
Perfect Hashing for Method Dispatch with

Dynamic Typing and Dynamic Compilation

Roland Ducournau

LIRMM � CNRS and Université Montpellier II, France

RR LIRMM RR-12010

April 2, 2012

Abstract

In static typing, the receiver's static type is the key to e�cient imple-

mentation of method invocation, and a recently proposed technique, based

on perfect hashing of classes, cannot apply to dynamic typing because of

the lack of static types. In this article, we propose a new application of

perfect hashing to method dispatch in a dynamic typing, dynamic loading

and single inheritance setting. The approach involves hashing method se-

lectors instead of classes. However, as hashing all methods revealed itself

to be space-ine�cient, only overloaded methods, ie methods introduced

by several classes, are hashed. The dispatch of non-overloaded methods

is done as in single-subtyping, ie static typing and single inheritance.

An adaptive-compilation protocol and an algorithm for hashing over-

loaded methods are proposed, and the approach is tested on Smalltalk

benchmarks by simulating class loading at random.

Keywords: method dispatch, single inheritance, dynamic typing, ob-

ject representation, compilation protocol, perfect hashing, perfect num-

bering, adaptive compiler.

1 Introduction

In spite of its 30-year maturity, object-oriented programming still has a sub-
stantial e�ciency drawback in the dynamic loading context and it is worsened
by either multiple inheritance, or dynamic typing. In the dynamic loading con-
text, compilation must be separate (as opposed to global), ie code units are
compiled separately from each other. Compilation can also be static or dy-
namic. With static compilation, each code unit is compiled once for all, and
this implies the open-world assumption (OWA) which makes the generated code
rather ine�cient. In contrast, with dynamic compilation, a code unit can be
further recompiled; it thus allows the compiler to perform aggressive optimiza-
tions, based on provisory closed-world assumptions (CWA), which makes the
code more e�cient, at the price of extra recompilations. The overall e�ciency
is thus a tradeo� between the runtime e�ciency of the generated code and
the recompilation cost. This article focusses on both dynamic compilation and
dynamic typing.

1



In recent articles, we proposed a new implementation approach, called perfect
class hashing [1] and based on perfect hashing, ie truly constant-time, collision-
free hashing [2, 3]. From an algorithmic point of view, a variant called perfect
numbering involves optimizing the class IDs in order to minimize the hashtable
sizes [4]. Real-size experiments in the Prm compiler [5] showed that perfect
hashing would be quite e�cient for implementing multiple subtyping, ie Java
interfaces, in a static, separatate compilation setting. However, it would be
rather ine�cient, ie as ine�cient as C++-like subobjects, when used in a full
multiple-inheritance context [6]. Therefore, we also proposed a compilation/re-
compilation protocol that would allow for an e�cient implementation in a just-
in-time, dynamic compiler [7]. Indeed, in this dynamic setting, most invocation
sites can use shortcuts that are more e�cient than perfect hashing.

However, perfect class hashing can be used only in a static typing setting, be-
cause it involves hashing classes, and grouping methods by introduction class.
On a given invocation site, the introduction class is thus deduced from the
receiver's static type. In contrast, even with single inheritance, in a dynam-
ically typed language like Smalltalk [8], a method (ie a method selector in
Smalltalk jargon) may be introduced by several classes. Hereafter, we will
say that such methods are overloaded1. Therefore, the perfect hashing approach
requires, in this new context, an e�cient way of hashing methods instead of
classes, and �rst experiments showed that perfect method hashing was not that
space-e�cient [1].

In this paper we propose an object representation and a recompilation pro-
tocol which provide an e�cient use of perfect method hashing for implementing
Smalltalk-like languages. The main idea is that perfect hashing is used only
for overloaded methods, which are presumed to be few enough for keeping the
overhead low. However, as the overload feature depends on the classes that are
actually loaded, these hashtables must be recomputable, and an extra indirec-
tion is required. In contrast, methods that are introduced by a single class are
invoked in the same way as in single-subtyping (SST), by deducing the single
introduction class from the method selector instead of the receiver's static type.
Besides, common optimizations like monomorphic invocations can be consid-
ered.

Plan. The rest of the article is structured as follows. The next section presents
the object-representation issue, and states our proposal of applying perfect hash-
ing (more precisely, a variant called perfect numbering) to overloaded meth-
ods. Section 3 presents the compilation/recompilation protocol the technique
requires in an adaptive compiler. Section 4 recalls the perfect hashing problem,
formalizes the new algorithmic problem and proposes a heuristic which is, in
some sense, optimal, though non-optimal on many aspects. Section 5 presents
our experiments, based on a simulation of large benchmarks with random class-
loading. These tests show that overloaded methods are few enough, thus making
the overhead of perfect hashing very low. Furthermore the algorithm appears to

1This use of the overload term must not be confused with static overloading, which repre-
sents, in languages like C++, C# or Java, the fact that a method name can be used in the
same context with di�erent parameter types or numbers. It must not either be confused with
overloaded functions which represent methods dispatched on all their parameters [9]. Finally,
it must not be confused with overriding, which represents the fact that a method de�ned in
a class can be rede�ned in a subclass.

2



be space-e�cient enough to be further considered. Conclusions and prospects
end the article.

2 Object and value representation

2.1 Object representation

Single subtyping. Figure 1 describes the implementation used in single-
subtyping (SST), ie in static typing, when all types are classes and have a single
direct supertype. This implementation is simple and e�cient, as it veri�es the
position invariant : the considered method or attribute is always implemented
at the same position, whatever the receiver's dynamic type. In this implemen-
tation, methods and attributes are grouped by introduction class (type) and the
group of a class is appended to the structure of its direct superclass. Subtype
testing is implemented with the technique known as Cohen's display [10], with
the class ID in each method group. However, the SST approach cannot be used
either with multiple inheritance or dynamic typing.

Perfect class hashing in static typing. Figure 2 describes the implemen-
tation of method invocation and subtype testing with perfect class hashing, in
a static typing setting. It can be used directly for multiple subtyping (ie Java
interfaces). In the method tables, the positive o�sets contain the SST imple-
mentation which is used for class-typed invocations. It can also be extended to
attribute access for full multiple inheritance, but this extension (called accessor
simulation) is not that e�cient. In [7], we proposed to used this implementa-
tion in a dynamic loading setting, in conjunction with a recompilation protocol
which allows the compiler to shortcut most of the polymorphic PH invocations
with SST invocations. This optimization is possible when the position invariant
holds, and it is made e�cient by the fact that it holds most of the time. Of
course, all monomorphic method calls2 are shortcut with static calls. It would
thus avoid most of the uses of PH in actual invocations. Anyway, this approach
cannot work with dynamic typing.

All-method perfect hashing in dynamic typing. Figure 3 describes the
implementation of method invocation and subtype testing in dynamic typing,
with perfect method hashing. In single inheritance, it would be more e�cient
to remove class IDs from the hashtable and put them as in SST but in negative
o�sets. In multiple inheritance, the hashtable must be extended for attribute
access, with accessor simulation, but it works only with Smalltalk-like encap-
sulation. This new approach would work with dynamic typing but it would not
be that e�cient. Indeed, with this implementation, there is no way to shortcut
polymorphic PH invocations with a more direct invocation sequence, because
the position invariant does not hold.

2An expression is said to be monomorphic when its value at runtime will always be of the
same dynamic type. When the receiver is monomorphic, a virtual call always invoke the same
method. Here, we use monomorphic in a wider meaning, that is when a virtual call always
invoke the same method (even when the receiver is not monomorphic).

3



// attribute access

load [object + #attOffset], attVal

// method invocation

load [object + #tableOffset], table

load [table + #methOffset], methAddr

call methAddr

// subtype test

load [object + #tableOffset], table

load [table + #classOffset], id

comp id, #targetId

bne #fail

// succeed

meth

Offset

att

Offset

methAddr

class

Offset

object

object

method table

attVal

table

id

Code sequences for the 3 basic mechanisms and the corresponding diagram of object layout
and method table. The pseudo-code is borrowed from [11]. Pointers and pointed values are
in Roman type with solid lines, and o�sets are italicized with dotted lines.

Figure 1: Single-subtyping implementation

//preamble for both mechanisms

load [object + #tableOffset], table

load [table + #hashingOffset], h

and #interfaceId, h, hv

sub table, hv, htable

//subtyping test

load [htable+#htOffset-fieldLen], id

comp #interfaceId, id

bne #fail

//method invocation

load [htable +#htOffset], itable

load [itable +#methOffset], methAddr

call methAddr

h

method tablehashtable

offset
method

hashing
offset

table

hv

htOffset

itableid

methAddr

The method table is bidirectional. Positive o�sets contain method addresses and class IDs, as
in SST, and negative o�sets consist of the hastable, with a twofold entry for each implemented
interface. The grey rectangle denotes the group of methods introduced by the considered
interface. fieldLen represents the entry size, e.g. 8 if 32-bit integers are used. In practice,
all numbers (i.e. H and class ID's) must be multiplied by fieldLen (of course, it works only
if it is a power of 2).

