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java.io: les bases

● Notion de « I/O Stream » (courant,ruisseau, flux)

input stream

output stream



Byte streams

● Les programmes utilisent des bytes de 8-bits pour 
réaliser des entrées/sorties de byte streams 

● Toutes les classes de byte streams héritent de 
java.io.InputStream ou java.io.OutputStream

● Il en existe de nombreuses, pour différents types 
de flux (audio, fichiers, objets, etc.)



java.io.OutputStream



java.io.OutputStream



java.io.InputStream



java.io.InputStream



Byte streams

● Il en existe de nombreuses, pour différents types 
de flux (audio, fichiers, objets, etc.)

● En particulier, il existe deux classes de byte stream 
spécialisées pour le traitement de fichier :

– java.io.FileInputStream

– java.io.FileOutputStream



java.io.FileInputStream



java.io.FileInputStream



FileOutputStream



FileOutputStream



Byte streams : exemple

● soit le fichier suivant, xanadu.txt :







Attention

Fermer un stream qui a été ouvert 
est extrêmement important !





Mais en fait ...

● CopyBytes, bien qu'il fonctionne, utilise des I/O de 
très bas niveaux (byte stream).

● Eviter le plus possible d'utiliser ce type de stream.

● Par exemple, xanadu.txt est un fichier contenant 
des données de type « caractère ».

● → Il faut donc utiliser les streams appropriés : des 
character streams.

● Alors pourquoi parler de byte streams ?

● → Tous les autres streams sont basés sur eux !



Character Streams



Character Streams

● Java utilise les conventions unicode pour 
manipuler les variables de type caractère

● Les character streams convertissent 
automatiquement ce format interne en fonction du 
codage local (internationalisation).

● Toutes les classes de Character streams héritent 
de java.io.Reader ou java.io.Writer

● Comme pour les byte streams, il existe deux 
classes spécialisées pour le traitement de fichier :

– java.io.FileReader
– java.io.FileWriter





Aucune différence ?

● CopyBytes et CopyCharacters sont très similaires

● La seule différence, au niveau du code, est que 
CopyCharacters utilise FileReader et FileWriter à la 
place de FileInputStream  FileOutputStream

● Les deux utilisent un int pour lire et écrire, MAIS, 
dans CopyCharacters la valeur du int correspond à 
16 bits (contre 8 bits dans CopyCharacters)



D'une manière générale

● Les character streams utilisent des byte streams 
pour les opérations IO : ils font le pont entre le byte 
stream et le format souhaité (« wrapper »).

● Par exemple,  FileReader utilise FileInputStream  
et FileWriter utilise FileOutputStream

● Il existe 2 classes génériques qui permettent de 
faire le pont byte stream → character streams :

– java.io.InputStreamReader 
– java.io.OutputStreamWriter
– Utile lorsqu'il n'y pas de classe de character 

stream qui correspond au besoin (socket)



Character Streams : I/O de lignes

● Les I/O de caractères sont en général utilisées sur 
de plus grosses unités que le caractère.

● Une unité couramment utilisée est la ligne : i.e. une 
chaîne de caractères terminée par un caractère de 
terminaison : 

– \r : Carriage return « CR », ASCII 13, Hexa 0D (mac)

– ou \n : Line feed « LF », ASCII 10, Hexa 0A (unix)

– ou encore la séquence \r\n (windows cf. notepad)

● Deux classes permettent de faire des I/O utilisant 
la ligne comme unité :

– java.io.BufferedReader  et java.io.PrintWriter









Buffered Streams



Buffered Streams

● La plupart des exemples précédents utilisent des 
I/O non « bufferisées » → chaque requête I/O est 
traitée immédiatement par l'OS.

● Cela peut rendre un programme peu efficace :

– accès disque à répétition

– surcharge d'activité réseau

– etc.

● Solution → Utiliser des Buffered I/O Streams :

– Ils travaillent sur une zone mémoire tampon : buffer

– → les API natives de l'OS ne sont appelées que lorsque 
le tampon est vide (input) ou plein (output).



