

java.io.*

java.io: les bases

● Notion de « I/O Stream » (courant,ruisseau, flux)

input stream

output stream

Byte streams

● Les programmes utilisent des bytes de 8-bits pour
réaliser des entrées/sorties de byte streams

● Toutes les classes de byte streams héritent de
java.io.InputStream ou java.io.OutputStream

● Il en existe de nombreuses, pour différents types
de flux (audio, fichiers, objets, etc.)

java.io.OutputStream

java.io.OutputStream

java.io.InputStream

java.io.InputStream

Byte streams

● Il en existe de nombreuses, pour différents types
de flux (audio, fichiers, objets, etc.)

● En particulier, il existe deux classes de byte stream
spécialisées pour le traitement de fichier :

– java.io.FileInputStream

– java.io.FileOutputStream

java.io.FileInputStream

java.io.FileInputStream

FileOutputStream

FileOutputStream

Byte streams : exemple

● soit le fichier suivant, xanadu.txt :

Attention

Fermer un stream qui a été ouvert
est extrêmement important !

Mais en fait ...

● CopyBytes, bien qu'il fonctionne, utilise des I/O de
très bas niveaux (byte stream).

● Eviter le plus possible d'utiliser ce type de stream.

● Par exemple, xanadu.txt est un fichier contenant
des données de type « caractère ».

● → Il faut donc utiliser les streams appropriés : des
character streams.

● Alors pourquoi parler de byte streams ?

● → Tous les autres streams sont basés sur eux !

Character Streams

Character Streams

● Java utilise les conventions unicode pour
manipuler les variables de type caractère

● Les character streams convertissent
automatiquement ce format interne en fonction du
codage local (internationalisation).

● Toutes les classes de Character streams héritent
de java.io.Reader ou java.io.Writer

● Comme pour les byte streams, il existe deux
classes spécialisées pour le traitement de fichier :

– java.io.FileReader
– java.io.FileWriter

Aucune différence ?

● CopyBytes et CopyCharacters sont très similaires

● La seule différence, au niveau du code, est que
CopyCharacters utilise FileReader et FileWriter à la
place de FileInputStream FileOutputStream

● Les deux utilisent un int pour lire et écrire, MAIS,
dans CopyCharacters la valeur du int correspond à
16 bits (contre 8 bits dans CopyCharacters)

D'une manière générale

● Les character streams utilisent des byte streams
pour les opérations IO : ils font le pont entre le byte
stream et le format souhaité (« wrapper »).

● Par exemple, FileReader utilise FileInputStream
et FileWriter utilise FileOutputStream

● Il existe 2 classes génériques qui permettent de
faire le pont byte stream → character streams :

– java.io.InputStreamReader
– java.io.OutputStreamWriter
– Utile lorsqu'il n'y pas de classe de character

stream qui correspond au besoin (socket)

Character Streams : I/O de lignes

● Les I/O de caractères sont en général utilisées sur
de plus grosses unités que le caractère.

● Une unité couramment utilisée est la ligne : i.e. une
chaîne de caractères terminée par un caractère de
terminaison :

– \r : Carriage return « CR », ASCII 13, Hexa 0D (mac)

– ou \n : Line feed « LF », ASCII 10, Hexa 0A (unix)

– ou encore la séquence \r\n (windows cf. notepad)

● Deux classes permettent de faire des I/O utilisant
la ligne comme unité :

– java.io.BufferedReader et java.io.PrintWriter

Buffered Streams

Buffered Streams

● La plupart des exemples précédents utilisent des
I/O non « bufferisées » → chaque requête I/O est
traitée immédiatement par l'OS.

● Cela peut rendre un programme peu efficace :

– accès disque à répétition

– surcharge d'activité réseau

– etc.

● Solution → Utiliser des Buffered I/O Streams :

– Ils travaillent sur une zone mémoire tampon : buffer

– → les API natives de l'OS ne sont appelées que lorsque
le tampon est vide (input) ou plein (output).