Figure 2: PH for Java interfaces

//method invocation

load [object + #tableOffset], table

load [table + #hashingOffset], h

move #methId, methId

and methId, h, hv

add table, hv, htable

load [htable +#htOffset], methAddr

call methAddr

table

hashing
offset

hashtable

h

methAddr

htOffset

hv

id

The method table consists of the hashtable, which contains a single entry per method or
class. With dynamic typing, the method identi�er (methID) must be checked in the method
prologue, unless the method has been introduced by the hierarchy root.

Figure 3: PH of all methods for dynamic typing and multiple inheritance

4



// method invocation for overloaded methods

load [object + #tableOffset], table

load [table + #hashingOffset], h

load [table +#htOffset], htable

move #methId, methId

and methId, h, hv

add htable, hv, htable

load [htable], methAddr

call methAddr

// other invocations are like

// with SST

table

hashing
offset

htable

h

htOffset

method table

methOffset

hashtable

methAddr

hv

methAddr
id

The method table is the same as with SST, apart from two extra �elds for referencing the
hashtable (#htOffset) and the hashing parameter (#hashingOffset), which can be loaded
in parallel on processors that provide instruction-level parallelism. The hastable contains a
single entry per method, only for methods that have been introduced by more than one class.

Figure 4: PH of overloaded methods for dynamic typing and single inheritance

PH restricted to overloaded methods. Finally, Figure 4 presents the
implementation we propose in a Smalltalk-like setting. Like the multiple-
subtyping implementation (Figure 2), it combines the SST implementation with
a hashtable. However, instead of being inlined in the negative o�set of the
method table, the hashtable is now a separate table, and is thus accessed via
an indirection. This is of course less e�cient, mostly because of ensuing cache-
misses, but the hashtable is now restricted to methods that are introduced by
several classes, and it should be used only marginally.

2.2 Special cases

Besides this general object representation, dynamic typing yields a few speci�c
cases which complicate the generated code and add overhead. These points are
irrelevant for attributes when they are encapsulated, ie accessible only on self,
as in Smalltalk.

2.2.1 Unknown-method exception

In dynamic typing, the compiler cannot ensure that the receiver knows the
invoked method. A dynamic check is thus necessary, in most cases. When
the method address is gotten from the hashtable, it may result from an empty
entry, and instead of testing that this entry is empty, it is better to �ll reachable,
empty entries with the address of a function which signals the unknown method
exception3. When an actual method address is gotten from the hashtable or
the SST method table, it may correspond to another method selector, instead
of the invoked one. Therefore, a test must be made at the method entrypoint,

3In Smalltalk, a doesNotUnderstand message is sent to the receiver.

5



// method invocation with per-method tables

cmp object, #0

bgt #vft

and object, #tagMask, tag

rshift tag, #tagShift, tag

add tag, #methAddr, ttable

bra #common

vft:

load [object + #tableOffset], table

load [table + #hashingOffset], h

load [table +#htOffset], htable

move #methId, methId

and methId, h, hv

add htable, hv, ttable

common:

load [ttable], methAddr

call methAddr

// method invocation with PIC

cmp object, #0

bgt #vft

and object, #tagMask, tag

rshift tag, #tagShift, tag

cmp tag, #expectedTag

bne #othertag

call #expectedMeth

bra #end

otherTag:

// another test

vft:

// usual sequence for objects

end:

Figure 5: Method invocation for primitive values

and the best way to do it is to pass the method selector in a register and test it
against the expected selector as the �rst instruction of the method body4.

2.2.2 Primitive values

In dynamic typing, the type of values must be encoded in the value itself,
and it would be quite ine�cient to use, for integers or characters, the same
representation as for true objects. Therefore the type is encoded in the bit-
representation of the value, instead of being encoded in the method table. A
practical solution, for instance, involves reserving the leftmost byte as a type-
tag, with a leftmost bit at 1. Hence, a primitive value is a negative number,
whereas a reference is positive.

Then a method invocation sequence begins with testing whether the receiver
is tagged, ie a negative number, then extracts the tag with a bit-wise mask and
a shift. Several alternative techniques can then be used, and they can be mixed.
A method table can be associated with each primitive type, and accessed via
a table of tables, with the tag as an o�set. Conversely, a table can be used
for each method, with an entry for each primitive type (Figure 5, left). When
the number of expected tags is low, especially on processors that are equipped
with conditional branching prediction (ie all processors except those that are
dedicated to small embedded systems), the technique known as polymorphic
inline cache (PIC) [12] is often preferred. The extracted tag is now tested
for equality against each expected tag, and the right method is then statically
called (Figure 5, right). The PIC sequences for a given method selector could
be factorized in a common stub function. It would improve the code size, to
the detriment of runtime e�ciency, because branch prediction is markedly more
accurate when PICs are inlined [5].

The tag test can be saved on only in two speci�c situations: (i) when the
receiver is self, and the enclosing class is either a speci�c primitive type, or a
class without primitive subtypes; (ii) when the receiver is a literal or the direct

4In some cases where the test is useless, eg for monomorphic self-invocations (see here-
after), multiple entry points might save on this test, but this is a minor optimization since
branch prediction would almost always succeed.

6



result of an instantiation (new). Therefore, apart from these situations, when
the invoked method is not known by primitive types the code sequence from
Figures 1 and 4 must begin with the following test

cmp object, #0

bgt #fail //unknown-method exception

In contrast, in common superclasses of primitives types and usual classes,
where self can be either a tagged value or a true object, method specialization
is a way to avoid a long code sequence.

2.2.3 null value

Unitialized variables and attributes represent a constant issue in object-oriented
programming. Initializing them with a distinguished null value is a �rst step,
but ubiquitous null-checks would be ine�cient. In the dynamic typing context,
using 0 as the null value allows for integrating the null-check in the tag tests at
minor expense. null then implies the 0 tag. When the invocation site cannot
imply any primitive type, the prologue test has just to be replaced with the
following

cmp object, #0

bge #fail //unknown-method or null exception

3 Compilation protocol

As explained in the introduction, we are concerned, here, with dynamic compi-
lation. The compilation/recompilation protocol is in charge of a few tasks: (i)
computing the data structures associated with a class; (ii) generating machine-
code from method source code (or bytecode); (iii) recompiling some data struc-
tures and pieces of code when the assumptions supporting the previous compi-
lation are no longer valid.

The protocol relies on the principle that some part of the generated code
or structure is compatible with the open world assumption (OWA), so that
it is computed in an incremental way, once for all. In contrast, another part
makes provisory close world assumptions (CWA), which allows the compiler to
perform aggressive optimizations at the price of potential recompilations when
underlying assumptions are refuted.

In the recompilation protocol, we consider dynamic class loading, but exclude
class reloading.

3.1 Data structures

The data structures associated with a class are twofold. Each time a class is
loaded, the runtime system builds a model of this class, ie an instance of some
metamodel (eg the metamodel proposed in [13]). This model links the newly
loaded class with its superclasses and the methods the class de�nes, inherits
or introduces�these terms have intuitive meanings that are formalized in [13].
Methods that are introduced by several classes are of course distinguished, and
we call them overloaded. This model is incremental and must be updated with
further class loadings, when a previously non-overloaded method becomes over-
loaded. Non-overloaded is thus a provisory, mutable feature, while overloaded

7



is de�nitive and immutable. Moreover, the model must maintain information
about the liveness of classes and methods. A class is alive if it has been instan-
tiated, while a method is alive if it has been already invoked. The de�nition
may be slightly enlarged, by considering that compiling an instantiation or in-
vocation site is enough for making a class/method alive. Therefore, the overall
protocol can be considered as a kind of static analysis like Rapide Type Analysis
(RTA) [14], which is run very dynamically as the classes are loaded and the code
is executed. In this situation, RTA is equivalent to Class Hierarchy Analysis
(CHA) [15]. Note, however, that this runtime analysis is di�erent from pro�ling
and remains static.

Class loading is triggered in two situations: (i) directly, when the considered
class is instantiated (new); (ii) recursively, when a subclass is loaded. Methods
tables are computed as soon as the considered class is instantiated, hence only
in case (i), or when an already loaded class is instantiated for the �rst time.
The method table itself is computed as in SST, but the hashtable is allocated
in a lazy way, when it contains an overloaded method that is already alive, ie
such that an invocation site has been already compiled. In the following, we will
assume that this computation is done at class loading, but it could be postponed
as well.

