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1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,
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6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages
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Specialization is Covariant (1/3)

• Specialization has ancient roots in Aristotelian tradition:
Socrates is a human, humans are mortals, thus Socrates is a mortal
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Specialization is Covariant (1/3)

• Specialization has ancient roots in Aristotelian tradition:
Socrates is a human, humans are mortals, thus Socrates is a mortal

• In object-oriented jargon, inclusion of extensions:
instances of a class are also instances of its superclasses

B ≺ A =⇒ Ext(B) ⊆ Ext(A)
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Specialization is Covariant (2/3)

• Classes have properties, yielding to inclusion of intensions:

B ≺ A =⇒ Int(A) ⊆ Int(B)

this is inheritance
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Specialization is Covariant (2/3)

• Classes have properties, yielding to inclusion of intensions:

B ≺ A =⇒ Int(A) ⊆ Int(B)

this is inheritance

• Properties have a domain:

B ≺ A & P ∈ Int(A) =⇒ Dom(B, p) ⊆ Dom(A, p)

this is covariant specialization of domains
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Specialization is Covariant (3/3)

Knowledge representation, especially Description Logics
give a formal semantics to specialization
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Subtyping is Contravariant (1/2)

• Subtyping is ruled by substitutability:
any value of a subtype may be bound to an entity typed by a supertype
without a run-time type error
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Subtyping is Contravariant (1/2)

• Subtyping is ruled by substitutability:
any value of a subtype may be bound to an entity typed by a supertype
without a run-time type error

• Let a method mA(t) : t′ defined in class A,
redefined as mB(u) : u′ in a subclass B, then

B <:A⇒ t<:u & u′ <: t′

this is contravariance rule:
return type is covariant but parameter type is contravariant.
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Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;
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Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

• Contravariance for classes is needed if one wants:

– type safety
– inheritance is subtyping: B ≺ A =⇒ type(B) <: type(A)

Specialization also is substitutability

OOIS’02–MaSpeGHi Montpellier, september the 2th 6
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The conflict and its causes

• domains are covariant and ruled by an existential quantifier:
there exists a value ... (e.g. a cow eats some grass)

• types are contravariant and ruled by a universal quantifier:
any value can be substituted ... (e.g. all cows eat all grass)

• domains are not types but ...

• ... types are a good approximate (upper bound)
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Type errors are in “real world”

An example: the mad cow disease!
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Type errors are in “real world”

An example: the mad cow disease!

analysis and design are left to the audience!
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Programming Languages (1/3) : C++ & J AVA

• they are more than contravariant, invariant
C++ is actually covariant for return type, but nobody knows it!
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Programming Languages (1/3) : C++ & J AVA

• they are more than contravariant, invariant
C++ is actually covariant for return type, but nobody knows it!

• they are not type safe, due to casting:
if you want covariant parameters, use downcasts!
in JAVA, don’t worry about genericity, use downcasts!

• they can simulate type overriding with static overloading:
if you are not too demanding regarding semantics:
OO semantics lies in dynamic type whereas static overloading is ruled by static types
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Programming Languages (2/3) : E IFFEL

• the only covariant language,

• but it pretends to type safety, with the catcall rule,
polymorphic calls of a covariant method are forbidden

• covariant overriding would be possible but unusable!

• fortunately, the rule does not work in separate compilation
and it is not implemented in SMALL EIFFEL (global compilation)
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Programming Languages (3/3)

They are mostly politically correct!
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Programming Languages (3/3)

They are mostly politically correct!

• all pretends to be type safe, but they are not,

• in C++ and JAVA, a sound, complete, but clumsy, simulation of covariance
is possible, using downcasts and static overloading

• it would be better to be covariant with explicit handling of type errors!
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Modeling languages (1/2)

In which camp are modeling languages and UML?
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Modeling languages (1/2)

In which camp are modeling languages and UML?

• Aristotle, KR and covariance?

• type theory and contravariance?

• JAVA and invariance?

Any idea ? The answer is: JAVA’s invariance!

EIFFEL is not even quoted in UML v1.4
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Modeling languages (2/2)

They should obviously be in the camp of “real world”!
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The future of type theory

Many variations around subtyping and polymorphism:

• mytype and matching (i.e. mytype in contravariant position):
safe in match-bounded genericity, LOOM’s match-polymorphism and exact types
unsafe as subtyping and in EIFFEL’s anchored types

• SATHER’s “classes are not types, inheritance is not subtyping”:
covariant specialization without polymorphism

• multiple selection with Castagna’s multi-methods
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The future of type theory

Many variations around subtyping and polymorphism:

• mytype and matching (i.e. mytype in contravariant position):
safe in match-bounded genericity, LOOM’s match-polymorphism and exact types
unsafe as subtyping and in EIFFEL’s anchored types

• SATHER’s “classes are not types, inheritance is not subtyping”:
covariant specialization without polymorphism

• multiple selection with Castagna’s multi-methods

Anyway type errors are in “real world”!
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Real covariant languages (1/2)

Programming language:

• neither casting nor static overloading,

• a covariant type system, à la EIFFEL, maybe in a multi-method framework

• explicit handling of type errors: should be considered as soon as analysis

• syntactic means to impose invariance

• many other OO improvements on C++ and JAVA:
self encapsulation à la SMALLTALK, class variables, ...
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Real covariant languages (2/2)

Analysis is a customer for programming.

Modeling languages should impose their proper specifications
instead of taking them from programming languages.
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The end
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