Buffered Streams

● Pour convertir un stream non bufferisé, il suffit 
d'utiliser les classes adéquates en passant au 
constructeur le stream à bufferiser.

● Par exemple, dans CopyCharacters :



Buffered Streams

● Il existe 4 classes permettant cette conversion :

● Pour les byte streams : 

● Pour les character streams :



« Flushing Buffered Streams »

● Il peut très utile de vider le buffer, en certains 
points de l'application, sans attendre qu'il soit plein.

● → vider le buffer : « flushing the buffer »

● Invoquer la méthode flush des classes de sorties 
bufferisées pour réaliser le flushing manuellement.

● Certaines classes bufferisées supportent 
l'autoflush, activé via un argument du constructeur.

● Lorsque l'autoflush est actif, certains événements 
clés déclenchent le vidage du buffer :

– e.g. PrintWriter à chaque invocation de println et de 
format.



Scanning and Formatting

● Programmer des I/O implique souvent de traduire 
des données de et/ou vers des formats facilement 
compréhensible par l'homme.

● Pour faciliter cette tâche, java fournit 2 APIs :

– L'API scanner : découpe une entrée en signes 
individuels et les transforme en données suivant leur 
type.

– L'API formatting qui assemble les données pour les 
mettre sous une forme facilement compréhensible par 
l'homme.



java.util.Scanner

● Les objets de type java.util.Scanner servent à 
convertir une entrée formatée en données 
individuelles suivant leur type.

● Par défaut, un scanner utilise les espaces pour 
découper une entrée (blanc, tabulation et 
terminaison de ligne → Character.isWhitespace)



In
Xanadu
did
Kubla
Khan
A
stately
pleasure-dome
...



java.util.Scanner

● Un scanner n'est pas un stream mais il est 
nécessaire d'utiliser close() pour indiquer qu'on en 
a fini avec le stream utilisé dans la construction.

● Pour utiliser un autre symbole de séparation, on 
utilise la méthode useDelimiter( ...)

● Par exemple, pour découper suivant une virgule, 
optionnellement suivi d'un espace :

– s.useDelimiter(",\\s*"); (expression régulière)

● ScanXan traite tous les symboles en entrée 
comme des strings. Il est cependant possible de 
les onvertir dans n'importe quel type primitif java.



java.util.Scanner

● Cependant, attention à la locale utilisée !!

● Par exemple dans une locale us "32,767" est 
considéré comme un entier alors qu'il s'agit d'un 
double avec une locale fr !!

● Soit le fichier suivant usnumbers.txt :

8.5
32,767
3.14159
1,000,000.1



1032778.74159

8.5
32,767
3.14159
1,000,000.1



32.767

8.5
32,767
3.14159
1,000,000.1

?



A propos de java.util.Scanner

● Contrairement à ce qu'on peut parfois lire (et faire), 
Scanner n'est pas une classe appropriée pour 
récupérer les entrées utilisateurs depuis la ligne de 
commande (elle n'a pas été créée pour ça) :

– A cause des réglages par défaut (espaces)

– L'entrée est supposée formatée : délimiteurs, type des 
données → faire des suppositions sur ce que va renter 
l'utilisateur peut compromettre la robustesse du 
programme

– Par défaut, elle gère les exceptions en arrière plan.

– Comme nous allons le voir, il faut lui préférer un 
InputStreamReader (character stream) pour récupérer 
les entrées de l'utilisateur.



Formatting
● Les objets stream qui implémentent des méthodes 

de formatage sont des instances de, soit

– java.io.PrintWriter (character streams)

– java.io.PrintStream(byte streams)

● Note: Les seuls objets de type PrintStream qu'on 
utilise généralement sont System.out et System.err

● Ainsi, lorsqu'on a besoin de créer un nouveau 
stream de sortie formaté on hérite de PrintWriter, 
pas de PrintStream

● PrintWriter et PrintStream définissent un ensemble 
de méthodes qui permettent le formatage :

– print et println (standard) et format (pour les nombres)



The square root of 2 is 1.4142135623730951.
The square root of 5 is 2.23606797749979.