When the hashtable is computed, a perfect numbering algorithm is applied
as follows. Let C be the considered class. Then MC is the set of methods
known by C that are introduced by several already-loaded classes. Some of
these methods have already an ID, because they have been hashed in other
classes. Let M ′C be this subset, and I ′C = {idx|x ∈ M ′C} be the corresponding
set of method IDs. The other methods in MC have no IDs, because they have
not been hashed yet, and some subset M ′′C must be hashed now. Note that the
latter subset may include all the overloaded methods known by C, or only those
that are invoked in some methods that must be compiled or recompiled; this is
a matter of tuning of the protocol. The respective cardinalities of these sets are
denoted n′C and n′′C .

Perfect numbering is then applied with I ′C and n′′C as inputs; its outputs are
a hash parameter Hc and a set of method IDs I ′′C , of cardinality n

′′
C , which are

assigned to the methods in M ′′C . A hashtable of size HC is computed, �lled and
linked to the method table.

The algorithmic aspect is developed in Section 4.

3.2 Code generation

In the following, we consider only method invocation. Indeed, the case of sub-
type tests is similar to, though simpler than, method invocation and we don't
develop it. Besides, with Smalltalk-encapsulation and single inheritance, at-
tribute access is like with SST.

Method compilation is lazy, and it may be triggered by a trampoline in
method- or hash-tables. When a method is compiled, each invocation site in
the method body is compiled, and this is the main focus of the compilation
protocol.

Speci�c cases. Firstly, di�erent kinds of invocation sites can be distinguished
from each other, and the distinctions can be static and hold under the OWA, or

8



dynamic and hold under a provisory CWA. The distinction concerns both the
receiver and the invoked method.

• Statically, the receiver may be a literal; self, ie the current receiver which
is statically typed by the enclosing class; or anything else.

• Dynamically, the receiver may be null, a tagged value or a standard
object.

• Statically, the invoked method may be introduced by the hierarchy root.

• Provisorily, the invoked method may be unknown, because the classes that
introduce it have not been loaded yet, or it may be unknown in the static
type of the receiver, in the speci�c case of self, or even in the receiver's
dynamic type when it can be statically infered, eg for a literal or a direct
instanciation (new).

• Provisorily, the invoked method may be monomorphic, it can be intro-
duced by a single class, or several ones.

• Provisorily, the invoked method may be introduced by �standard� classes,
ie classes without primitive subtypes, or not.

Decision tree. The complete combination gives the following decision tree
whose conditions are tested sequentially (ie each condition implies the negation
of the previous ones).

1. The receiver is a literal

(a) the method is not known by the literal type → static type error;

(b) otherwise → static call to the speci�c method (no test needed);

2. The receiver is self, and let C be the enclosing class, then

(a) the method is unknown by all loaded subclasses of C → static call to
the unknown-method function;

(b) the method is known by C

i. and not rede�ned in the subclasses of C → static call to the
method inherited by C (no test)

ii. otherwise

A. C is a standard class → SST implementation

B. C is a primitive type → PIC implementation

C. otherwise → combined PIC-SST implementation

(c) the method is introduced by a single subclass D of C,

i. and not rede�ned in the subclasses of D → static call with a
subtype test (depends on whether D is a standard class or a
primitive type);

ii. D is a standard class → SST implementation

iii. D is a primitive type → PIC implementation

iv. otherwise → combined PIC-SST implementation

9



(d) the method is introduced by multiple subclasses of C

i. the introduction subclasses are only standard classes → PH im-
plementation

ii. the introduction subclasses are only primitive type → PIC imple-
mentation

iii. otherwise → combined PIC-PH implementation

3. otherwise

(a) the method is unknown → static call to the unknown-method func-
tion;

(b) the method is introduced by the root:

i. it is currently monomorphic (not rede�ned in any class)→ static
call;

ii. it is not rede�ned in primitive types → SST implementation;

iii. otherwise → PIC+SST implementation;

(c) the method is introduced by a single class D ⇒ (2-c);

(d) otherwise ⇒ (2-d);

3.3 Recompilation protocol

As mentioned above, the protocol is based on a model of the programs which in-
volves an explicit representation of classes, method selectors and de�nitions, and
method invocation sites, along with their relations to each other. Each method
selector memorizes the method invocation sites compiled in a provisory way, so
that the loading and compilation of a new de�nition for this method selector
can trigger the recompilation of the concerned sites or enclosing methods.

Technically, recompilation can work at the method level, or at the invocation-
site level. In the former case, the whole method is recompiled and the content
of some method tables is updated. In the latter case, the invocation site is
compiled into a stub function, called a thunk, and the original method code is
modi�ed in order to call it. A mixed approach should likely be preferred. All
this is discussed in [7], but it remains out of the scope of this paper.

3.4 Optimization, laziness and e�ciency assessment

The optimization problem is actually markedly more complicated than stated
in Section 3.1, because several hashtables must be optimized at the same time
(one for each class introducing a method in M ′′C), whereas what we called per-
fect numbering is intended to optimize a single hashtable. A more accurate
formulation is presented in Section 4.

E�ciency assessment is characterized by three non-independent parameters,
namely (i) the memory occupation, especially the hashtable size; (ii) the re-
compilation cost, for instance the number of hashtable allocations; (iii) the
time-e�ciency of the generated code. In the following, we will consider only the
�rst two criteria, hashtable size and allocation number.

The overall protocol is essentially lazy, and laziness concerns not only allo-
cation and computation time, but also computation content. Laziness should

10



have marked impact on the two e�ciency criteria, but it might be in opposite
directions.

• Hashtables should be allocated just-in-time, hence only when an over-
loaded method is invoked on an instance of the considered class. A simple
way to do it is to initialize each method table with a common single-entry
hashtable �lled with a trampoline which will allocate the actual hashtable.
This is the only point for which there is no doubt, and just-in-time allo-
cation will be optimal on all criteria.

• The actual hashtable computation, which involves assigning IDs to method
selectors, could occur at any time between the class loading and the
hashtable allocation. From both the hashtable-size and compilation-cost
standpoints, the e�ect of the computation time is unclear, because our
actual optimizing algorithm iterates on method selectors in a non-optimal
way.

• When a hashtable is computed/allocated, it may consider the whole set of
known overloaded methods, or only those that have been considered alive,
eg because an invocation site has already been compiled. If computation
and allocation are restricted to live methods, the hashtable size will be
optimized. However, it is likely that many hashtables will be recomputed
and reallocated a number of times, each time a new overloaded method
becomes alive, thus increasing the recompilation costs.

4 Problem de�nition and algorithms

4.1 Notations

Set and function notations. We mostly consider integers and integer sets.
Notations are as usual. Function notations are extended to sets in the usual
way, ie f(E) = {f(x)|x ∈ E}. Usual operations are extended to sets in a similar
way, namely x+A = {x+ y|y ∈ A} and A+B = {x+ y|x ∈ A, y ∈ B}.

Notations for bitwise representation. The hashing function we use is the
bitwise and operation. Hence bitwise representation is essential, but it is often
more intuitive to use instead a set-wise representation.

Let k be an integer number. Then, b(k) denotes the set of 1-bits of k, ie
the set of their positions in k. Given two numbers j and k, j ⊂ k is a shortcut
for b(j) ⊂ b(k). Therefore a number can be represented as a set of number (its
1-bit positions) and can represent another set of numbers that have a subset of
its 1-bits (however the notation will be j ⊂ b(k) instead of j ∈ b(k)). All these
sets are of course �nite, and b−1(E) is de�ned for any �nite set E ⊂ N.

In order to remove any ambiguity, given a set of numbers E, [E] will denote
the set of numbers whose 1-bit positions are included in E, ie [E] = {n ∈
N|b(n) ⊂ E}.

Moreover, k represents the complement of k, ie k = N\b(k). Note that k
does not represent a number, because it is an in�nite set. Given two numbers j
and k, j ⊂ k is a shortcut for b(j) ⊂ k (or, equivalently for j ∈ [k]). Other set
notations will be used in a similar way.

11



Finally, we will use bitwise boolean operations or and and, with the usual
logical notations ∨ and ∧. For instance, j ∨ k = b−1(b(j) ∪ b(k)) = or(j, k).

4.2 Problem de�nition

4.2.1 Problem input

1. X is a class set,

2. each class x ∈ X is associated with a set Ix of integers, and a set Sx of
symbols;

3. p is a distinguished element in X, and Sp =
⋃

x Sx;

4. for each s ∈ Sp, ∃x ∈ X such that x 6= p and s ∈ Sx.

5. �nally, F is a set of free identi�ers, ie F ⊂ N and F ∩ Ix = ∅ for each
x ∈ X.

