A

‘f—-l"

S

JAVA

java.lo.*

I java.io: les bases

I » Notion de « I/O Stream » (courant,ruisseau, flux)

input stream
_ Stream Program
Data Source (9011010000)1001000011 (1001010101}
I

output stream

Stream

Program

Data
(0011010000 1001000011 J1001010101) Destination

—

I Byte streams

I e Les programmes utilisent des bytes de 8-bits pour
realiser des entrees/sorties de byte streams

« Toutes les classes de byte streams héritent de
java.io.lnputStream ou java.io.OutputStream

« || en existe de nombreuses, pour différents types
de flux (audio, fichiers, objets, etc.)

java.io.OutputStream

java.io

Class OutputStream

java.lang.Object
L java.io.outputStream

All Implemented Interfaces:
Closeable, Flushable

Direct Known Subclasses:

ByteArravOutputStream |FileOutputStream, |FilterOutputStream,
ObjectOutputStream, Outputstream, rlipedoutputStream

public abstract class OutputStream
extends Object
implements Closeable, Flushable

This abstract class is the superclass of all classes representing an output stream
of bytes. An output stream accepts output bytes and sends them to some sink.

Applications that need to define a subclass of outputstream must always provide at
least a method that writes one byte of output.

java.io.OutputStream

Constructor Summary

Out put St ream ()

Method Summary

void|] ose()
Closes this output stream and releases any system resources associated with this

stream.

void| flysh()
Flushes this output stream and forces any buffered output bytes to be written out.

vold|yrite(bytel] b)
Writes b.length bytes from the specifled byte array to this output stream.

voldlyrite(byte[] b, int off, int len)
Writes len bytes from the specified byte array starting at offset off to this ocutput stream.

abst:ziz write(int b)
Writes the specified byte to this cutput stream.

java.io.InputStream

TiHFELiﬂ
Class InputStream

java.lang.0Object
L java.io.InputStreanm

All Implemented Interfaces:
Closeable

Direct Known Subclasses:
AudicInputStream, theArravInDutStreaml FilelnputStream,
FilterInputStream, InputStream, ObjectinputStream, PipedInputStream,
SequencelnputStream, StringBufferinputStream

public abstract class InputStream
extends Cbject
implements Closeable

This abstract class i1s the superclass of all classes representing an input stream of
bytes.

Applications that need to define a subclass of Inputstream must always provide a
method that returns the next byte of input.

java.io.InputStream

Constructor Summary

Input St ream()

Method Summary

int | available()

Returns the number of bytes that can be read (or skipped over) from this input stream
without blocking by the next caller of a method for this input stream.

vold
close()
Closes this input stream and releases any system resources assoclated with the stream.

void|park(int readlimit)
Marks the current position in this input stream.

boolean

markSupported()
Tests if this input stream supports the mark and reset methods.

abstract read()
int

Reads the next byte of data from the input stream.

int readibyte[] b)
Reads some number of bytes from the input stream and stores them into the buffer
array b.

int| read(byte[] b, int off, int len)
Reads up to len bytes of data from the input stream into an array of bytes.

wvold reset ()

Repositions this stream to the position at the time the nark method was last called on this
Input stream.

teng| skip(long n)
Skips over and discards n bytes of data from this input stream.

I Byte streams

I « || en existe de nombreuses, pour différents types
de flux (audio, fichiers, objets, etc.)

« En particulier, Il existe deux classes de byte stream
spécialisées pour le traitement de fichier :

- Java.io.FilelnputStream

- Java.lo.FileOutputStream

java.io.FileInputStream

java.io

Class FilelnputStream

java. lang.Object
|l iava.io.InputStream
L java.io.FileInputStream

All Implemented Interfaces:
Closeable

public class FileInputStream
extends InputStream

A FileInputStream obtains input bytes from a file in a file system. What files are available depends on the
host environment.

FileInputStream 1S meant for reading streams of raw bytes such as image data. For reading streams of
characters, consider using FileReader.

java.io.FileInputStream

read

public int read()
throws I0OException

Reads a byte of data from this input stream. This method blocks if no
input is yet available.