The square root of 2 is 1.414214

format : exemple



format : exemple

● %d : formate un entier comme une valeur décimale

● %f : formate un flottant comme une valeur 
décimale

● %n : caractère de terminaison de ligne de l'OS

● %x : entier → hexadécimal

● %s : n'importe quoi → string

● %tB : entier → le nom du mois (avec la locale)

● etc.

● Attention: excepté pour %% et %n, tous les % 
doivent correspondre à un argument → Exception !



3.141593, +00000003.1415926536

format : exemple



I/O depuis la ligne de commande

● Un programme est souvent lancé depuis la ligne 
de commande et interagit parfois avec l'utilisateur 
depuis celle-ci.

● Java permet ce type d'interaction de 2 manières :

– Avec les streams standards

– Avec la classe java.io.Console (Java 6)



Utilisation des streams standards

● Java définit 3 streams standards :

– l'entrée : Standard Input → System.in

– la sortie standard : Standard Output → System.out

– la sortie d'erreur  : Standard Error → System.err

● Ces objets sont définis automatiquement au 
lancement et n'ont pas besoin d'être ouverts.



out, err et in → byte streams

● Ce sont des byte streams : out et err sont de type 
PrintStream mais il utilisent un objet interne qui 
émule les fonctionnalités des character streams

● A contrario, Sytem.in doit être explicitement 
converti en InputStreamReader pour bénéficier de 
ces fonctionnalités





java.io.Console (Java 6)
● Alternative aux streams standards → Console 

● Cet objet prédéfini possède la plupart des 
fonctionnalités fournies par les streams standards 
et en ajoute d'autres

● Il est particulièrement utile pour réaliser une entrée 
sécurisée de mot de passe

● Console fournit des I/O basées sur de vrais 
character streams grâce à ces méthodes reader et 
writer

● Avant d'utiliser la console, un programme doit la 
récupérer en invoquant System.console()

– Elle peut être null (OS ou environnement incompatibles)



java.io.Console (Java 6)

● La console supporte les entrées sécurisées de mot 
de passe → méthode readPassword

– pas d'écho

– retourne un tableau de caractères, pas une string → il 
peut être facilement enlever de la mémoire.



Exemple



Exemple, suite



Exemple, suite



Data Streams

● Les data streams permettent des I/O binaires pour 
les données de type primitif (boolean, char, byte, 
short, int, long, float, et double) et String.

● Tous les data streams implémentent l'une des 
deux interfaces suivantes :

– java.io.DataInput

– java.io.DataOutput

● Les deux classes les plus utilisées sont :

– java.io.DataInputStream

– java.io.DataOutputStream



Data Streams : exemple



Data Streams : exemple



Data Streams : exemple



Data Streams : exemple

● Tous les data streams détectent la fin d'un stream 
en attrapant l'exception EOFException (pas avec 
un code de return)

● A chaque méthode write correspond une méthode 
read correspondante

● C'est le programme qui doit s'assurer que les types 
correspondent : l'entrée contient uniquement des 
données binaires → rien n'indique le type d'une 
donnée, ni son début ou sa fin dans le stream



Object streams

● Les object streams permettent de réaliser des I/O 
d'objets java.

● La plupart (pas toute) des classes standards 
supportent la « sérialisation » de leur instances.

● En fait, seules les classes qui implémentent 
l'interface java.io.Serializable sont sérialisables

● Les classes d'Object streams sont :

– java.io.ObjectInputStream 

– java.io.ObjectOutputStream

● Ce sont des interfaces qui héritent des interfaces  
DataInputStream et DataOutputStream



Object streams : exemple



Object streams : exemple





Object streams



Pour tout ce qui est manipulation de fichiers et de dossiers : 
création, déplacement, copie, propriétés, etc. :

Aller plus loin

java.nio.*
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