, the observed cache-hit
rate is highly variable according to the cache configuration,
and the time measurements corroborate the statistics from
Table 4. We tested caches with PH-and and PH-mod. As ex-
pected, caching degrades PH-and on all processors and with
all cache configurations. Moreover, only multiple separate
caches improve PH-mod on some processors. Therefore, we
only present 4-fold separate caches (CA4) with PH-mod.

On all processors, the cache slightly improves PH-mod
with accessor simulation. In contrast, on I-8 and I-9 proces-



sors which have rather efficient integer division, the cache
yields slight extra overhead with attribute coloring. On all
other processors, the cache slightly improves PH-mod but
PH-and remains far better. As the cache markedly increases
the overall table and code size, the winner is clearly PH-and.

Overall, this confirms that caching can only be a solu-
tion if (i) the underlying technique is inefficient and (ii) the
number of cachable entities is not too high, e.g. with JAVA
interfaces or multiple caches.

Accessor Simulation (AS). In all cases, accessor simula-
tion entails significant overhead compared to attribute color-
ing. This was of course expected, especially in view of the
high number of attribute accesses (Table 3), since accessor
simulation replaces the single load of attribute coloring by a
sequence similar to method invocation, apart from an actual
function call. Hence, it adds extra access to memory areas
that are possibly not in cache with attribute coloring, and it
increases cache-miss risks. Moreover, the single load of at-
tribute coloring can be more easily done in parallel than the
several-instruction sequence of accessor simulation.

For all techniques used with dynamic loading (D), ac-
cessor simulation provokes apparent non-additive overhead,
as a kind of inverted triangular inequality. For a given tech-
nique, say IC, the difference between IC-AS and MC-AC is
far greater than the sum of differences on the same row and
column. This is explained by the fact that the first difference
only concerns method invocation. Hence, it must be extrap-
olated to attributes by multiplying it by 2560+1707

1707 ≈ 2.5,
according to statistics in Table 3. Therefore, IC-AS/MC-
AC must be compared to IC-AC/MC-AC (multiplied by 2.5)
plus MC-AS/MC-AC. This explains the observed overhead
for IC, PH-and or even PH-mod, in spite of the dramatic
magnitude of the latter. From a methodological standpoint,
it shows that cautious extrapolation is possible from tested
techniques to a non-tested one. We shall apply this idea to
subobjects just below.

Nevertheless, these results are not definitive, because the
accessor simulation overhead has been overestimated in our
tests. Indeed, true accessors are also intensively used in the
tested programs, in such a way that they add both over-
heads of accessor methods and simulation. Hence, accessor
methods should be implemented by direct access to the at-
tribute, as with AC, at least when the method is generated by
the compiler in S and D schemes. However, in view of the
statistics of accessors in Table 3, the improvement should
be slight. In G, accessor simulation should be used only
on the attributes whose position vary according to classes.
The resulting improvement should be as important as with
monomorphic calls.

Subobjects (SO). We could not achieve on time subobject-
based implementation. This is indeed the most demanding
as pointer adjustments do not pardon any error. However, ac-
cessor simulation (AS) involves pointer adjustment and rep-
resents a convenient lower bound of the overhead yielded

by subobjects. Indeed, an upcast adjustment is equivalent
to AS with method coloring, whereas a downcast adjust-
ment is roughly equivalent to AS with PH-and, since PH is
used for subtype testing with subobjects. Statistics in Table 3
show that the upcast count (783), augmented by the number
of attribute accesses with rst 6=aic (657), represents more
than 50% of the attribute access count (2560). The down-
cast count (1393) too is more than 50% of the attribute ac-
cess count. Therefore, the overhead of subobjects, when re-
stricted to attribute access and pointer adjustment, should
be at least 50% of the difference between AS and AC with
method coloring (MC-S) plus 50% of the same difference
with PH-and. Overall, without taking receiver adjustment
into account, the overhead of subobjects would be about
20% on processor I-8. Hence, the total overhead of subob-
jects is expected to be markedly higher than IC and PH-and
with attribute coloring, though likely always lower than the
overhead of the same techniques with accessor simulation.
This confirms that all implementations that are compatible
with dynamic loading are costly. There remains, however,
to precisely compare SO to PH-and. With attribute coloring,
this would provide an estimation of the overhead of full mul-
tiple inheritance w.r.t. multiple subtyping under OWA. With
accessor simulation, subobjects should be more efficient, but
this requires an experimental confirmation.

