
“Real World” as an argument for covariant
specialization in programming and modeling

or

Specialization, from Aristotle to U ML

Roland Ducournau
LIRMM – Université Montpellier 2

OOIS’02–MaSpeGHi Montpellier, september the 2th



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Plan

1. From Aristotle to KR, Specialization is Covariant,

2. According to type theory, Subtyping is Contravariant,

3. The conflict and its causes,

4. Are Programming Languages Type Safe or Covariant?

5. Is UML Aristotle’s champion?

6. Have we anything to expect from type theory?

7. Perspectives: real covariant programming and modeling languages

OOIS’02–MaSpeGHi Montpellier, september the 2th 1



R. Ducournau Lirmm — UM2

Specialization is Covariant (1/3)

• Specialization has ancient roots in Aristotelian tradition:
Socrates is a human, humans are mortals, thus Socrates is a mortal

OOIS’02–MaSpeGHi Montpellier, september the 2th 2



R. Ducournau Lirmm — UM2

Specialization is Covariant (1/3)

• Specialization has ancient roots in Aristotelian tradition:
Socrates is a human, humans are mortals, thus Socrates is a mortal

• In object-oriented jargon, inclusion of extensions:
instances of a class are also instances of its superclasses

B ≺ A =⇒ Ext(B) ⊆ Ext(A)

OOIS’02–MaSpeGHi Montpellier, september the 2th 2



R. Ducournau Lirmm — UM2

Specialization is Covariant (2/3)

• Classes have properties, yielding to inclusion of intensions:

B ≺ A =⇒ Int(A) ⊆ Int(B)

this is inheritance

OOIS’02–MaSpeGHi Montpellier, september the 2th 3



R. Ducournau Lirmm — UM2

Specialization is Covariant (2/3)

• Classes have properties, yielding to inclusion of intensions:

B ≺ A =⇒ Int(A) ⊆ Int(B)

this is inheritance

• Properties have a domain:

B ≺ A & P ∈ Int(A) =⇒ Dom(B, p) ⊆ Dom(A, p)

this is covariant specialization of domains

OOIS’02–MaSpeGHi Montpellier, september the 2th 3



R. Ducournau Lirmm — UM2

Specialization is Covariant (3/3)

Knowledge representation, especially Description Logics
give a formal semantics to specialization

OOIS’02–MaSpeGHi Montpellier, september the 2th 4



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (1/2)

• Subtyping is ruled by substitutability:
any value of a subtype may be bound to an entity typed by a supertype
without a run-time type error

OOIS’02–MaSpeGHi Montpellier, september the 2th 5



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (1/2)

• Subtyping is ruled by substitutability:
any value of a subtype may be bound to an entity typed by a supertype
without a run-time type error

• Let a method mA(t) : t′ defined in class A,
redefined as mB(u) : u′ in a subclass B, then

B <:A⇒ t<:u & u′ <: t′

this is contravariance rule:
return type is covariant but parameter type is contravariant.

OOIS’02–MaSpeGHi Montpellier, september the 2th 5



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

OOIS’02–MaSpeGHi Montpellier, september the 2th 6



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

• Contravariance for classes is needed if one wants:

OOIS’02–MaSpeGHi Montpellier, september the 2th 6



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

• Contravariance for classes is needed if one wants:

– type safety

OOIS’02–MaSpeGHi Montpellier, september the 2th 6



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

• Contravariance for classes is needed if one wants:

– type safety
– inheritance is subtyping: B ≺ A =⇒ type(B) <: type(A)

OOIS’02–MaSpeGHi Montpellier, september the 2th 6



R. Ducournau Lirmm — UM2

Subtyping is Contravariant (2/2)

• Attributes must be invariant:
covariant as read method, contravariant as write method;

• Contravariance for classes is needed if one wants:

– type safety
– inheritance is subtyping: B ≺ A =⇒ type(B) <: type(A)

Specialization also is substitutability

OOIS’02–MaSpeGHi Montpellier, september the 2th 6



R. Ducournau Lirmm — UM2

The conflict and its causes

• domains are covariant and ruled by an existential quantifier:
there exists a value ... (e.g. a cow eats some grass)

• types are contravariant and ruled by a universal quantifier:
any value can be substituted ... (e.g. all cows eat all grass)

• domains are not types but ...

• ... types are a good approximate (upper bound)

OOIS’02–MaSpeGHi Montpellier, september the 2th 7



R. Ducournau Lirmm — UM2

The conflict and its causes

• domains are covariant and ruled by an existential quantifier:
there exists a value ... (e.g. a cow eats some grass)

• types are contravariant and ruled by a universal quantifier:
any value can be substituted ... (e.g. all cows eat all grass)

• domains are not types but ...