Perfect hashing is applied to the Ix sets with the bitwise and hashing func-
tion. Therefore, for each x ∈ X, mx = pha(Ix) is the least integer such that the
function y 7→ and(mx, y) is injective on Ix. See [1, 4] for more details on this
use of perfect hashing.

Context. X is a set of classes in a dynamic typing and dynamic loading
setting. p is the class that is currently loaded and compiled in a lazy mode,
and Sp is the set of methods introduced by p that are also introduced by other
classes. Therefore, X depends on p, and can be de�ned as the set of already
loaded classes that introduce a method that is also introduced by p. Classes in
X are loaded but may not be compiled yet.

Note that there are de�nitely no constraints between Ix sets, since they may
as well be disjointed, overlap or contain each other. The same is true with Sx

sets, apart from points (3) and (4) above.

4.2.2 Problem output

The problem is to assign a unique identi�er to each x ∈ Sp, more formally to
de�ne an injective function id : Sp → F .

For each x ∈ X, let m′x be the resulting bitwise mask of x, ie m′x = pha(Ix∪
id(Sx)). Let Y ⊂ X, then M(Y ) =

∑
x∈Y m

′
x.

The assigment must be done in minimizing m′x on all classes. This can be
speci�ed in several ways:

1. minimizing M(X);

2. minimizing �rst m′p, then M(X);

3. X is partitioned in two subsets X1 and X2, with p ∈ X1, and the opti-
mization must �rst minimize M(X1), then M(X2).

The latter form is the more general.

12



Context X1 is the set of classes that must be compiled now, whereas X2

is the set of classes whose compilation is not yet required. They di�er in the
fact that each class in X1 introduces a method that is multiply introduced
and already called (ie a class site has been already compiled), whereas all the
methods multiply introduced by classes in X2 are not yet called.

Therefore, the optimization criterion can be understood as minimizing the
hashtable size that are currently computed while minimizing the tables that will
likely be computed later.

4.2.3 Subproblems

The problem can be simpli�ed in two ways: either X or Sp can be singletons.

Sp is a singleton p introduces a single method that is already introduced
in several classes, and the problem is to assign a free identi�er to this method
that minimizes the hash masks of all classes in X. This is a true instance of
the problem considered, and it is certainly worthwhile to study this subproblem
�rst. Although it would not be optimal, a heuristic solution to the general
problem could be obtained with by iterating over Sp.

X is a singleton When X is a singleton, this is no longer an instance of the
problem considered, since the point (4) in the problem input is no longer veri�ed.
Nevertheless, this is an instance of the perfect numbering problem [4], and the
solution is as follows. The capacity of mp = pha(Ip) is de�ned as 2|b(mp)|, and is
the number of integers that mp can discriminate. While the capacity is strictly
less than the cardinality of Ip]Sp, the least-weight 0-bit in mp is switched to 1.
This gives m′p = pna(Ip, |Sp|). A subset I ′p of F is then computed in such a way
that |and(m′p, I ′p)| = |I ′p| = |Sp|, and and(m′p, I

′
p) and and(m′p, Ip) are disjointed.

Free IDs in I ′p are then removed from F and successively assigned to symbols
in Sp.

Perfect numbering can be simpli�ed by considered that Sp is a singleton,
too. Then m′p = pna(Ip, 1), and f is de�ned as the least element in F such
that and(m′p, f) 6∈ and(m′p, Ip). Iterating over Sp provides the same solution as
above.

Perfect numbering is an essential step towards a solution of the problem
considered.

4.3 Subproblem when Sp is a singleton

Subproblems may provide a better understanding of the general problem, along
with a �rst, approximated solution.

4.3.1 Subproblem de�nition

The problem de�nition is simpli�ed as follows.

Input

1. Y is a class set, with at least 2 members, and a distinguished element
p;

13



2. each class x ∈ Y is associated with a set Ix of integers;

3. a set of free identi�ers F ⊂ N\
⋃

x∈Y Ix.

Output the least free identi�er n ∈ F minimizing either
∑

x∈Y pha(Ix ∪ {n}),
or pha(Ip ∪ {n}) then

∑
x∈Y pha(Ix ∪ {n}).

4.3.2 Naive approach

A naive approach is an adaptation of perfect numbering to multiple masks,
which would give the following algorithm.

Algorithm 1: Naive heuristics

Data: F, a free-identi�er set; s, an overloaded method;
Y , a set of classes that know s, with masks mx = pna(Ix, 1) (all de�ned
as above)
Result: a free-identi�er in F that can be assigned to s
free← ⊥ ;
foreach f ∈ F until free 6= ⊥ do

ok ← true ;
foreach x ∈ Y while ok do

if and(f,mx) is not free for x then
ok ← false ;

if ok then
free← f

return free

The algorithm enumerates free identi�ers and checks whether they are hashed
in free places in the hashtables of all concerned classes (Algorithm 1). mx masks
are assumed to be perfect hashing parameters for the method identi�ers (Ix set)
already known by x, with an extra free place, hencemx = pna(Ix, 1). Therefore,
free places can be formally de�ned as and(mx,N)\and(mx, Ix).

When Y is a singleton, this is exactly the perfect numbering algorithm, and
there is always a solution if F is large enough. However, in the general case, the
algorithm works when there is a solution with the current masks, but it does
not terminate when the problem is over-constrained, ie when the free places of
all concerned classes are not compatible with each other. Therefore, a realistic
heuristics should scan only a �nite set in order to detect that there is no solution,
then some hashtables would be enlarged. This �nite set might be a subset of
F , or some set that would be representative of F .

4.3.3 Problem analysis and transformation

Bitwise and perfect hashing. Let x be a class in Y , and its associated
hashtable, which is isomorphic to the 0..mx range, has size mx + 1 and can
be analyzed in the following way. First b(mx) ⊂

⋃
i∈Ix b(i) = b(

∨
i∈Ix i) (or,

equivalently, mx ∈ [
∨

i∈Ix i]). Moreover, Kx = and(mx, Ix) represents the set
of occupied positions in the hashtable, and ∀k ∈ Kx, k = and(mx, k). Thus,
Kx can be considered as a kind of representative of Ix. The complement of
Kx in the 0..mx range is the set of unused entries, which can be partitioned

14



into 2 subsets: Ux is the set of unreachable entries; Ax is the set of free entries
that can be allocated for new identi�ers. A position k in 0..mx is said to be
unreachable if k 6∈ and(mx,N). A necessary and su�cient condition is that
b(k)\b(mx) is not empty. In contrast, a position k is reachable if b(k) ⊂ b(mx),
and a free position is a reachable position that is not occupied, hence not in
Kx. Alternatively, Ax = and(mx,N)\Kx. Overall, 0..mx = Kx ] Ux ] Ax. An
essential (though trivial) property is that the number of reachable positions is
a function of the 1-bit count of the mask, namely |Kx ]Ax| = 2|b(mx)| [4].

From free positions to free identi�ers. Part of the problem considered
involves searching a free identi�er that matches a free position in range 0..mx.

We could not imagine a constant-time technique that would return �the next
free identi�er that would �t the considered range�. Instead, we propose sequen-
tial algorithms. In any case, the set F of free identifers can be implemented
as a range union. Note that F is considered to be large enough to not be a
problem constraint. Hereafter, we will make the informal assumption that, if
there is an in�nite series of numbers in N that satis�es a set of constraints, it
is not disjointed from F .

The �rst technique consists in allocating an explicit hashtable of size mx+1,
whose free entries are �lled with a distinguished value. Then, for each free iden-
ti�er f ∈ F , the entry at position and(mx, f) is checked. This is the technique
used in our experiments of perfect numbering [4].

An alternative would involve enumerating k ∈ Ax and checking if there is a
free identi�er f ∈ F such that and(mx, f) = k. However, we could not imagine
a data structure that would allow us to implement this inverse problem.

From single class to multiple classes with mask-union. As mentioned
above, the degenerated case where Y is a singleton represents the perfect-
numbering problem, which is solved. In the problem considered here, the allo-
cation of free identi�ers must take into account several classes that introduce
common methods.

De�nition 4.1 Assuming the previous de�nitions for Y , mx and Ax, a number
k ∈ N is said to be PH-compatible with Y i� ∀x ∈ Y, and(mx, k) ∈ Ax.

The key idea relies on the following observation. Let x ∈ Y be a class, and
m a mask such that b(mx) ⊂ b(m). Let j ∈ 0..m be a position in m which is
free for x, ie and(j,mx) is a free position for x. Then any free identi�er f ∈ F
whose m-hashvalue is j will be free for x too, because of the bit-inclusion.

