
�Real World� as an Argument for Covariant

Specialization in Programming and Modeling

Roland Ducournau

L.I.R.M.M., Université Montpellier 2
161, rue Ada � 34392 Montpellier cedex 5, France,

ducournau@lirmm.fr,
http://www.lirmm.fr/�ducour/

Abstract. Class specialization is undoubtedly one of the most original
and powerful features of object orientation as it structures object models
at all stages of software development. Unfortunately, the semantics of
specialization is not de�ned with the same accuracy in the various �elds.
In programming languages, specialization is constrained by type theory
and by a type safe policy, whereas its common sense semantics dates back
to the Aristotelian tradition. The well known covariant vs. contravariant
controversy originates here. In this paper, we investigate how modeling
and programming languages deal with this mismatch. We claim that type
errors are part of the real world, so they should be taken into account
at all stages of software development. Modeling as well as programming
languages should adopt a covariant policy.

1 Introduction

Originated in Simula more than 30 years ago [3], object orientation has become,
by now, quite hegemonic in the �eld of programming languages and software en-
gineering, not to speak of databases or knowledge representation. This hegemony
has often been explained by the closeness of various object-oriented concepts to
corresponding common sense notions as they have been elaborated in classic
philosophy [21, 22]. Noticing that, one could hope for a seamless development
process from so-called real world to program implementation, through analysis
and design steps. However, this apparently uniform model presents some discon-
tinuities, particularly when specialization is concerned.

Class specialization is undoubtedly one of the most original and powerful
features of object orientation, yielding most of its qualities and breaking with
previous programming paradigms. A large part of the literature is devoted to it,
and it is the central point of many active topics of research such as inheritance
(programming languages), classi�cation or subsumption (knowledge representa-
tion), polymorphism or subtyping (type theory). Unfortunately, the semantics
of specialization is not de�ned with the same accuracy in those various �elds.
Moreover, specialization may be constrained, in some �eld, by some external
considerations. For instance, the well known covariant vs. contravariant contro-

versy (e.g. [8], [18, chapter 17] or [25]) can be explained as a con�ict between the

demands of a type safe policy and the needs for expressivity. In this paper, we
look at this well known controversy from the point of view of our common sense
understanding of the �real world� and investigate whether modeling languages
answer adequately to this requirement. Type errors are part of the real world.
A dramatic example has been given by the �mad cow� disease: cows, as a spe-
cialization of herbivorous, should only eat grass, not meat, but it happened
that they were feeded with remains of cows. So, we claim that type errors should
be taken into account at all stages of software development: analysis and design
methods, as well as programming languages should adopt a covariant policy.

The rest of this paper is organized as follows: section 2 brie�y recalls the
de facto standard object model, then states how specialization can be related to
common sense reasoning and Aristotelian tradition and gives some hints regard-
ing how knowledge representation formalizes it. Next section takes the viewpoint
of programming languages and type theory and states the covariance vs. con-
travariance controversy. The case of most widely used languages is examined and
some alternatives such as multiple dispatch are investigated. Section 4 looks at
analysis and design methods, mainly Uml, and concludes to their current ab-
dication to impose a semantics in front of Java's one. In conclusion, we sketch
out the speci�cations of a language adapted to the semantics of specialization.

2 Semantics of specialization

The de facto standard object model is the class-based model, consisting of
classes, organized in a specialization hierarchy, and objects created as instances
of those classes by an instantiation process. Each class is described by a set of
properties, attributes for the state of its instances and methods for their behav-
ior. Applying a method to an object follows the metaphor of message sending

(also called late binding): the invoked method is selected according to the class
of the object (called the receiver). This is the core of the model and it su�ces to
state the point of the specialization semantics. It is a de facto standard since it
covers all of the widely used languages as the core of analysis and design models.