Specified by:

read 1N class InputStrean
Returns:

the next byte of data, or -1 if the end of the file 1s reached.
Throws:

IoException - If an [/O error occurs.

FileOutputStream

write

public void write(int b)
throws I0Exception

Writes the specified byte to this file output stream. Implements the write
method of outputsStrean.

Specified by:

write 1N class outputStream
Parameters:

b - the byte to be written.
Throws:

I0Exception - If an IfO error occurs.

FileOutputStream

java.io
Class FileOutputStream
java.lang.Object

L java.io.OutputStream
L java.io.FileOutputStrean

All Implemented Interfaces:
Closeable, Flushable

public class FileOutputStream
extends QutputStream

A flle output stream is an output stream for writing data to a File or to a Filebescriptor. Whether or not a
flle 1s availlable or may be created depends upon the underlying platform. Some platforms, in
particular, allow a file to be opened for writing by only one Fileoutputstream (or other flle-writing object)
at a time. In such situations the constructors in this class will fail if the flle involved 1s already open.

FileoutputStream 1S meant for writing streams of raw bytes such as image data. For writing streams of
characters, consider using Filewriter.

I Byte streams : exemple

I e Soit le fichier suivant, xanadu.txt :

I In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

package test;

import java.ilo.FileInputStream;
import java.io.F1leCutputStream;
import java.ilo.IOException;

public class CopyBytes {
public static void main(Stringl[] args) throws IOException {

FileInputStream 1n = null;

F1leOutputStream out = null;

try {
1n = new FlleInputStream("xanadu.txt");
out = new F1leCutputStream("outagain.txt");
int c;

while ((c = in.read())

out.writelc):

¥

} finally {
it (in != null) {
in.close():

¥
if (out !'= null) {
out.closel():

¥

N

N

Input Stream
Xanadu d | d

1|‘r______J

read (b)

!

Integer Variable

d
write (b)

v

Xanadu d
Output Stream

I Attention

Fermer un stream qui a eté ouvert
est extremement important !

package test;

import java.io.FileInputStream;
import java.io.F1leCutputStream;
import java.lo.IOException;

public class CopyBytes {
public static void main(Stringl[] args) throws IOException {

FileInputStream i1n = null;

FileOutputStream out = null;

try {
1n = new FlleInputStream("xanadu.txt");
out = new F1leCutputStream("outagain.txt");
int c;

while ((c = 1n.read()) '= -1) {
out.writelc);

¥

M| finally {
if (in !'= null) {

in.closel():

I}
if (out !'= null) {

out.closel();

I Mais en fait ...

I « CopyBytes, bien gu'ill fonctionne, utilise des I/O de
tres bas niveaux (byte stream).

I « Eviter le plus possible d'utiliser ce type de stream.

« Par exemple, xanadu.txt est un fichier contenant
des données de type « caractere ».

« — || faut donc utiliser les streams appropries : des
character streams.

« Alors pourquoi parler de byte streams ?

e — Tous les autres streams sont basés sur eux !

Character Streams

I Character Streams

I « Java utilise les conventions unicode pour
manipuler les variables de type caractere

I » Les character streams convertissent
automatiguement ce format interne en fonction du
codage local (internationalisation).

e Toutes les classes de Character streams heéritent
de java.io.Reader ou java.io.Writer

« Comme pour les byte streams, Il existe deux
classes spécialisées pour le traitement de fichier :

- Java.io.FileReader
— Java.lo.FileWriter

import java.io.F1leReader;
import java.lo.FileWriter;
import java.lo.I0Exception;

public class CopyCharacters {
public static void main(String[] args) throws IOException {
Fi1leReader i1nputStream = null;
Filewriter outputStream = null;

try {
1nputStream = new FlleReader("xanadu.txt");
outputStream = new FilleWriter("characteroutput.txt");

int c;
while ((c = 1nputStream.read()) '= -1) {
outputStream.write(c);
I
} finally {

it (1nputStream !'= null) {
1nputStream.close();

I
if (outputStream !'= null) {
outputStream.close();

¥

I Aucune différence ?