Buffered Streams

● Pour convertir un stream non bufferisé, il suffit
d'utiliser les classes adéquates en passant au
constructeur le stream à bufferiser.

● Par exemple, dans CopyCharacters :

Buffered Streams

● Il existe 4 classes permettant cette conversion :

● Pour les byte streams :

● Pour les character streams :

« Flushing Buffered Streams »

● Il peut très utile de vider le buffer, en certains
points de l'application, sans attendre qu'il soit plein.

● → vider le buffer : « flushing the buffer »

● Invoquer la méthode flush des classes de sorties
bufferisées pour réaliser le flushing manuellement.

● Certaines classes bufferisées supportent
l'autoflush, activé via un argument du constructeur.

● Lorsque l'autoflush est actif, certains événements
clés déclenchent le vidage du buffer :

– e.g. PrintWriter à chaque invocation de println et de
format.

Scanning and Formatting

● Programmer des I/O implique souvent de traduire
des données de et/ou vers des formats facilement
compréhensible par l'homme.

● Pour faciliter cette tâche, java fournit 2 APIs :

– L'API scanner : découpe une entrée en signes
individuels et les transforme en données suivant leur
type.

– L'API formatting qui assemble les données pour les
mettre sous une forme facilement compréhensible par
l'homme.

java.util.Scanner

● Les objets de type java.util.Scanner servent à
convertir une entrée formatée en données
individuelles suivant leur type.

● Par défaut, un scanner utilise les espaces pour
découper une entrée (blanc, tabulation et
terminaison de ligne → Character.isWhitespace)

In
Xanadu
did
Kubla
Khan
A
stately
pleasure-dome
...

java.util.Scanner

● Un scanner n'est pas un stream mais il est
nécessaire d'utiliser close() pour indiquer qu'on en
a fini avec le stream utilisé dans la construction.

● Pour utiliser un autre symbole de séparation, on
utilise la méthode useDelimiter(...)

● Par exemple, pour découper suivant une virgule,
optionnellement suivi d'un espace :

– s.useDelimiter(",\\s*"); (expression régulière)

● ScanXan traite tous les symboles en entrée
comme des strings. Il est cependant possible de
les onvertir dans n'importe quel type primitif java.

java.util.Scanner

● Cependant, attention à la locale utilisée !!

● Par exemple dans une locale us "32,767" est
considéré comme un entier alors qu'il s'agit d'un
double avec une locale fr !!

● Soit le fichier suivant usnumbers.txt :

8.5
32,767
3.14159
1,000,000.1

1032778.74159

8.5
32,767
3.14159
1,000,000.1

32.767

8.5
32,767
3.14159
1,000,000.1

?

A propos de java.util.Scanner

● Contrairement à ce qu'on peut parfois lire (et faire),
Scanner n'est pas une classe appropriée pour
récupérer les entrées utilisateurs depuis la ligne de
commande (elle n'a pas été créée pour ça) :

– A cause des réglages par défaut (espaces)

– L'entrée est supposée formatée : délimiteurs, type des
données → faire des suppositions sur ce que va renter
l'utilisateur peut compromettre la robustesse du
programme

– Par défaut, elle gère les exceptions en arrière plan.

– Comme nous allons le voir, il faut lui préférer un
InputStreamReader (character stream) pour récupérer
les entrées de l'utilisateur.

Formatting
● Les objets stream qui implémentent des méthodes

de formatage sont des instances de, soit

– java.io.PrintWriter (character streams)

– java.io.PrintStream(byte streams)

● Note: Les seuls objets de type PrintStream qu'on
utilise généralement sont System.out et System.err

● Ainsi, lorsqu'on a besoin de créer un nouveau
stream de sortie formaté on hérite de PrintWriter,
pas de PrintStream

● PrintWriter et PrintStream définissent un ensemble
de méthodes qui permettent le formatage :

– print et println (standard) et format (pour les nombres)

The square root of 2 is 1.4142135623730951.
The square root of 5 is 2.23606797749979.