Though novel in computer science, specialization has quite ancient roots in
the Aristotelian tradition, in the well known syllogism: Socrates is a human,

humans are mortals, thus Socrates is a mortal . Here Socrates is an instance,
human and mortal are classes. The interested reader will �nd in [21, 22] a deep
analysis of the relationships between object orientation and Aristotle syllogistic.

2.1 Inclusion of extensions, intensions and domains

According to the Aristotelian tradition, as revised with the computer science
vocabulary, one can generalize this example by saying that instances of a class

are also instances of its superclasses . More formally, ≺ is the specialization rela-
tionship (B ≺ A means that B is a subclass of A) and Ext is a function which
maps classes to the sets of their instances, their extensions. Then:

B ≺ A =⇒ Ext(B) ⊆ Ext(A) (1)

This is the essence of specialization and it has two logical consequences: inclusion
of intensions (i.e. inheritance) and inclusion of properties' domains (i.e. covariant
re�nement). When considering the properties of a class, one must remember that
they are properties of instances of the class, factorized in the class. Let B be
a subclass of A: instances of B being instances of A, have all the properties
of instances of A. One says that subclasses inherit properties from superclasses.
More formally, Int is a function which maps classes to the sets of their properties,
their intensions :

B ≺ A =⇒ Int(A) ⊆ Int(B) (2)

Properties have a value in each object and can be described in the class by a
domain, that is the set of values taken by the property in all the class's instances.
For instance, the class Person has a property age whose domain is [0, 120]. When
specializing a class, one re�nes the domains of inherited properties: for instance,
a subclass Child of Person will have domain [0, 12] for its property age. The
function Dom maps classes and properties to sets of values. Then:

B ≺ A & P ∈ Int(A) =⇒ Dom(B, p) ⊆ Dom(A, p) (3)

The age example concerns attributes. Methods may have several domains, for
parameters and returned value. As an example, consider classes of Animals, in
a hierarchy à la Linnaeus, with a method eat de�ned with di�erent domains in
classes such as herbivorous, carnivorous, and so on. [18, chapitre 17] develops
a longer example, more oriented towards programming languages.

The inclusions of extensions and intensions have opposite directions, while
those of extensions and domains have the same: intensions can be said contravari-

ant whereas domains are covariant, both w.r.t. extensions, i.e. specialization.

2.2 Specialization in knowledge representation

Though quite intuitive, inclusion (3) cannot be proved to be entailed by (1)
without a careful de�nition of class extensions which needs a model-theoretic
approach. Such a semantics of specialization has been formalized in knowledge
representation systems called description logics or languages of the Kl-One

family [27, 10]. In previous works, we showed that such a formalization could be
exported to a more standard object model but this is not a common approach
[12]. A main feature of this semantics is that the equations corresponding to
(1-3) can be equivalences, not mere implications: in other words, classes can be
de�ned as necessary and su�cient conditions and specialization between classes
(then called subsumption) can be deduced from class properties, which leads to
classi�cation. Previous examples obviously need such semantics since adult

and child are de�ned by their age, as well as herbivorous and carnivorous

by what they eat. However, such a semantics is not necessarily adapted to
programming languages nor to analysis and design modeling, as it has a major
drawback, being essentially monotonous: one can add values, not modify them.
Nevertheless, it could give some hints to precise the semantics of object models,
as well as semantical bases to automatic computation of class hierarchies [13].

3 Programming languages, subtyping and polymorphism

Object-oriented programming languages can be considered as a mixture of object-
oriented notions and programming languages notions. We will just consider the
notion of type, central in programming languages, and focus on statically typed

languages. Arguments in favor of static typing are numerous. The main one con-
cerns reliability. Static, i.e. compile-time, analysis is needed to avoid dynamic,
i.e. run-time, errors. Static typing allows a simple and e�cient static analy-
sis, whereas dynamic typing requires more expensive and less e�ective analyses.
Anyway, static typing is another de facto standard.