The idea can be generalized by considering the union of all masks implied, ie
m =

∨
x∈Y mx = b−1(

⋃
x∈Y b(mx)). Then, the 0..m range is the �nite set that

must be considered. Indeed, if k ∈ 0..m is PH-compatible with Y , then f ∈ F
will verify the same property if and(m, f) = k.

Proposition 4.2 Let m =
∨

x∈Y mx be the bit-union of all considered masks.
Let f ∈ F , and k = and(m, f).

Then k is PH-compatible with Y i� f is too.

Indeed, and(k,mx) = and(and(f,m),mx) = and(f, and(m,mx)) = and(f,mx).
ut

15



Algorithm 2: Realistic heuristics

Data: F, a free-identi�er set; s, an overloaded method; Y, a set of
classes that know s (all de�ned as above)

Result: a free-identi�er in F that can be assigned to s
/* initialization */

mask← 0 ;
for x ∈ Y do

mask← or(mask,mx)

frees← ∅;
while frees = ∅ do

foreach j ⊂ mask do
ok ← true ;
foreach x ∈ Y while ok do

if and(j,mx) is not free for x; /* failure */1

then
ok ← false ;

if ok then
frees← frees ] j

if frees = ∅ then
select x ∈ Y and enlarge mx ; /* enlarge some mask */

update mask

foreach f ∈ F do

if and(f,mask) ∈ frees then
return f

4.3.4 First Algorithm

Hence, a more realistic heuristics is Algorithm 2. This new algorithm is sound
and terminates when F is reasonably large enough and the selection of the
enlarged mask is appropriate.

For instance, a simple scheme involves selecting the class x ∈ Y that maxi-
mizes the number of failures (line 1), and minimizes the number of free places,
and enlargement consists of switching the least-weight 0-bit in mx.

Furthermore, when no enlargement is needed, this algorithm is optimal for
the �rst subproblem, in that it can enumerate any identi�er free in all classes
in Y . This is a direct consequence of the equivalence in Proposition 4.2.

However, the overall algorithm is not optimal in several ways:

• enlarging the mask mx may lead to a solution at the next step, but en-
larging another mask my might have led to a better solution;

• enlarging the mask mx may be useless, because it does not lead to a solu-
tion at the next step and enlarging another mask my is required anyway;
moreover enlarging only my would lead to a solution at the next step, but
the selected identi�er may occupy the enlarged mx;

• as with perfect numbering, the selection of a free identi�er is blindfold and
never optimal for the future.

16



Algorithm 3: General algorithm

Data: F, a free-identi�er set; (X,≺), a class hierarchy; p, a newly loaded
class

/* initialization */

p.mset ← the set of methods that are introduced in p and were already
introduced in some unrelated class, but have no identi�er yet;
Xp ← the subset of classes in X that have methods in p.mset ;
Result: Assigns a free identi�er to each method in p.mset
foreach x ∈ Xp do

x.mset ← the subset of methods in p.mset known by x
x.iset ← the set of method identi�ers known by x
mx ← pna(x.iset , |x.mset |); /* perfect numbering parameter */1

foreach s ∈ p.mset do
/* subproblem */

Ys ← the subset of classes in Xp that have s;
Y ← ∅ ; /* the Ys/ ≡ quotient-set */

mask← 0 ;
foreach x ∈ Ys do

if 6 ∃y ∈ Y, such that x ≡ y2

/* where (x ≡ y) ⇐⇒ (x.iset = y.iset ∧ mx = my) */

then
Y ← Y ] x;
mask← or(mask,mx)

frees← ∅;
while frees = ∅ do

foreach j ⊂ mask do
ok ← true ;
foreach x ∈ Y while ok do

if and(j,mx) is not free for x; /* failure */

then
ok ← false ;

if ok then
frees← frees ] j

if frees = ∅ then
select x ∈ Y and enlarge mx ; /* enlarge some mask */3

update mask

foreach f ∈ F do

if and(f,mask) ∈ frees then
s.id← f ;
F← F\f ;
foreach x ∈ Ys do

update x

break

17



Algorithm 4: Mask enlargement

Data: mask and Y, as in Algorithm 3
Result: Switches the least-weight 0-bit in some masks in Y

failSet← ∅; /* a set of sets of classes in Y */

minfailnb← maxInt; /* common length of failSet members */

foreach j ⊂ mask do
fail(j)← ∅;
foreach x ∈ Y when and(j,mx) is not free for x do

fail(j)← fail(j) ] {x}
nb← |fail(j)|;
if nb < minfailnb then

minfailnb← nb;
failSet← {fail(j)}

else if nb = minfailnb then
failSet← failSet ] {fail(j)}

bestFail← heuristic selection in failSet;
foreach x ∈ bestFail do

switch least-weight 0-bit in mx

4.3.5 Complete algorithm

We present now a complete algorithm which iterates over Sp and solves both
di�culties (Algorithm 3). Let us consider �rst the initialization step. Each class
x in Xp is initialized, with its sets of, respectively, method identi�ers and new
overloaded methods. Then, its maskmx is initialized by perfect numbering (line
1), ie the mask computed from the identi�er set, is enlarged in a minimal way
in order to be able to contain the new identi�ers that have to be computed. In
parallel, the quotient set Y/ ≡ is computed, with the equivalence relationship
de�ned by the equality of both masks and identi�er sets (line 2). It is worth
noting that the equivalence relationship depends upon the method s considered.

With Algorithm 3, another source of non-optimality is that methods in Sp

are not ordered in an optimal way. For instance, the algorithm can run on a
method s1 which is under-constrained, and assign it a free place which would be
essential for a method s2 which is over-constrained, but will be handled later.
Furthermore, Algorithm 2 is rather simple but can be markedly slow because the
Y class-set can be very large (hundred, or even thousands, of classes). It is thus
essential to �nd an equivalence relationship that allows us to quotient the class
set. Enlarging masks can represent another bottleneck. Indeed, it may occur
that several masks must be enlarged at the same time and iterating single-mask
enlargement may represent a bad solution because the enlarged masks are not
correlated if they do not fail at the same places.

The mask-enlargement algorithm, invoked line 3 in Algorithm 3, involves
several steps (Algorithm 4): (i) determining the places j that minimize the
failure number, ie the cardinality of the set fail(j) = {x ∈ Y | and(j,mx) is not
free for x}; (ii) among the places j minimizing |fail(j)|, determining the place
k such that fail(k) minimizes some criterion, eg

∑
x∈fail(k)mx; (iii) enlarging

all the masks in fail(k).

18



Table 1: Statistics of all methods

introduced de�ned inherited root
total µ max total µ max total µ max

visualworks2 17774 9.1 164 23738 12.1 179 608494 311.1 544 160
digitalk3 13004 9.6 440 17104 12.6 460 613996 452.8 1065 324
digitalk2 5534 10.4 271 6858 12.8 272 154796 289.9 677 182
IBM-SF 25000 2.8 257 116152 13.2 320 394375 44.9 346 5
JDK1.3.1 9567 1.3 149 28683 3.9 150 142445 19.2 243 5
Java.1.6 22098 4.4 286 35351 7.0 291 186061 36.7 669 11
JDK.1.0.2 3190 5.3 75 5095 8.4 78 22365 37.0 158 12
Self 26267 14.6 233 29415 16.3 233 1040415 577.4 969 1
Geode 8078 6.1 193 14214 10.8 207 305560 231.8 880 24
PRMcl 2369 4.9 115 3793 7.9 115 37517 78.3 208 29
Lov-obj-ed 3631 8.3 117 5026 11.5 127 37436 85.9 289 24
SmartEi�el 4854 12.2 222 7865 19.8 222 53704 135.3 324 1

The table presents, successively, the statistics of method introduction, method de�nition, and
method inheritance, and each group depicts the total number on all classes and the average (µ)
and maximum value per class. The last column represents the number of methods introduced
in the hiearchy root.

4.4 General problem

Without loss of generality, the problem is not pairwise, but instead involves a
graph (Xp, E) where two classes are related if they introduce common methods,
ie E is formed of pairs (x, y) such that Sx ∩ Sy 6= ∅. An alternative view is
a bipartite graph (Xp, Sp, E

′), where E′ is formed of pairs (x,m) such that
m ∈ Sx. The degree of each m ∈ Sx is at least 2. In both graphs, p is connected
to all Xp (resp. Sp).

An optimal solution to this problem remains an open issue. However, as
our experiments show, in the next Section, that Algorithm 3 gives acceptable
results, searching for an optimal solution would mostly be for the sake of it.

5 Experiments and evaluation

Perfect method hashing and numbering has been tested, with di�erent variants,
on a variety of benchmarks similar to those used in previous articles, eg [1, 16,
17]. All experiments are done with random class-loading, as in [4].