I « CopyBytes et CopyCharacters sont tres similaires

e La seule difference, au niveau du code, est que
CopyCharacters utilise FileReader et FileWriter a la
place de FilelnputStream FileOutputStream

« Les deux utilisent un int pour lire et écrire, MAIS,
dans CopyCharacters la valeur du int correspond a
16 bits (contre 8 bits dans CopyCharacters)

I D'une maniere générale

I « Les character streams utilisent des byte streams
pour les opérations IO : ils font le pont entre le byte
I stream et |le format souhaité (« wrapper »).

« Par exemple, FileReader utilise FilelnputStream
et FileWriter utilise FileOutputStream

o || existe 2 classes géneriques qui permettent de
faire le pont byte stream — character streams :

— Java.lo.InputStreamReader
— Java.lo.OutputStreamWriter

— Utile lorsqu'il n'y pas de classe de character
stream qui correspond au besoin (socket)

I Character Streams : 1/O de lighes

I « Les I/O de caracteres sont en général utilisées sur
de plus grosses unitées que le caractere.

I « Une unite couramment utilisée est la ligne : i.e. une
chaine de caracteres terminée par un caractere de

terminaison :

- \r : Carriage return « CR », ASCII 13, Hexa 0D (mac)
- ou\n: Line feed « LF », ASCII 10, Hexa OA (unix)

- ou encore la séquence \rin (windows cf. notepad)

e Deux classes permettent de faire des I/O utilisant
la ligne comme unité :

— java.lo.BufferedReader et java.io.PrintWriter

java.io
I Class BulferedReader

I]ava. lang.0bject

L java.io.Reader
L java.io.BufferedReader

readline

public String readlLine(]
throws ICOException

Reads a line of text. A line 1s considered to be terminated by any one of
a line feed (\n'), a carriage return ('\r'), or a carriage return followed
immediately by a linefeed.

Returns:
A String containing the contents of the line, not including any
line-termination characters, or null if the end of the stream has
been reached

Throws:
I0Exception - [f an /O error occurs

java.io

Class PrintWriter

lava. lang.Object
L java.io.Writer
L java.io.PrintWriter

println

public void primtln(String x)

Prints a String and then terminates the
line. This method behaves as though it
INVoKkes print(String) and then printin().

Parameters:
x - the string value to be printed

import
import
import
import
import

java.lo.
java.lo.
java.lo.
java.io.
java.io.

F1leReader;
F1leWriter;
BufferedReader;
PrintwWriter;
I0Exception;

public class CopylLines {

public static void main(Stringl] args) throws IOException {
BufferedReader inputStream = null;
PrintwWriter outputStream = null;

try {

1nputStream =

new BufferedReader(new FileReader("xanadu.txt"));

outputstream =

new PrintWriter(new Filewriter("characteroutput.txt"));

String 1;
while ((1 = inputStream.readlLine()) !'= null) {

outputStream.println(l);

I
} finally {

it (inputStream != null) {
1nputStream.close();

I

it (outputStream != null) {
outputStream.closel(];

1

Butfered Streams

I Buffered Streams

I La plupart des exemples précédents utilisent des
/0 non « bufferisées » — chaque requéte I/O est
I traitée immeédiatement par I'OS.

« Cela peut rendre un programme peu efficace :
— acces disque a repétition
- surcharge d'activite reseau
- etc.

e Solution — Utiliser des Buffered I/O Streams

— lIs travalillent sur une zone méemoire tampon : buffer

- — les API natives de I'OS ne sont appelées que lorsque
le tampon est vide (input) ou plein (output).

I Buffered Streams

I e Pour convertir un stream non bufferise, il suffit
d'utiliser les classes adéquates en passant au
I constructeur le stream a bufferiser.