Processor Influence. The processor influence is also sig-
nificant, even though it does not reverse the conclusions.
Most processors present similar behaviour, although several
provide some specific exceptions that make them unique. For
instance, A-7 is the only processor for which IC is markedly
better than PH-and. On all non-Intel processors like S-1,
P-3, A-6 and A-7, the magnitude of most differences is al-
most doubled in comparison to Intel processors. A particular
case is PH-mod, which is markedly more efficient on recent
Pentiums (I-8 and I-9) and dramatically inefficient on some
other processors (S-1, I-4, A-6, A-7). These variations might
be explained, either by some artefact in the experiment, or by
some specific feature of the processor. The sample is how-
ever too small to draw any conclusion about processor fam-
ilies. Processors are presented and numbered in the decreas-
ing order of the reference duration, which is strongly cor-
related with the manufacturing time. It is, however, hard to
find close correlations between the observed overheads and
time or overall performance.

Size of Executable. Table 7 presents similar statistics
of executable size instead of duration. Although the PRM
testbed is not optimized from the memory occupation stand-
point, some conclusions can be drawn from these statis-
tics. Global compilation (G) and link-time optimizations
(O) markedly reduce the executable size. G is also improved
by dead code elimination, but the PRM modular architecture
makes this improvement slight. In contrast, BTD∞ markedly
increase the program size when dispatch trees are specific
to each site, as in G. However, BTD is expected to be time-



Stripped executable
on processor I-5

ref. size: 914 KB
technique scheme
MC-BTD∞ RTA G
MC-BTD2 RTA G
MC-BTD∞ CHA O
MC-BTD2 CHA O
MC S
IC D
PH-and D
PH-and+shift D
PH-mod D
PH-mod+CA4 D

AC AS AS/AC

22.0 30.9 7.3
-26.9 -17.0 13.5
-5.1 -0.1 5.2

-14.9 -10.4 5.3
0 11.7 11.7

19.0 33.3 11.9
24.5 45.5 16.9
37.0 61.6 18.0
25.9 41.6 12.5
75.6 104.7 16.7

In K-bytes and percentage. Conventions are the same as for time measures.

Table 7. Size of stripped executable on processor I-8

efficient only with proper trees. So space is another argument
in favor of combining BTD with coloring.

With dynamic loading, the space statistics may be less re-
liable. First, IC involves dynamic reallocations that are not
taken into account here. Moreover, PH has not been imple-
mented in the most efficient way from the space standpoint
[Ducournau and Morandat 2009], and the space overhead
is certainly overestimated. However, a firm conclusion is
possible for PH-and+shift. Indeed, this technique was de-
signed to reduce the table size, but the statistics show that it
markedly increases the code size. Hence, a definitive conclu-
sion would be to rule out PH-and+shift, since it degrades
both time and space. The difference between PH-mod and
PH-and is not marked. This is apparently contradictory with
the aforementioned time/space tradeoff [Ducournau 2008].
Actually, this tradeoff would be obtained with class hierar-
chies larger by an order of magnitude, but the space increase
is likely low in comparison with the overall size.

Finally, caching proves to be over space-consuming when
it is inlined, like all techniques considered here. So caching
might be reserved to non-inlined techniques, for instance
the bytecode interpreter of virtual machines. An alternative
would be to use it with shared thunks, as in O.

6. Related Work, Conclusions and Prospects
Related Work. There has been a lot of work on imple-
mentation and compilation of object-oriented languages and
programs. The most important part was made in a dynamic
typing setting and applied to SMALLTALK, SELF or CECIL,
and also to multiple dispatch in languages like CLOS, CE-
CIL or DYLAN. Although the techniques considered here of-
ten originate from these dynamic typing studies (e.g. color-
ing or BTD, with the latter being an improvement of poly-
morphic inline caches [Hölzle et al. 1991]) static typing
makes them much more efficient. Besides implementation
techniques, substantial work has also been done to optimize
object-oriented programs. For instance, the Vortex compiler
is dedicated to the assessment of various optimization tech-

niques for JAVA and CECIL programs [Grove and Chambers
2001]. In the C++ context, the various implementations of
pointer adjustments (VBTRs, thunks, etc.) have been com-
pared [Sweeney and Burke 2003] and different approaches
have been proposed for optimizing the generated code by de-
virtualization [Gil and Sweeney 1999, Eckel and Gil 2000].
However, under the CWA, these optimizations are outclassed
by coloring. JAVA and .NET gave also rise to many studies
about interface implementation [Alpern et al. 2001a,b, Click
and Rose 2002, Palacz and Vitek 2003] and adaptive com-
pilers [Arnold et al. 2005]. Our testbed could not include
the latter because of its incompatibility with dynamic load-
ing. Regarding interface implementations, besides PH and
IC, they are generally not time-constant and mostly based
on caching and searching. Their scalability is doubtful but
it was not possible to include them in our testbed for a fair
comparison, since PRM does not distinguish between classes
and interfaces.