The square root of 2 is 1.414214

format : exemple

format : exemple

● %d : formate un entier comme une valeur décimale

● %f : formate un flottant comme une valeur
décimale

● %n : caractère de terminaison de ligne de l'OS

● %x : entier → hexadécimal

● %s : n'importe quoi → string

● %tB : entier → le nom du mois (avec la locale)

● etc.

● Attention: excepté pour %% et %n, tous les %
doivent correspondre à un argument → Exception !

3.141593, +00000003.1415926536

format : exemple

I/O depuis la ligne de commande

● Un programme est souvent lancé depuis la ligne
de commande et interagit parfois avec l'utilisateur
depuis celle-ci.

● Java permet ce type d'interaction de 2 manières :

– Avec les streams standards

– Avec la classe java.io.Console (Java 6)

Utilisation des streams standards

● Java définit 3 streams standards :

– l'entrée : Standard Input → System.in

– la sortie standard : Standard Output → System.out

– la sortie d'erreur : Standard Error → System.err

● Ces objets sont définis automatiquement au
lancement et n'ont pas besoin d'être ouverts.

out, err et in → byte streams

● Ce sont des byte streams : out et err sont de type
PrintStream mais il utilisent un objet interne qui
émule les fonctionnalités des character streams

● A contrario, Sytem.in doit être explicitement
converti en InputStreamReader pour bénéficier de
ces fonctionnalités

java.io.Console (Java 6)
● Alternative aux streams standards → Console

● Cet objet prédéfini possède la plupart des
fonctionnalités fournies par les streams standards
et en ajoute d'autres

● Il est particulièrement utile pour réaliser une entrée
sécurisée de mot de passe

● Console fournit des I/O basées sur de vrais
character streams grâce à ces méthodes reader et
writer

● Avant d'utiliser la console, un programme doit la
récupérer en invoquant System.console()

– Elle peut être null (OS ou environnement incompatibles)

java.io.Console (Java 6)

● La console supporte les entrées sécurisées de mot
de passe → méthode readPassword

– pas d'écho

– retourne un tableau de caractères, pas une string → il
peut être facilement enlever de la mémoire.

Exemple

Exemple, suite

Exemple, suite

Data Streams

● Les data streams permettent des I/O binaires pour
les données de type primitif (boolean, char, byte,
short, int, long, float, et double) et String.

● Tous les data streams implémentent l'une des
deux interfaces suivantes :

– java.io.DataInput

– java.io.DataOutput

● Les deux classes les plus utilisées sont :

– java.io.DataInputStream

– java.io.DataOutputStream

Data Streams : exemple

Data Streams : exemple

Data Streams : exemple

Data Streams : exemple

● Tous les data streams détectent la fin d'un stream
en attrapant l'exception EOFException (pas avec
un code de return)

● A chaque méthode write correspond une méthode
read correspondante

● C'est le programme qui doit s'assurer que les types
correspondent : l'entrée contient uniquement des
données binaires → rien n'indique le type d'une
donnée, ni son début ou sa fin dans le stream

Object streams

● Les object streams permettent de réaliser des I/O
d'objets java.

● La plupart (pas toute) des classes standards
supportent la « sérialisation » de leur instances.

● En fait, seules les classes qui implémentent
l'interface java.io.Serializable sont sérialisables

● Les classes d'Object streams sont :

– java.io.ObjectInputStream

– java.io.ObjectOutputStream

● Ce sont des interfaces qui héritent des interfaces
DataInputStream et DataOutputStream

Object streams : exemple

Object streams : exemple

Object streams

Pour tout ce qui est manipulation de fichiers et de dossiers :
création, déplacement, copie, propriétés, etc. :

Aller plus loin

java.nio.*

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65