5.1 All-method perfect numbering

Table 1 presents the statistics on method de�nition in these benchmarks. The
total of `inherited methods' represents the memory occupation of method tables
in the SST implementation (Figure 1), when it is relevant, or the positive part of
method tables either in the MST implementation (Figure 2) or in the proposed
implementation (Figure 4).

The next two tables present the results of perfect method numbering on
these benchmarks, when classes are loaded with random leaf-class ordering. In
Table 2(a) only methods are hashed, whereas classes are also hashed in Table
2(b). Therefore, the latter provides an implementation in multiple inheritance
for both method invocation and subtype testing (Figure 3), and the latter must

19



Table 2: Statistics of PN for all methods in dynamic typing

(a) Leaf-class ordering, single inheritance (without class IDs)

275 optimal useful PN-and PN-and SMI
20.6 min µ max min µ max

visualworks2 1.4 2.5 3.0 4.9 3.1 3.9 6.0 6.1
digitalk3 1.2 2.4 3.0 3.7 2.7 3.3 4.3 5.1
digitalk2 1.6 2.3 2.7 4.1 2.4 3.0 5.2 4.7
IBM-SF 1.4 3.6 4.5 7.4 6.3 8.8 11.6 5.2
JDK1.3.1 1.4 2.6 3.3 4.9 4.1 5.3 7.5 3.8
Java.1.6 1.4 2.7 3.5 5.2 4.0 5.5 7.9 3.6
JDK.1.0.2 1.5 2.0 2.4 3.3 2.5 3.2 4.5 3.4
Self 1.6 2.8 3.6 5.0 3.2 4.3 6.4 6.4
Geode 1.4 3.1 4.2 6.2 4.2 5.4 7.6 6.2
PRMcl 1.5 2.2 2.8 3.9 2.6 3.5 5.2 4.0
Lov-obj-ed 1.4 3.1 4.2 5.5 4.4 5.8 7.7 4.9
SmartEi�el 1.4 2.5 3.2 4.3 2.8 3.9 5.4 5.5

All numbers are normalized w.r.t. the SST method-table size. The �rst column presents
the theoretical optimum based on the PH-mask 1-bit count [4]. The next group depicts the
random statistics of the useful part of PH tables, ie the entries that are reachable according
to the bit-wise mask. The last group depicts the random statistics of PH tables. For the
sake of comparison, the last column depicts the method-table size with the subobject-based
implementation.

(b) Leaf-class ordering, multiple inheritance (with class IDs)

275 optimal useful PN-and PN-and SMI
20.6 min µ max min µ max

visualworks2 1.3 2.6 3.1 5.3 3.1 4.0 6.1 6.0
digitalk3 1.2 2.4 3.0 3.8 2.8 3.4 4.3 5.1
digitalk2 1.6 2.3 2.8 4.1 2.5 3.0 5.3 4.7
IBM-SF 1.4 3.5 4.7 6.5 7.5 9.5 13.7 5.1
JDK1.3.1 1.4 2.7 3.3 5.4 4.2 5.7 8.1 3.4
Java.1.6 1.5 3.0 3.7 5.3 4.8 6.2 8.1 3.4
JDK.1.0.2 1.4 2.0 2.4 3.4 2.6 3.3 5.3 3.3
Self 1.6 3.0 4.0 6.6 3.5 4.7 7.0 6.4
Geode 1.3 3.4 4.4 8.2 4.3 5.8 9.5 6.2
PRMcl 1.4 2.1 2.9 4.2 2.6 3.6 5.5 3.9
Lov-obj-ed 1.4 3.4 4.4 5.8 4.8 6.1 7.9 4.8
SmartEi�el 1.4 2.6 3.2 4.7 3.0 4.0 5.7 5.4

In this table, methods and classes are hashed in the same hashtable, as needed for the imple-
mentation in Figure 3.

(c) All-class ordering, single inheritance

40 optimal useful PN-and PN-and SMI
127.1 min µ max min µ max

visualworks2 1.4 3.9 6.4 10.7 5.1 8.3 14.6 6.1
digitalk3 1.2 3.2 4.0 5.7 3.6 4.6 8.6 5.1
digitalk2 1.6 2.2 3.5 5.5 2.5 3.9 7.7 4.7
IBM-SF 1.4 6.0 7.6 10.1 10.3 15.2 52.7 5.2
JDK1.3.1 1.4 4.4 7.6 15.2 6.2 10.9 16.4 3.8
Java.1.6 1.4 4.3 6.7 11.0 6.4 10.6 29.9 3.6
JDK.1.0.2 1.5 2.1 2.8 4.9 2.8 3.7 5.9 3.4
Self 1.6 3.0 3.8 5.3 3.4 4.2 5.5 6.4
Geode 1.4 6.9 9.8 14.2 7.9 11.0 15.4 6.2
PRMcl 1.5 2.7 3.9 7.1 3.4 4.7 8.1 4.0
Lov-obj-ed 1.4 4.3 5.8 6.9 5.8 7.7 10.7 4.9
SmartEi�el 1.4 2.9 3.6 6.3 3.4 4.5 8.0 5.5

20



Table 3: Statistics of methods with single or multiple introduction

(a) Single introduction

introduced inherited
total µ max total µ max

visualworks2 10465 5.4 153 506083 258.7 465
digitalk3 8577 6.3 326 559007 412.2 880
digitalk2 3902 7.3 215 139698 261.6 522

(b) Multiple introduction

method introduced all inherited shared inherited
number total µ max total µ total µ max

visualworks2 2112 6235 3.2 108 72226 36.9 52974 27.1 181
digitalk3 1481 4427 3.3 114 54989 40.6 41544 30.6 255
digitalk2 585 1632 3.1 75 15098 28.3 10765 20.2 158

The �rst column depicts the number of method selectors that are introduced in several classes.
The next two column groups are similar to that of previous tables, and the last one presents
the statistics of inherited methods when sharing is taken into account.

be used in single inheritance, when subtype testing is implemented as in SST.
The last column represents the method-table size in the C++-like subobject-
based implementation of, multiple implementation (SMI), which can be consid-
ered as a negative reference as it is, in the worst-case, cubic in the number of
classes, instead of quadratic as in most implementations [17]. All numbers are
expressed as ratios to the SST implementation, ie the `total inherited' column
in Figure 1. Apart from the aforementioned impossibility to optimize this use
of perfect hashing in an adaptive compiler, these results show that the memory
requirement of this implementation is markedly higher than the SST implemen-
tation. The ratio to SST is more than 2 on average, and not markedly higher
than the theoretical optimal (which is, however, not reachable, see [4]). It can
exceed 7 on some benchmarks in the worst cases. Actually, in these worst cases
(column max), it is not better than SMI.

Finally, Table 2(c) presents the same statistics as Table 2(a), but classes
are now loaded with random all-class ordering. Interested readers are referred
to [4] for an in-depth discussion about leaf-class vs all-class orders. Roughly
speaking, the set of leaf-classes is close to the set of actual concrete classes,
whose instantiation triggers class loading. Therefore, considering only leaf-class
orders is closer to the expected behaviour of real programs, and PH/PN yields
far better results with leaf-class orders.

5.2 Perfect numbering restricted to overloaded methods

The second experiment concerns class hierarchies in single inheritance, when
methods are distinguished from each other according to the number of their
introduction classes. The considered benchmarks are versions of Smalltalk.
Table 3 presents the statistics of method de�nition according to whether meth-
ods are introduced by a single class or several ones. They show that most
methods are introduced by a single class. Hence, perfect hashing could consid-
ered because it would apply to a small subset of all method invocations, and
the required memory requirement would remain low.

21



Table 4: Statistics of PN for overloaded methods, CWA heuristics

(a) Unshared

130 hashed optimal useful PN-and PN-and SST
43.6 min µ max min µ max

visualworks2 36.9 55.2 124.1 197.2 615.2 209.6 371.6 1099.2 295.7
digitalk3 40.6 58.7 122.1 184.0 289.1 176.0 279.3 798.9 452.8
digitalk2 28.3 38.2 63.3 88.4 136.4 83.5 130.9 402.3 289.9

visualworks2 36.9 55.2 92.7 107.2 138.5 144.7 176.3 280.2 295.7
digitalk3 40.6 58.7 106.1 128.5 149.0 147.4 183.6 308.2 452.8
digitalk2 28.3 38.2 55.4 69.1 98.3 74.5 93.6 157.4 289.9

(b) Shared

130 hashed optimal useful PN-and PN-and SST
43.6 min µ max min µ max

visualworks2 27.1 39.6 100.6 149.9 378.7 172.7 272.7 680.1 295.7
digitalk3 30.6 44.3 99.0 150.5 222.4 146.4 214.3 466.1 452.8
digitalk2 20.2 27.6 49.3 66.2 93.2 66.0 95.0 237.2 289.9

visualworks2 27.1 39.6 75.0 86.3 114.2 122.2 147.9 226.2 295.7
digitalk3 30.6 44.3 88.5 108.1 127.0 124.0 153.4 223.3 452.8
digitalk2 20.2 27.6 43.3 54.4 73.6 59.8 74.9 104.6 289.9

Each column presents the average number per class of, successively, the theoretical PH opti-
mum, the observed random statistics of useful PH entries, and all PH entries. For the sake of
comparison, the last column depicts the number of entries in the SST method table.
Each table is split into two subtables: the upper one presents the statistics on all class-
loading orders, whereas the lower one restricts the statistics on leaf-class loading orders that
are presumed to be closer to actual concrete-class loading.
The total extra size for the PH approach must be increased by two, for taking into account
the extra indirection and hash parameter in the method table.