Finally, object-oriented implementation is not limited to
method invocation, attribute access and subtype testing. A
lot of little mechanisms are also implied—interested readers
are referred to [Ducournau 2009] for a survey. Genericity is
a major efficiency concern. The implementations of gener-
ics lie between two extremes [Odersky and Wadler 1997]. In
heterogeneous implementations, e.g. C++ templates, each
instance of the parametrized class is separately compiled.
In homogeneous implementations, e.g. JAVA 1.5, a single
instance is compiled, after replacing each formal type by
its bound (this is called type erasure). These two extremes
present an interesting time-space efficiency tradeoff. A het-
erogeneous approach is markedly more time-efficient than
the homogeneous one when the formal type is instantiated
by a primitive type. In contrast, in such situations, type era-
sure forces automatic boxing and unboxing. On the other
hand, the code and method tables are duplicated for each
instantiation whereas homogeneous implementations share
the same code and method table for different instantiations.
.NET offers an intermediate implementation [Kennedy and
Syme 2001] that should be markedly more efficient but still
represents a research issue on JAVA platforms and for PRM.

Conclusions. In this article, we have presented the empir-
ical results of systematic experiments of various implemen-
tation techniques and compilation schemes, on a variety of
processors. To our knowledge, this is the first systematic ex-
periment that compares such a variety of implementation
techniques and compilation schemes, with all other things
being equal. The latter point was a major challenge of this
work. Although these tests were performed on an original
language and compiler, they provide reliable assessment of
the use of the considered techniques for the implementation
of any object-oriented language, as only common elemen-
tary mechanisms are tested. The conclusions apply in partic-
ular to production languages like C++, JAVA or EIFFEL.



When fixing a parameter, the tests provide an estimation
of the difference in efficiency that must be expected when
the other parameter varies. For instance, in a multiple inher-
itance setting, comparing G and D gives an estimation of the
cost of dynamic loading. It also amounts to comparing EIF-
FEL and C++ that are closely related to their specific compi-
lation scheme. Of course, C++ is only considered under the
virtual implementation. In a dynamic loading setting, com-
paring S and D with attribute coloring is an estimation of the
cost of JAVA-like multiple subtyping. In contrast, compar-
ing attribute coloring and accessor simulation in D provides
an estimation of the extra cost of full multiple inheritance
in a dynamic loading setting. In practice, the results confirm
that global compilation markedly improves the runtime ef-
ficiency, even when many optimizations are not considered
like inlining. In this setting, the combination of coloring and
BTD certainly provides the highest efficiency. In contrast,
dynamic loading always implies marked overhead, even in
the restricted case of JAVA interfaces, i.e. when coupled with
attribute coloring (AC).

Another contribution is a first empirical assessment of
a new technique, perfect hashing, which is the first known
technique that is both time-constant and space-linear in a
general multiple inheritance and dynamic loading setting.
The conclusions are two-fold. PH-and overhead is quite rea-
sonable and makes it a recommended technique for imple-
menting JAVA interfaces, all the more so since recent re-
search shows that its space occupation can also be very good
[Ducournau and Morandat 2009]. On the contrary, PH-mod
is unreasonably inefficient on many processors. Finally, PH-
and+shift is likely not justified, as its slight gain in method
tables does not offset the slight time overhead and code
length increase. Moreover, our tests show that an efficient
underlying technique like PH must be preferred to caching.

In contrast, the conclusion concerning the mixed com-
pilation scheme with link-time global optimization (O) is
somewhat disappointing. A slight improvement was ex-
pected and the tests instead show a slight overhead on several
processors. From the time standpoint, the link-time compli-
cation of these global optimizations might not be justified
since simple global linking (S) is functionally equivalent.
However, this is only a first test. More complete optimiza-
tions, coupled with the hybrid scheme (H), should increase
the time and space efficiency.

The tests were performed on a variety of processors,
mainly with the same x86 architecture. Though most pro-
cessors behave in a similar way, several exceptions lead us
to conclude that language implementors should offer alter-
native implementations that might be customized on each
specific computer and operating system. This would be es-
pecially useful and easy to carry out for virtual machines that
rely on portable bytecode.

Attempt at Prescription. Of course, the findings of these
experiments did not allow us to definitely decide on all pro-

cessors and programs. The choice of an implementation will
always depend on functional requirements such as dynamic
loading. This article is not aimed at providing a prescription
on how object-oriented languages should be implemented.
However, starting from the initial three-fold tradeoff be-
tween modularity, efficiency and expressiveness, these first
results can be formulated in a more prescriptive form as fol-
lows.

• If the point is efficiency, e.g. for a small embedded sys-
tem, the solution is definitely global compilation (G),
with a mixing of bounded BTD (restricted to BTD1 if
the processor is not equipped with branching prediction)
and coloring. In this framework, the overhead of multiple
inheritance is not significant.