• ... types are a good approximate (upper bound)

OOIS’02–MaSpeGHi Montpellier, september the 2th 7



R. Ducournau Lirmm — UM2

The conflict and its causes

• domains are covariant and ruled by an existential quantifier:
there exists a value ... (e.g. a cow eats some grass)

• types are contravariant and ruled by a universal quantifier:
any value can be substituted ... (e.g. all cows eat all grass)

• domains are not types but ...

• ... types are a good approximate (upper bound)

OOIS’02–MaSpeGHi Montpellier, september the 2th 7



R. Ducournau Lirmm — UM2

The conflict and its causes

• domains are covariant and ruled by an existential quantifier:
there exists a value ... (e.g. a cow eats some grass)

• types are contravariant and ruled by a universal quantifier:
any value can be substituted ... (e.g. all cows eat all grass)

• domains are not types but ...

• ... types are a good approximate (upper bound)

OOIS’02–MaSpeGHi Montpellier, september the 2th 7



R. Ducournau Lirmm — UM2

Type errors are in “real world”

An example: the mad cow disease!

OOIS’02–MaSpeGHi Montpellier, september the 2th 8



R. Ducournau Lirmm — UM2

Type errors are in “real world”

An example: the mad cow disease!

analysis and design are left to the audience!

OOIS’02–MaSpeGHi Montpellier, september the 2th 8



R. Ducournau Lirmm — UM2

Programming Languages (1/3) : C++ & J AVA

• they are more than contravariant, invariant
C++ is actually covariant for return type, but nobody knows it!

OOIS’02–MaSpeGHi Montpellier, september the 2th 9



R. Ducournau Lirmm — UM2

Programming Languages (1/3) : C++ & J AVA

• they are more than contravariant, invariant
C++ is actually covariant for return type, but nobody knows it!

• they are not type safe, due to casting:
if you want covariant parameters, use downcasts!
in JAVA, don’t worry about genericity, use downcasts!

OOIS’02–MaSpeGHi Montpellier, september the 2th 9



R. Ducournau Lirmm — UM2

Programming Languages (1/3) : C++ & J AVA

• they are more than contravariant, invariant
C++ is actually covariant for return type, but nobody knows it!

• they are not type safe, due to casting:
if you want covariant parameters, use downcasts!
in JAVA, don’t worry about genericity, use downcasts!

• they can simulate type overriding with static overloading:
if you are not too demanding regarding semantics:
OO semantics lies in dynamic type whereas static overloading is ruled by static types

OOIS’02–MaSpeGHi Montpellier, september the 2th 9



R. Ducournau Lirmm — UM2

Programming Languages (2/3) : E IFFEL

• the only covariant language,

• but it pretends to type safety, with the catcall rule,
polymorphic calls of a covariant method are forbidden

• covariant overriding would be possible but unusable!

• fortunately, the rule does not work in separate compilation
and it is not implemented in SMALL EIFFEL (global compilation)

OOIS’02–MaSpeGHi Montpellier, september the 2th 10



R. Ducournau Lirmm — UM2

Programming Languages (2/3) : E IFFEL

• the only covariant language,

• but it pretends to type safety, with the catcall rule,
polymorphic calls of a covariant method are forbidden

• covariant overriding would be possible but unusable!

• fortunately, the rule does not work in separate compilation
and it is not implemented in SMALL EIFFEL (global compilation)

OOIS’02–MaSpeGHi Montpellier, september the 2th 10



R. Ducournau Lirmm — UM2

Programming Languages (2/3) : E IFFEL

• the only covariant language,

• but it pretends to type safety, with the catcall rule,
polymorphic calls of a covariant method are forbidden

• covariant overriding would be possible but unusable!

• fortunately, the rule does not work in separate compilation
and it is not implemented in SMALL EIFFEL (global compilation)

OOIS’02–MaSpeGHi Montpellier, september the 2th 10



R. Ducournau Lirmm — UM2

Programming Languages (2/3) : E IFFEL

• the only covariant language,

• but it pretends to type safety, with the catcall rule,
polymorphic calls of a covariant method are forbidden

• covariant overriding would be possible but unusable!

• fortunately, the rule does not work in separate compilation
and it is not implemented in SMALL EIFFEL (global compilation)

OOIS’02–MaSpeGHi Montpellier, september the 2th 10



R. Ducournau Lirmm — UM2

Programming Languages (3/3)

They are mostly politically correct!