3.1 Contravariance of subtyping

In a statically typed language, every entity in the program text which can be
bound to a value at run-time is annotated by a type, its static type . At run-time,
every value has a type, its dynamic type, i.e. the class which creates the value
as its instance. In such a context, an entity is said to be polymorphic when it
can be bound to values of distinct types, and the dynamic types of the values
must conform to the static type of the entity. Otherwise, there is a run-time
type error, which may lead to an unknown message error when a method, called
upon this entity, is known by the static type, not by the dynamic one.

Types and classes are quite similar�a type can be seen as a set of values (ex-
tension) and a set of operators (intension)�and the conformance relationship
between types, denoted by <:, is analogous to specialization between classes.
Statically typed languages allow a static (compile-time) type error checking, i.e.
a type safe compilation. A simple way to allow this is to de�ne conformance
through the notion of substitutability : a type t2 conforms to a type t1 i� any
expression of type t1 can be substituted by (bound to) any value of type t2 with-
out any run-time type error. Types can be identi�ed with classes or, preferably,
types can be associated to classes but the very point is to liken class specializa-
tion and subtyping. Class specialization can support polymorphism�an instance
of a subclass can be substituted to an instance of a superclass�as long as the
type of the subclass conforms to the type of the superclass. Of course, with a
type safe policy. Class specialization is thus constrained by type safety.

This constraint revolves around the way types of properties can be rede�ned
(overridden) in a subclass. Let A be a class and m a method de�ned in A, noted
mA. Method types are noted in a functional way, with arrow types: mA has,
for instance, type t → t′. Let B a subclass of A, where m is rede�ned in mB ,
with type u→ u′. The type of B conforms to the type of A, only if u→ u′ is a
subtype of t→ t′. Subtyping on arrow types is de�ned as follows [7]:

u→ u′<: t→ t′ ⇐⇒ t<: u & u′<: t′ (4)

A function of type t → t′ can be replaced by a function of type u → u′ if the
latter accepts more values as parameter (t<: u) and returns less values (u′<: t′).
Following Cardelli, the return type is said covariant, while the parameter type is
contravariant : this is known as the contravariance rule . Attribute rede�nition is

ruled by a mixture of them, as an attribute can be seen as a pair of two methods,
a reader which returns the attribute value and a writer which set this value from
its parameter's value. Thus an attribute rede�nition must be both covariant and
contravariant, leading to invariance.

3.2 Covariance vs. contravariance

Coming back to the semantics of specialization, one sees that domain specializa-
tion is subjected to some kind of covariant rule (3). The controversy lies there:
contravariance for types versus covariance for domains. The fact is that domains
are not types. Domains are de�ned as the sets of values taken by a property�i.e.
an attribute, a method parameter or returned value�on all instances of a class.
Static types are program annotations intended to avoid run-time type errors. Do-
mains are ruled by existential quanti�ers�there exists a value for a property�,
while types are ruled by universal quanti�ers�any value of the type should be
substitutable. Properties may have both domains and types. Domains can be
understood as subsets of type extensions [6] and there is no way to precisely
express domains in programming languages, but types. Nevertheless, introduc-
ing domains in programming languages would lead to domain errors and to a
domain safe policy, which would be essentially the same as the type safe policy.
So, our thesis is that domains can be expressed by types and that domain errors
are part of the real world: cows should not eat meat, but grass, and there is no
way to statically check for it. One unfortunately knows that, in the real world,
it has not been dynamically checked. Type safe programs are certainly more
reliable, but faithful programs are better. Thus the type safe policy should be
imposed only when type errors originate in the program not when they are part
of the real world.