« Par exemple, dans CopyCharacters

BufferedReader 1nputStream = null;
Bufferedwriter outputStream = null;
try {

1nputStream =

new BufferedReader(new FileReader("xanadu.txt"));
outputstream =

new Bufferedwriter(new FileWriter("characteroutput.txt"));

I Buffered Streams

I || existe 4 classes permettant cette conversion :

g Pour les byte streams

java.io java.io

Class BulferedInputStream Class BufferedOutputStream

java. lang.Object java. lang. Object
L java.io.InputStream L java.io.OutputStream
L java.io.FilterInputStream L java.io.FilterQutputStreanm
L java.io.BufferedInputStream L java.io.BufferedOutputStream

e Pour les character streams :

java.io java.io
Class BufferedReader Class BufferedWriter
java. lang.Object java.lang.Object

L iava.io.Reader L java.io.Writer

L java.io.BufferedReader L java.io.Bufferedwriter

I « Flushing Buffered Streams »

I e || peut tres utile de vider le buffer, en certains
points de l'application, sans attendre gu'il soit plein.

« — vider le buffer : « flushing the buffer »

 Invoquer la méthode flush des classes de sorties
bufferisées pour réaliser le flushing manuellement.

» Certaines classes bufferisées supportent
‘autoflush, activé via un argument du constructeur.

e Lorsque |'autoflush est actif, certains evenements
clés déclenchent le vidage du buffer :

- e.g. PrintWriter a chaque invocation de printin et de
format.

I Scanning and Formatting

I « Programmer des I/O implique souvent de traduire
des données de et/ou vers des formats facilement
I compréhensible par I'hnomme.

« Pour faclliter cette tache, java fournit 2 APlIs :

- L'API scanner : decoupe une entrée en signes
Individuels et les transforme en données suivant leur

type.

- L'API formatting qui assemble les données pour les
mettre sous une forme facilement compréhensible par
I'nomme.

I java.util.Scanner

I « Les objets de type java.util. Scanner servent a
convertir une entréee formatee en données

I individuelles suivant leur type.

e Par défaut, un scanner utilise les espaces pour
découper une entrée (blanc, tabulation et
terminaison de ligne — Character.isWhitespace)

import java.io.*;
import java.util.Scanner;

public class ScanXan {
public static void main(Stringl] args) throws IOException {
Scanner s = null;
try {
s = new Scanner(new BufferedReader(new FileReader("xanadu.txt"]));

while (s.hasNext()) {
System.out.println(s.next());

I
} finally {
if (s !'= null) {

s.closel);

}
} In

} Xanadu
t did
Kubla
Khan
A
stately
pleasure-dome

java.util.Scanner

Un scanner n'est pas un stream mais il est
necessaire d'utiliser close() pour indiquer gu'on en
a fini avec le stream utilisé dans la construction.

Pour utiliser un autre symbole de séparation, on
utilise la méthode useDelimiter(...)

Par exemple, pour déecouper suivant une virgule,
optionnellement suivi d'un espace :

— s.useDelimiter("\\s*"); (expression reguliere)

ScanXan traite tous les symboles en entree
comme des strings. |l est cependant possible de
les onvertir dans n'importe quel type primitif java.

I java.util.Scanner

I « Cependant, attention a la locale utilisee !!

« Par exemple dans une locale us "32,767" est
consideré comme un entier alors gqu'il s'agit d'un
double avec une locale fr !!

e Soit le fichier suivant usnumbers.txt :

8.5
32,767
3.14159
1,000, 000.1

public class ScanSum {
public static void main(Stringl[] args) throws IOException {

Scanner s = null;

double sum = O;

try {
s = new Scanner|

new BufferedReader({new FileReader("usnumbers.txt")));

s.uselocalel(lLocale.lUs);

while (s.hashext(])) {
if (s.hasMextDouble()) {
sum += s.nextDouble():

} else {
s.next();
} ! 8.5
} finally { 32,767
s.close(); 3.14159
! 1,000,000.1

System.out.printlni{sum);
I
I

1032778.74159

public class ScanSum {
public static void main(Stringl[] args) throws ICException {
Scanner s = null;
double sum = O;
try {
s = new Scanner|
new BufferedReader({new FileReader("usnumbers.txt")));

while (s.hashMext()) {
if (s.hasMextDouble()) {
sum += s.nextDouble():