Finally, Table 4 presents the statistics of PN when it is restricted to over-
loaded methods. Benchmarks are a few Smalltalk class hierarchies. This
approach is, however, not realistic in that it supposes that overloaded methods
are identi�ed under the closed world assumption. It is presented only in order
to examine the e�ciency of PN.

Results are now presented as an average size per class, instead of being a
ratio to SST, as in Table 2. The last column recalls the SST average (column
`inherited µ' of Table 1). On average, the PH memory requirement is now lower
than for SST and the overall worst-case ratio remains lower than 3.5. The
space-e�ciency is thus better than for all-method PH, and the time e�ciency is
even better since most PH invocations can be shortcut. However, in itself, the
algorithmic e�ciency is far lower. Indeed, in the worst cases of Table 2(a), all
ratios are less than �vefold the optimal. In contrast, in Table 4(a), the worst
cases are almost 20 times the optimal. This is simply explained by the fact that
the optimal is reached with a single-inheritance hierarchy, when all methods
are introduced by a single class [4]. Hence, methods with multiple introduction
represent bad cases, and this approach considers only bad cases.

22



Table 5: Statistics of PH for overloaded methods with Algorithm 3

(a) Unshared

6545 hashed optimal useful PN-and PN-and SST
0.0 min µ max min µ max

visualworks2 36.9 55.2 75.6 96.2 190.4 103.8 164.2 1625.7 295.7
digitalk3 40.6 58.7 82.8 103.2 188.1 101.9 137.6 353.5 452.8
digitalk2 28.3 38.2 46.7 55.4 75.0 53.6 69.8 218.7 289.9

visualworks2 36.9 55.2 71.8 79.4 96.6 90.3 108.5 137.2 295.7
digitalk3 40.6 58.7 78.1 89.8 107.2 94.6 117.8 177.1 452.8
digitalk2 28.3 38.2 45.7 52.6 66.6 51.6 63.3 81.9 289.9

(b) Shared

6545 hashed optimal useful PN-and PN-and SST
0.0 min µ max min µ max

visualworks2 27.1 39.6 57.9 76.3 128.7 81.9 125.6 930.4 295.7
digitalk3 30.6 44.3 63.5 81.7 165.1 79.1 106.8 215.5 452.8
digitalk2 20.2 27.6 34.8 41.3 56.8 39.4 52.3 129.9 289.9

visualworks2 27.1 39.6 53.9 60.9 77.7 69.1 85.5 109.1 295.7
digitalk3 30.6 44.3 59.3 69.4 84.7 74.1 91.5 130.3 452.8
digitalk2 20.2 27.6 34.0 39.2 50.0 38.9 48.3 64.6 289.9

Same content as in Table 4, with a di�erent algorithm.

5.3 Experiments of Algorithm 3

Finally, we experimented Algorithm 3 on a few Smalltalk class hierarchies,
with random class-loading, as in [4].

Space e�ciency. Table 5 sums up our results with respect to the memory
occupation required by the hashtables. Each subtable concerns, respectively,
the cases where sharing is, or is not, taken into account. A subclass may share
the hashtable of its direct superclass, when the subclass does not introduce any
proper overloaded method. Moreover, each subtable is in turn split into two
subtables, for all-class and leaf-class orders, respectively.

For instance, the results for the visualworks2 benchmark, in the shared case
with leaf-class loading (ie the lowest subtable in Table 5), can be read as follows.
On average there are 27.1 methods per class that must be hashed, and it sets the
average mask lower-bound to 39.6, based on the number of 1-bits required for
hashing the considered methods. The ratio between these two numbers is always
in range 1..2, and it represents the optimal occupation ratio (Proposition 3.7 in
[4]). The PN-and columns present the statistics of the hashtable size according
to class loading orders. On average, it is about twofold the optimal and 3-fold
the method number, and the deviation is rather small (about 10-20%). The
useful PN-and columns presents the same statistics, restricted to the hashtable
entries that are actually reachable. The di�erence could be reused for allocating
other data. Finally, for the sake of comparison, the last column presents the
average size of the method tables, based on the SST implementation. It shows
that hashtables would represent only 30% of the method tables. Although not
negligible, it remains quite reasonable in comparison with all-method PH or
C++-like subobject-based implementation, both techniques whose ratio to SST

23



Table 6: Statistics on iterations in Algorithm 3

(a) Iterations

method iteration number over
number 0 1 2 3 4 5 6 max

visualworks2 2112 94.1 4.3 1.0 0.4 0.2 0.1 0.0 10
digitalk3 1481 94.2 4.2 0.9 0.4 0.2 0.1 0.0 10
digitalk2 585 91.5 5.6 1.7 0.8 0.3 0.1 0.0 10

visualworks2 2112 92.3 5.3 1.4 0.6 0.3 0.1 0.0 11
digitalk3 1481 91.0 5.9 1.7 0.8 0.4 0.1 0.0 11
digitalk2 585 89.2 7.0 2.2 1.1 0.4 0.1 0.0 11

(b) Fail number

reiteration min failure number over
number 1 2 3 4 5 6-10 11-20 21 max

visualworks2 178 67.0 14.0 6.7 4.0 2.5 4.4 1.2 0.1 39
digitalk3 126 68.1 13.8 6.0 3.3 2.0 4.2 2.6 0.0 24
digitalk2 77 64.9 14.6 6.3 4.0 3.3 6.8 0.2 0.0 22

visualworks2 251 58.1 14.8 7.6 4.8 3.4 7.6 3.2 0.5 50
digitalk3 208 58.4 17.1 7.6 4.0 2.5 6.4 3.7 0.1 39
digitalk2 100 59.8 15.3 7.4 4.7 3.6 8.3 0.8 0.0 25

The �rst subtable depicts the statistics on the number of iterations required for hashing each
overloaded method, and the �rst column is the number of overloaded methods.
The second subtable depicts the statistics on the minimal number of failures, ie the number
j that minimizes |fail(j)|, at each iteration of the algorithm. The �rst column is the average
reiteration number.
Each column j represents the percentage of computations that, respectively, required j iter-
ations, or presented at least j failures. The last column represents the maximum observed
value for j.

can exceed 6 (Table 2).

Runtime-e�ciency of the algorithm. Regarding the runtime-e�ciency of
the algorithm, it appears that it is not that fast, and markedly slower than our
previous applications of perfect hashing. Therefore, a careful implementation
seems to be essential.

Table 6 presents some statistics about the behaviour of the algorithm which
is rather satisfactory. Table 6(a) shows that there are few (less than 10%)
enlargement cases (ie line 3 in Algorithm 3) and, most of the times, a single
iteration is su�cient. In very exceptional cases (less than 1%%), more than 5
iterations are required. The overall number of reiterations is about 12-18% of the
method number. Table 6(b) presents statistics on the minimum failure number,
ie the minimum number of masks that must be enlarged, for each iteration. In
contrast with the iteration number which is rather low, when the current masks
are not compatible with an extra identi�er, the minimum number of failures is
1 in more than 50% of cases, but it may be greater than 20 in a very few cases.