3.3 Actual languages

Actual languages are apparently ruled by the type safety dogma. C++ and Java,
the two most widely used object-oriented languages, apply the contravariance
rule, in a stricter way than needed: parameter and attribute types are actu-
ally invariant. As for return types, they are also invariant in Java, without any
reason, but they can be covariantly rede�ned in C++, at least recently [15].
However, both languages present two error-proning features which make type
safety unreachable. Downcast is a way to assume that a value of a given static
type has actually a more speci�c subtype: this assumption must be checked at
run-time, which leads to run-time type errors. Static overloading allows to de�ne,
in the same classes, di�erent methods with the same name and distinct param-
eter types. Both features allow apparent covariant rede�nition. In the case of
static overloading, it remains an illusion since static overloading is ruled by a
static dispatch which obviously cannot emulate dynamic dispatch but interferes
with it in a very confusing way. As for downcast, it allows to precisely express
the covariant semantics that a programmer would have to, at the cost of clumsi-
ness and potential type errors. Moreover, downcast is not restricted to handling
covariant parameters and can be reused as a bad general programming style.

Eiffel is the only widely known language to rule out the contravariance rule:
parameter and attribute types must be covariantly rede�ned [17, 18]. However,
it tries to maintain the type safety dogma, with the so-called catcall rule, where
`cat' stands for �Changing Availability or Type�. We will state the rule in the
case of a type change, i.e. a covariant re�nement. A call is polymorphic if the
receiver's dynamic type may be di�erent from its static type. A catcall is a call
to a method which is covariantly rede�ned in the subclasses of the receiver's
type. Polymorphic catcalls are forbidden . Unfortunately, this rule would forbid
to actually use the covariantly rede�ned methods, if it were applicable. For the
catcall rule cannot be implemented in separate compilation and doesn't seem
to have ever been implemented. Moreover, since a global analysis is needed, the
type safety could be obtained with a far less strict rule [23].

3.4 Variations around language design

Many variations around standard object model and type system have been pro-
posed, often as an answer to this controversy. We will examine two of them:
variations on method dispatch and variations on polymorphism and subtyping.

Multiple dispatch Multiple dispatch has been popularized by Clos [4] be-
fore �nding a theoretical framework in static typing [19, 8]. It has been adopted
by many languages. Apart from Clos, which is dynamically typed, none of
those languages is widely used: thus multiple dispatch remains academic, de-
spite its true interest. In standard object model, method dispatch (also called
late binding) is realized according to the message sending metaphor: the type of
a distinguished parameter, called the receiver, is used to select a method. Other
parameters have no in�uence on dynamic dispatch: they are only used for static
overloading, when it is the case. With multiple dispatch, all parameters are used
for selecting the method. An easy way to understand multiple dispatch is to see
it as a single dispatch on the cartesian product of parameter types. This is the
implicit Clos point of view. Contravariance disappears as it concerns only pa-
rameters unused for dispatch but usual modularity of classes and methods also
disappears: methods are no more within classes, but between.

Another view on multiple dispatch is provided by overloaded functions�not
to confuse with static overloading�which preserve modularity [8]. Multimethods,
instead of methods, are associated to classes: each multimethod can have several
branches, i.e. methods, which di�er from each other by the types of their sec-
ondary parameters. Dispatch is then two-steps: a multimethod single dispatch on
the receiver type is followed by a branch multiple dispatch on the types of other
parameters (i.e. single dispatch on their cartesian product). Some typing rules
allow type safe compilation. Implementing covariant re�nement of parameter
types is easy with multimethods. One de�nes a multimethod with two branches:
the �rst one is the overriding method, with re�ned parameter types, while the
other one has non-re�ned parameter types and signals a type error.

Multiple dispatch is a good programming solution, for methods only since
it doesn't apply to attributes. But it is no more type safe than, either down-
cast in C++ and Java, or a truly covariant language like Eiffel. [5] proposes a

technique for automatically transform covariant programs into type safe multiple
dispatch programs, by changing methods into multimethods and adding branches
when meeting covariant re�nement. Added branches call overridden multimeth-
ods. This technique may be adapted for pure covariant re�nement: then, added
branches signal a type error instead of calling overridden multimethod.