} else {
s.next();
} ! 8.5
} finally { 32,767
s.close(]); 3.14159
! 1,000,000.1

System.out.printlni{sum);
I
I

S 32.767

I A propos de java.util.Scanner

I « Contrairement a ce qu'on peut parfois lire (et faire),
Scanner n'est pas une classe appropriée pour
recuperer les entrees utilisateurs depuis la ligne de
commande (elle n'a pas été creée pour ca) :

— A cause des réglages par défaut (espaces)

- L'entrée est supposéee formatée : délimiteurs, type des

donnees — faire des suppositions sur ce que va renter
'utilisateur peut compromettre la robustesse du
programme

- Par defaut, elle gere les exceptions en arriere plan.

- Comme nous allons le voir, il faut lui preférer un
InputStreamReader (character stream) pour recuperer
les entrées de l'utilisateur.

I Formatting
» Les objets stream qui iImplémentent des méthodes
de formatage sont des instances de, soit
- Java.io.PrintWriter (character streams)
I — Java.lo.PrintStream(byte streams)

« Note: Les seuls objets de type PrintStream qu'on
utilise géneralement sont System.out et System.err

 Ainsi, lorsqu'on a besoin de créer un nouveau
stream de sortie formaté on hérite de PrintWriter,
pas de PrintStream

e PrintWriter et PrintStream définissent un ensemble
de méthodes qui permettent le formatage

— print et printin (standard) et format (pour les nombres)

public class Root {
public static void main(Stringl[] args) {1
int 1 = 2;
double r = Math.sqgrt(1);

System.out.print("
System.out.print(i
System.out.print("
Eyatem.ﬂut.printirﬁ
System.out.println(".");

The square root of ");
}

||:|;

1 = 5;
r = Math.sgrt(1);
System.out.println("The square roct of " + 1 + " 15 " + r + ".");

U

The square root of 2 1s 1.4142135623730951.
The square root of 5 1s 2.23606797749979.

I format : exemple

public class Rootz {
public static void main(Stringl[] args) {
int 1 = 2;
double r = Math.sgrt(1);

System.out.format("The square root of %d 1s %f.%n", 1, r);

b

The square root of 2 is 1.414214

format : exemple

%d : formate un entier comme une valeur decimale

%f : formate un flottant comme une valeur
décimale

%n : caractere de terminaison de ligne de I'OS
%X : entier - hexadécimal

%s : n'importe quol — string

%tB : entier —» le nom du molis (avec la locale)
etc.

Attention: excepte pour %% et %n, tous les %
doivent correspondre a un argument — Exception !

I format : exemple

public class Format {
public static wvoid main(Stringl[] args) {
System.out.format("%f, %1$+020.10f %=n", Math.PI);

}
]

3.141593, +00000003.1415926536

3L S+ 0[20.. lOf

P & g
,;f& ‘“5% .;;:H'z" hﬁi“*'b 5 E:‘E:I
o A & S
. pre < P
#ﬂ‘@ &

I 1/O depuis la lighe de commande

I « Un programme est souvent lancé depuis la ligne
de commande et interagit parfois avec l'utilisateur
I depuis celle-ci.

e Java permet ce type d'interaction de 2 manieres :

— Avec les streams standards

- Avec la classe java.io.Console (Java 6)

I Utilisation des streams standards

I e Java definit 3 streams standards :

I - I'entree : Standard Input — System.in
- |la sortie standard : Standard Output — System.out

- |la sortie d'erreur : Standard Error — System.err

e Ces objets sont définis automatiguement au
lancement et n'ont pas besoin d'étre ouverts.