Recomputation cost. The recomputation cost is less easy to assess, because
our simulation is eager, and hashtable-recomputation count is markedly exag-
gerated in comparison with a lazy behaviour. Anyway, Table 7 presents statis-
tics on di�erent parameters. The �rst column group represents the count of all

24



Table 7: Statistics of recompilation for Algorithm 3

6545 all shared shared enlarged classes
update number allocation number HT

0.0 min µ max min µ max number all

visualworks2 4137. 5156. 6693. 1419. 1570. 1817. 1066 1938 1956
digitalk3 3182. 3870. 4859. 995. 1131. 1421. 753 1330 1356
digitalk2 970. 1230. 1632. 401. 481. 604. 301 526 534

visualworks2 5739. 6697. 8076. 1576. 1796. 2081. 1066 1938 1956
digitalk3 4162. 4938. 5739. 1116. 1317. 1603. 753 1330 1356
digitalk2 1191. 1446. 1675. 470. 548. 636. 301 526 534

hashtable computation and recomputations, when sharing is taken into account,
but not the fact that the hashtable size may remain unchanged in the compu-
tation. The second group represents the count of recomputations that involve
an enlargment of the considered hashtables. Thus it is the exact number of
hashtables that would be allocated during the loading of all classes. The third
group presents di�erent class numbers: classes that (i) introduce or (ii) know
overloaded methods, then (iii) all classes. The former is exactly the number of
shared non-empty hashtables that are required when all of the classes have been
loaded. In contrast, the number of shared recomputation represent the num-
ber of dynamic allocations of an hashtable which is larger than the previous
one. Implicitly, each class is initialized with a common empty hashtable, ie a
hashtable with a single empty entry. Therefore, the test shows that the number
of allocations is higher than what is required, in a ratio less than 2 on average.
Finally the number of all shared recomputations is far higher, but they mostly
involve updating an existing hashtable which does not require to be enlarged,
and the extra cost only implies a few assignments.

For instance, with the visualworks2 benchmark there are 1066 classes intro-
ducing overloaded methods. On average, with leaf-class ordering (lower sub-
table), 6697 hashtable updates are needed, including 1796 allocations.

Leaf-class vs all-class orders. Finally, it is also worth comparing the results
and behaviour of Algorithm 3 with respect to leaf-class vs all-class orderings,
although they represent an alternative in the simulation, not in an actual exe-
cution which should be midway between.

Leaf-classes provide far better results in terms of hashtable size (Table 5),
but they are indeed more costly in terms of iterations and failures (Table 6),
and for recomputations (Table 7).

6 Related Works, Conclusions and Prospects

6.1 Related works

Smalltalk and Self have been pionneers of object-oriented implementation
and compilation in a dynamic typing and dynamic loading setting. In this
context, all the techniques that we are aware of rely on inline caches [18, 19, 12].
An inline cache can be viewed as a guarded monomorphic call. The receiver's

25



dynamic type is compared to an expected type, and a success yields a static
call. In case of failure, an obscure process called lookup is performed, and looks
up in the class hierarchy for the method that must be invoked.

There are a variety of inline caches, and they can be static or dynamic,
mono- or poly-morphic. While a static cache5 is immutable and results from
static compilation, dynamic caches are mutable and result from the runtime
behaviour of the program; for instance, a cache miss yields the update of the
cache with the lookup result; runtime pro�ling is also possible. Polymorphic
caches involve more than one expected type. Overall, inline caches present
pros and cons. When their guard succeeds, they are very e�cient because of
conditional-branching prediction of modern universal processors. Hence, in the
best cases, inline caches are almost as e�cient as static calls. These best cases
include the cases where the receiver is monomorphic (see footnote 2). When the
invocation, instead of the receiver, is monomorphic, the guard must access the
method table in order to compare the invoked method with the expected one.
This is mainly used for inlining.

What about bad cases? In practice, the failure case, ie the famous lookup,
is ine�cient. Indeed, we are not aware of any constant-time technique available
in dynamic typing apart from perfect hashing. Moreover, a cache might be
e�cient at a moment, not during the whole programm execution. For instance,
in the program prologue, an invocation site may have receivers of type A, then
receivers of type B during the rest of the execution. If the site is optimized
according to the prolog it will be unoptimized for the main part of the execution.
Polymorphic caches are a solution, but it is always possible to build a bad case
from any good situation. Another solution involves dynamic caches, but runtime
pro�ling is so costly that the solution might be worst than the problem. Inline
caches also yield longer code sequence, which increase the overall code size.
While the thunk approach is still possible, it cannot be envisaged to factorize
the same thunk between several similar invocation sites because the prediction
of conditional branching would lose its accuracy.

In contrast, our proposal does not involve any of the drawbacks of inline
caches, and it provides better solution for some of their best aspects, eg for
monomorphic invocations instead of monomorphic receivers. The worst case
of our proposal, ie perfect hashing, is likely more e�cient than the lookup,
although the latter might use the former. Furthermore, it remains possible to
couple inline caches with the less e�cient sequences generated according to our
proposal, which are not so many.

Distinguishing between overloaded and non-overloaded methods was also
proposed in [20], however in the context of global, static compilation.

6.2 Conclusion and prospects

In this paper, we proposed a novel object representation for method dispatch
in dynamic typing, single inheritance and dynamic loading. To our knowledge,
this is the �rst constant-time implementation of method dispatch in this context
that requires reasonable memory occupation.

This technique involves hashing overloaded methods, and its e�ciency relies
on the fact that they are not too many.

5A static cache looks like an oxymoron.

26



Simulation over a few Smalltalk benchmarks show that the technique is
promising. Indeed, the number of overloaded methods is actually low, and the
overall hashtable size remains reasonable. However, the simulation we carried
out is unable to assess the recompilation cost, because it is markedly more
eager than would be an actual compiler. Hence the cost that we observed are
exaggerated.

Therefore, the main prospects of this work is to perform simulations that
would be closer to actual executions, for instance by adpating to dynamic typing
the simulations used in [7]. It would be worth considering, too, the possibility
of simulating these implementation and recompilation protocol in a Smalltalk
virtual machine via meta-programming.

References

[1] R. Ducournau. Perfect hashing as an almost perfect subtype test. ACM
Trans. Program. Lang. Syst., 30(6):1�56, 2008.

[2] R. Sprugnoli. Perfect hashing functions: a single probe retrieving method
for static sets. Comm. ACM, 20(11):841�850, 1977.

[3] Z. J. Czech, G. Havas, and B. S. Majewski. Perfect hashing. Theor. Comput.
Sci., 182(1-2):1�143, 1997.

[4] R. Ducournau and F. Morandat. Perfect class hashing and numbering for
object-oriented implementation. Softw. Pract. Exper., 41(6):661�694, 2011.

[5] R. Ducournau, F. Morandat, and J. Privat. Empirical assessment of object-
oriented implementations with multiple inheritance and static typing. In
Gary T. Leavens, editor, Proc. OOPSLA'09, SIGPLAN Not. 44(10), pages
41�60. ACM, 2009.

[6] F. Morandat and R. Ducournau. Empirical assessment of C++-like imple-
mentations for multiple inheritance. In Proc. ICOOOLPS Workshop, pages
7�11. ACM, 2010.

[7] R. Ducournau and F. Morandat. Towards a full multiple-inheritance virtual
machine. Journal of Object Technology, 12:29, 2012.

[8] A. Goldberg and D. Robson. Smalltalk-80, the Language and its Imple-
mentation. Addison-Wesley, Reading (MA), USA, 1983.

[9] G. Castagna. Object-oriented programming: a uni�ed foundation.
Birkhaüser, 1997.

[10] N. H. Cohen. Type-extension type tests can be performed in constant time.
ACM Trans. Program. Lang. Syst., 13(4):626�629, 1991.

[11] K. Driesen. E�cient Polymorphic Calls. Kluwer Academic Publisher, 2001.

[12] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In P. America,
editor, Proc. ECOOP'91, LNCS 512, pages 21�38. Springer, 1991.

27



[13] R. Ducournau and J. Privat. Metamodeling semantics of multiple inheri-
tance. Science of Computer Programming, 76(7):555�586, 2011.

[14] D.F. Bacon and P. Sweeney. Fast static analysis of C++ virtual function
calls. In Proc. OOPSLA'96, SIGPLAN Not. 31(10), pages 324�341. ACM,
1996.

[15] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In W. Oltho�, editor, Proc.
ECOOP'95, LNCS 952, pages 77�101. Springer, 1995.

[16] R. Ducournau. Coloring, a versatile technique for implementing object-
oriented languages. Softw. Pract. Exper., 41(6):627�659, 2011.

[17] R. Ducournau. Implementing statically typed object-oriented programming
languages. ACM Comp. Surv., 43(4), 2011.

[18] T. J. Conroy and E. Pelegri-Llopart. An assessment of method-lookup
caches for Smalltalk-80. In Krasner, editor, Smalltalk-80 Bits of History,
Words of Advice, pages 238�247. 1983.

[19] L. P. Deutsch and A. Schi�man. E�cient implementation of the Smalltalk-
80 system. In Proc. ACM Symp. on Principles of Prog. Lang. (POPL'84),
pages 297�302, 1984.

[20] J. Vitek and R. N. Horspool. Taming message passing: e�cient method
look-up for dynamically typed languages. In M. Tokoro and R. Pareschi,
editors, Proc. ECOOP'94, LNCS 821, pages 432�449, 1994.

28