Genericity and subtyping Many types systems have been proposed, often
with the aim of making Eiffel's type system safe. Besides its covariant policy,
Eiffel's type system presents an original feature. A type can be �anchored� to
the type of the receiver (self, this or current according to languages) with
the type like current, also called mytype. The anchor can also be a property
p of self, with the type like p. Anchored types are typically covariant: in the
interface of a class, i.e. on a non self receiver, they are not type safe, unless
when used as return types. Several propositions for making Eiffel type safe
have been made [9, 26]: they are mainly based on a translation of anchored types
into parametric types. Indeed, as a corollary of the contravariance rule, if A〈T 〉
is a parametric type, B and C two classes, then A〈C〉 is not a subtype of A〈B〉
when C <:B, at least in a type safe policy. Thus, those propositions for making
Eiffel type safe replace an unsafe covariant specialization by a safe but non
substitutable parameterization.

Another way to avoid the contravariance controversy has been to dissoci-
ate subclassing and subtyping, as in Sather [25]. Again, the result is to allow
covariant re�nement, but to forbid substitutability, as with the catcall rule or
Eiffel corrections. Not surprisingly, all those approaches are more or less equiv-
alent, since usual types A need to be de�ned as recursive types µ(t)A(t) where µ
binds a variable t to the type being de�ned, i.e. mytype [1]. Though genericity
(i.e. parametric polymorphism) and subtyping (i.e. inclusion polymorphism) are
conceptually di�erent, their formal bases are the same. Thus any translation
of anchored types into parametric types, or any dissociation of subclassing and
subtyping will have no e�ect on the controversy: covariant re�nement, polymor-
phism (i.e. substitutability) and type safety are incompatible.

4 Analysis and design methods

Analysis and design methods bridge the gap between, on the one hand, real world
and common sense reasoning and, on the other hand, programming languages.
Clearly, analysis should be independent from programming languages. There is
no evidence that analysis' speci�cities and goals would be very di�erent from
knowledge representation's ones. In fact, one can �nd bridges between them
(e.g. [14]) and the main requirement for knowledge representation is that it
must a�ord a formal support to reasoning, while analysis should only produce
an informal model. So, our �rst point will be that analysis methods should use
covariant models, as common sense reasoning and knowledge representation.

As for design methods, it is unclear how independent from programming
languages they should be. Part of design methods is often dedicated to imple-
mentation, thus depends on some speci�c languages.

Looking at existing methods, one �nds a family of universal object-oriented
methods, such as Omt [24], which have been uni�ed in Uml [20]. It doesn't
matter that Uml is not a method but a modeling language, since we are only
concerned here by the object models. At the opposite, a language like Eiffel [17]
can be seen as equipped with its own design method [18]. Not surprisingly, this
method preconizes a covariant modeling, thus satisfying our demands. Uml be-
ing the product of a uni�cation process, it is presumed to have gained experience
from previous methods such as Omt. Moreover, it tends towards hegemony. So
it will be our main target. Uml, after Omt, demands that signatures, including
return types, be invariant by overriding. Moreover, in Omt, static overloading
is explicitly advocated. Though one of the goals of Uml is to �support speci�ca-
tions that are independent of particular programming languages �, it appears than
many details of its speci�cations come from Java, such as signature invariance. A
main drawback of the unifying approach of Uml is then that uni�cation applies
only at lexical (i.e. entities composing a model) and syntactic (i.e. relationships
between entities) levels: semantics is left to the reader or even is explicitly re-
ferred to the target programming language. In this article, we developed the
case of the covariant semantics of specialization. Other features of modeling and
programming languages could and should be discussed from the same point of
view. For instance, the notion of visibility is realized in Uml through a mixture
of Java and C++ keywords, with a semantics which seems to be that of the
programming languages, but it is well known that common keywords have dif-
ferent semantics in Java and C++ [2]. No e�ort seems to be made to propose a
novel, proper semantics and the canonical encapsulation of Smalltalk as well
as the more complex export clauses of Eiffel are not considered whereas they
are closer to the essence of object orientation, by allowing the protection of self.