OOIS’02–MaSpeGHi Montpellier, september the 2th 11



R. Ducournau Lirmm — UM2

Programming Languages (3/3)

They are mostly politically correct!

• all pretends to be type safe, but they are not,

OOIS’02–MaSpeGHi Montpellier, september the 2th 11



R. Ducournau Lirmm — UM2

Programming Languages (3/3)

They are mostly politically correct!

• all pretends to be type safe, but they are not,

• in C++ and JAVA, a sound, complete, but clumsy, simulation of covariance
is possible, using downcasts and static overloading

OOIS’02–MaSpeGHi Montpellier, september the 2th 11



R. Ducournau Lirmm — UM2

Programming Languages (3/3)

They are mostly politically correct!

• all pretends to be type safe, but they are not,

• in C++ and JAVA, a sound, complete, but clumsy, simulation of covariance
is possible, using downcasts and static overloading

• it would be better to be covariant with explicit handling of type errors!

OOIS’02–MaSpeGHi Montpellier, september the 2th 11



R. Ducournau Lirmm — UM2

Modeling languages (1/2)

In which camp are modeling languages and UML?

OOIS’02–MaSpeGHi Montpellier, september the 2th 12



R. Ducournau Lirmm — UM2

Modeling languages (1/2)

In which camp are modeling languages and UML?

• Aristotle, KR and covariance?

• type theory and contravariance?

• JAVA and invariance?

OOIS’02–MaSpeGHi Montpellier, september the 2th 12



R. Ducournau Lirmm — UM2

Modeling languages (1/2)

In which camp are modeling languages and UML?

• Aristotle, KR and covariance?

• type theory and contravariance?

• JAVA and invariance?

Any idea ?

OOIS’02–MaSpeGHi Montpellier, september the 2th 12



R. Ducournau Lirmm — UM2

Modeling languages (1/2)

In which camp are modeling languages and UML?

• Aristotle, KR and covariance?

• type theory and contravariance?

• JAVA and invariance?

Any idea ? The answer is: JAVA’s invariance!

OOIS’02–MaSpeGHi Montpellier, september the 2th 12



R. Ducournau Lirmm — UM2

Modeling languages (1/2)

In which camp are modeling languages and UML?

• Aristotle, KR and covariance?

• type theory and contravariance?

• JAVA and invariance?

Any idea ? The answer is: JAVA’s invariance!

EIFFEL is not even quoted in UML v1.4

OOIS’02–MaSpeGHi Montpellier, september the 2th 12



R. Ducournau Lirmm — UM2

Modeling languages (2/2)

They should obviously be in the camp of “real world”!

OOIS’02–MaSpeGHi Montpellier, september the 2th 13



R. Ducournau Lirmm — UM2

The future of type theory

Many variations around subtyping and polymorphism:

• mytype and matching (i.e. mytype in contravariant position):
safe in match-bounded genericity, LOOM’s match-polymorphism and exact types
unsafe as subtyping and in EIFFEL’s anchored types

• SATHER’s “classes are not types, inheritance is not subtyping”:
covariant specialization without polymorphism

• multiple selection with Castagna’s multi-methods

OOIS’02–MaSpeGHi Montpellier, september the 2th 14



R. Ducournau Lirmm — UM2

The future of type theory

Many variations around subtyping and polymorphism:

• mytype and matching (i.e. mytype in contravariant position):
safe in match-bounded genericity, LOOM’s match-polymorphism and exact types
unsafe as subtyping and in EIFFEL’s anchored types

• SATHER’s “classes are not types, inheritance is not subtyping”:
covariant specialization without polymorphism

• multiple selection with Castagna’s multi-methods

Anyway type errors are in “real world”!

OOIS’02–MaSpeGHi Montpellier, september the 2th 14



R. Ducournau Lirmm — UM2

Real covariant languages (1/2)

Programming language:

• neither casting nor static overloading,

• a covariant type system, à la EIFFEL, maybe in a multi-method framework

• explicit handling of type errors: should be considered as soon as analysis

• syntactic means to impose invariance

• many other OO improvements on C++ and JAVA:
self encapsulation à la SMALLTALK, class variables, ...

OOIS’02–MaSpeGHi Montpellier, september the 2th 15



R. Ducournau Lirmm — UM2

Real covariant languages (2/2)

Analysis is a customer for programming.

Modeling languages should impose their proper specifications
instead of taking them from programming languages.

OOIS’02–MaSpeGHi Montpellier, september the 2th 16



R. Ducournau Lirmm — UM2

The end

OOIS’02–MaSpeGHi Montpellier, september the 2th 17