• If the point is expressiveness, link-time coloring (S) cer-
tainly represents an interesting tradeoff between modu-
larity and efficiency. It can be improved with link-time
optimizations (O). If dynamic loading is not required, the
hybrid compilation scheme that combines separate com-
pilation of libraries and global compilation of programs
(H) likely provides the best tradeoff between flexibility
for rapid recompilations and efficiency of production run-
times. In this framework, the combination of coloring and
BTD provides the most compact and efficient code.

• If the point is modularity, C++ is a proven solution in
the framework of both multiple inheritance and dynamic
loading, that could be improved with empty-subobject
optimization. Moreover, compared to JAVA, the overhead
of subobjects is in practice counterbalanced by template
heterogeneous implementation and the fact that primi-
tives types are not integrated in the object type system.
This implementation presents, however, some scalability
risks, as the worst-case table size is cubic in the num-
ber of classes and compiler-generated fields in the ob-
ject layout can be over space-consuming. Thus the con-
clusion may only hold for middle-size programs like the
PRM compiler. In contrast, multiple subtyping represents
an interesting tradeoff between expressiveness and effi-
ciency. The efficiency of actual runtime systems mostly
comes from JIT compilers but PH-and should be consid-
ered for the underlying interface implementation.

Prospects. Our experiments and the PRM testbed must be
completed in several directions.

• For want of time and space, the presented statistics are
not complete; compilation and link time, processor cache
misses, runtime memory occupation should also be con-
sidered.

• The tested implementation techniques, especially color-
ing and perfect hashing, are not finely optimized from
the space standpoint.

• The optimization of schemes O and G is not achieved,
especially with regard to inlining for G, and dead code



elimination for O. Dead code elimination would be
more difficult with O than with G, as usual linkers are
not equipped for deleting code. The hybrid compilation
scheme (H, Section 3.4) should also be tested.

• The techniques used in the PRM compiler are fully
portable with respect to processors; however global op-
timizations involved in the O scheme closely depend on
linkers and operating systems; so a general solution is re-
quired before using this scheme in a production compiler.
Global link-time coloring (S) represents an efficient and
simple fallback position.

• The subobject-based implementation must be achieved,
completed with empty-subobject optimization (ESO).
The alternative implementation with thunks [Ducournau
2009] should be considered too. Both are to be precisely
compared to PH-and with both attribute coloring and
accessor simulation. Anyway, the final implementation
will never fully mimic C++, because of the PRM need
for boxing and unboxing primitives types and its current
homogeneous implementation of generics.

• Some techniques can still be optimized, for instance,
accessor simulation. Generally, it should not be used with
accessor methods. With global compilation (G), it should
be optimized to take possible invariance into account, in
a way similar to monomorphic calls.

• Polymorphic handling of primitive types is done in PRM
through a mixin of tagging for small integers, characters
and boolean, and automatic boxing and unboxing, as in
JAVA; the testbed should also consider a precise assess-
ment of these techniques.

• An efficient implementation of generics goes midway
between homogeneous and heterogeneous implementa-
tions, as in .NET—this is a matter of further research for
PRM.

• Apart from subobjects which might justify a fully con-
servative collector, a dedicated type accurate or at least
semi-conservative garbage collection should reduce the
overall time, while increasing the relative differences.
This might reverse the conclusions of the comparison be-
tween subobjects and perfect hashing.

• Testing processors from other architectures is a condi-
tion for these techniques being widespread. The testbed
should also consider other C compilers than gcc.

Several experiments with production virtual machines
could also take advantage of the techniques presented in this
article. First, the efficiency of perfect hashing for interface
implementation should be confirmed by large-scale tests.
Moreover, the thunk-based technique of link-time global
optimization (O) could also apply to adaptive compilers.
Instead of recompiling methods when load-time assump-
tions are invalidated by some subsequent class loading, only
thunks would need recompilation. In view of the high rate

of monomorphic calls and the overhead of all techniques
compatible with dynamic loading, this would certainly be
an improvement for method invocation when the receiver
is typed by an interface—maybe also when its is typed by
a class. It could be tested in the PRM testbed by coupling
PH with global optimizations (O) but, as for IC, this would
not fully account for the recompilations required by adaptive
compilers.

Finally, in the state space of object-oriented program-
ming language design, there remains a blind spot, namely
a language with full multiple inheritance, like C++ and EIF-
FEL; fully compatible with dynamic loading, like C++ and
JAVA; with a clean integration of primitive types, like EIF-
FEL and JAVA. JAVA-like boxing and unboxing would de-
grade usual C++ subobject-based implementation and adap-
tive compiler techniques are likely less adapted to subobjects
than to invariant-reference implementations. However, the
best alternative that we can currently propose, PH-and with
accessor simulation, is about 50% slower than the most effi-
cient implementation with global compilation. Hence, there
is room for further research.
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