5 Conclusion and perspectives

A main quality of object-oriented technology is to provide to programs, through
various development stages, a uniform model from common sense understanding
of �real world�. In computer science and technology, this is an original and price-
less quality which should lead to a seamless development process. One could
expect that object-oriented languages re�ect a con�ict between formal theories
which do impose some technical policy, e.g. type theory for type safety, and anal-
ysis methods, which would demand some expressivity, e.g. covariant re�nement.
Surprisingly, there is no evidence of such a con�ict. Moreover, if a controversy
does exist about co and contravariance, it is con�ned to the programming lan-
guages community. The Uml community seems to �nd Java a perfect language
and doesn't seem to have ever heard about Eiffel, not to speak of Aristotle.

Nevertheless, analysis and design methods should see themselves as program-
ming languages' clients: they should impose their speci�cations of what should
be a programming language, instead of adopting the speci�cations of the current
most widely used programming languages. This is not to rule out type theory:
type safety is an important viewpoint on programs, not the main one. Type

errors exist in the �real world��it could happen that cows eat meat, not grass,
moreover it happened�thus, they should be integrated in analysis, design and
programming stages. Programming languages designers must compromise be-
tween the languages expressivity and the formal properties they want to ensure.
Such a compromise recalls the compromise between expressivity and complete-
ness which caused a long lasting debate in the knowledge representation commu-
nity [16]. But this new compromise di�ers for type safety is truly incompatible
with the ability to express real world type errors.

Thus, our conclusion and perspectives are twofold. First, analysis and design
methods, i.e. OMG, should adopt a model with covariant re�nement integrating
type errors both in the model and in the methods; and they should ask for pro-
gramming languages adapted to such a model. Second, programming languages
designers should design languages allowing an easy expression of covariant re-
�nement, either with single or multiple dispatch; type errors should be explicitly
handled at run-time, and an improved static analysis of those type errors should
allow the programmer to compare the potential errors in the program with their
existence in the analysis and design models. Analysts, designers and program-
mers should all be aware of the type errors which might happen when using
covariant re�nement. Moreover, if the ability to express covariance is necessary,
invariance may often be su�cient: type safe models and programs must be en-
couraged. Languages could supply keywords to express that a speci�c property
could or couldn't be covariantly re�ned in subclasses. As a corollary, there is no
solution to the controversy to expect from type theory, for two reasons. First,
type errors come from the �real world�: no theory is powerful enough to modify
it. Second, all the variations on types and polymorphism are mainly equiva-
lent: a choice must always be made between specialization, polymorphism and
type safety. The interested reader will �nd a more detailed discussion in [11].
More generally, for all features which are a matter of modeling, analysis and
design methods should propose their own proper speci�cations to programming
languages.

References

1. M. Abadi and L. Cardelli. On subtyping and matching. In W. Oltho�, editor,
Proc. ECOOP'95, LNCS 952, pages 145�167. Springer-Verlag, 1995.

2. G. Ardourel and M. Huchard. Access graphs, another view on static access control
for a better understanding and use. J. of Object Technology , 2002. (to appear).

3. G. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA Begin. Petrocelli
Charter, New York (NY), USA, 1973.

4. D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon. Com-
mon Lisp Object System speci�cation,. ACM SIGPLAN Notices , 23, 1988.

5. J. Boyland and G. Castagna. Type-safe compilation of covariant specialization:
a practical case. In P. Cointe, editor, Proc. ECOOP'96, LNCS 1098, pages 3�25.
Springer-Verlag, 1996.

6. C. Capponi, J. Euzenat, and J. Gensel. Objects, types and constraints as classi�-
cation schemes. In G. Ellis, R. Levinson, A. Fall, and V. Dahl, editors, Int. Conf.
on Knowledge Re-use, Storage and E�ciency (KRUSE'95) , pages 69�73, 1995.

7. L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. McQueen, and
G. Plotkin, editors, Semantics of Data Types , LNCS 173, pages 51�67. Springer-
Verlag, Berlin, 1984.

8. G. Castagna. Object-oriented programming: a uni�ed foundation . Progress in
Theoretical Computer Science Series. Birkhaüser, 1997.

9. W. R. Cook. A proposal for making Ei�el type-safe. In S. Cook, editor, Proc.
ECOOP'89, pages 57�70. Cambridge University Press, 1989.

10. F.-M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description
logics. In G. Brewka, editor, Principles of Knowledge Representation , pages 191�
236. CSLI Publications, Stanford (CA), USA, 1996.

11. R. Ducournau. �Real World� as an argument for covariant specialization in pro-
gramming and modeling. RR 02-083, L.I.R.M.M., Montpellier, France, 2002.

12. R. Ducournau and G. Pavillet. Langage à objets et logique de descriptions : un
schéma d'intégration. In I. Borne and R. Godin, editors, Actes LMO'2001 in
L'Objet vol. 7, pages 233�249. Hermès, 2001.

13. R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Ar�, and T. Chau. Design of Class
Hierarchies Based on Concept (Galois) Lattices. Theory and Practice of Object
Systems, 4(2), 1998.

14. S. Greenspan, J. Mylopoulos, and A. Borgida. On formal requirements modeling
languages: RML revisited. In Int. Conf. on Software Engineering (ICSE'94) , 1994.

15. A. Koenig. Standard � the C++ language. Report ISO/IEC 14882:1998, Informa-
tion Technology Council (NCTIS), 1998. http://www.nctis.org/cplusplus.htm .

16. H. Levesque and R. Brachman. Expressiveness and Tractability in Knowledge
Representation and Reasoning. Computational Intelligence , 3(2):78�93, 1987.

17. B. Meyer. Ei�el: The Language. Prentice Hall Object-Oriented Series. Prentice
Hall International, Hemel Hempstead, UK, 1992.

18. B. Meyer. Object-Oriented Software Construction . The Object-Oriented Series.
Prentice-Hall, Englewood Cli�s (NJ), USA, second edition, 1997.

19. W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a statically-typed
programming language. In P. America, editor, Proc. ECOOP'91, LNCS 512, pages
307�324. Springer-Verlag, 1991.

20. OMG. Uni�ed Modeling Language speci�cations, v1.4. Technical report, Object
Management Group, 2001.

21. D. Rayside and G. Campbell. An aristotelian understanding of object-oriented
programming. In Proc. OOPSLA'00, SIGPLAN Notices, 35(10), pages 337�353.
ACM Press, 2000.

22. D. Rayside and K. Kontogiannis. On the syllogistic structure of object-oriented
programming. In Proc. of ICSE'01, pages 113�122, 2001.

23. J.-C. Royer. An Operational Approach to the Semantics of Classes: Application to
Type Checking. Programming and Computer Software , 28(3), 2002. (to appear).

24. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Ori-
ented Modeling and Design . Prentice-Hall, Englewood Cli�s (NJ), USA, 1991.

25. C. Szypersky, S. Omohundro, and S. Murer. Engineering a programming language:
The type and class system of Sather. In Proc. of First Int. Conference on Pro-
gramming Languages and System Architectures , LNCS 782. Springer Verlag, 1994.

26. F. Weber. Getting class correctness and system correctness equivalent � how to
get covariant right. In R. Ege, M. Singh, and B. Meyer, editors, Technology of
Object-Oriented Languages and Systems (TOOLS 8) , pages 192�213, 1992.

27. W. Woods and J. Schmolze. The KL-ONE family. Computers & Mathematics with
Applications, 23(2�5):133�177, 1992.