I out, err et in - byte streams

I e Ce sont des byte streams : out et err sont de type
PrintStream mais Il utilisent un objet interne qui
I emule les fonctionnalités des character streams

« A contrario, Sytem.in doit étre explicitement
converti en InputStreamReader pour bénéficier de
ces fonctionnalités

D 4

InputStreamReader cin = new InputStreamReader(System.in);

private String saisieClavier(]{
try{
BufferedReader clavier = new BufferedrReader (new InputStreamReader(System.in)];
return clavier.readlLine();
1
catch(I0OException e){
e.printStackTrace();
System.exit(0);
return null;

I java.lo.Console (Java 6)

I o Alternative aux streams standards — Console

» Cet objet prédefini possede la plupart des
fonctionnalités fournies par les streams standards
I et en ajoute d'autres

o || est particulierement utile pour réaliser une entrée
sécurisée de mot de passe

« Console fournit des I/O basées sur de vrais
character streams grace a ces méthodes reader et
writer

« Avant d'utiliser la console, un programme doit la
réecuperer en invoguant System.console()

— Elle peut étre null (OS ou environnement incompatibles)

I java.lo.Console (Java 6)

I « La console supporte les entrees sécurisees de mot
de passe — méthode readPassword

I - pas d'echo

— retourne un tableau de caracteres, pas une string — |l
peut étre facilement enlever de la mémoire.

Exemple

import java.lo.Console;
import java.util.Arrays;
import java.io.I0Exception;

public class Password {
public static void main (String args[]) throws IOException {

Console ¢ = System.console();

if (c == null) {
System.err.println("Mo console.");
System.exit(1);

I

String Login = c.readlLine("Enter your login: "J);
char [] oldPassword = c.readPassword("Enter your old password: ");

Exemple, suite

if (verify(login, oldPassword)) {
boolean noMatch:
do {
char [] newPasswordl =
c.readPassword("Enter your new password: ");
char [] newPasswordz =
c.readPassword("Enter new password again: ");
noMatch = ! Arrays.equals(newPasswordl, newPassword2);
if (noMatch) {
c.format("Passwords don't match. Try again.%sn");
} else {
change(login, newPasswordl];
c.format("Password for %s changed.%n", login);
I
Arrays.fill({newPasswordl, ' ');
Arrays.fill(newPasswordz, ' ')
I while (noMatch);

r

1
Arrays.fill{oldPassword, ' '};

Exemple, suite

J/oummy verify method.
static boolean verify(String login, char[] password) 1
return true;

¥

J/oummy change method.
static void change(String login, charl] password) {1}

I Data Streams

I » Les data streams permettent des I/O binaires pour
les données de type primitif (boolean, char, byte,
I short, int, long, float, et double) et String.

e Tous les data streams implémentent I'une des
deux interfaces suivantes :

- Java.io.Datalnput
- Java.io.DataOutput

e Les deux classes les plus utilisees sont :

- jJava.lo.DatalnputStream
- Java.lo.DataOutputStream

Data Streams : exemple

Dljder Data Data Sample
in g Output Method Input Method
type |[description Value

record
1 double [tem price |DataCutputStream.writeDouble DataInputStream.readDouble 19,989
2 int [Unit count |DatadutputStream.writeInt |DataInputStream.readInt 12
3 string f:i::riptian DataOutputStream.writelUTF DataInputStream. readUTF _Ill_‘flg;?rt,,
public class DataStreams {

static final String dataFile = "involcedata";

static final double[] prices = { 19.99, 9.99, 15.99, 32.99, 4.99 };

static
= static

final int[] units =
final String[] descs
"Java Mug",

{

12, 8, 13, 29, 50 };
{ "Java T-shirt",

"Duke Juggling Dolls",

"lava Pin",
"Java Key Chain" };

Data Streams : exemple

public static void main(Stringl] args) throws IOException {
DataOutputStream out = null;

try {
out = new DataOutputStream(new
BufferedoutputStreaminew FileOutputStream(dataFile)));

for (int 1 = 0; 1 < prices.length; 1 ++) {
out.writeDouble(prices[1]);
out.writeInt(units[1]);
out.writelUTF(descs[1]);
I
} finally {
out.close();

¥

Data Streams : exemple

DataIlnputStream i1n = null;
double total = 0.0;
try {
1n = new DatalnputStream(new
BufferedInputStreaminew FileInputStream(datafFile)));

double price;
int unit;
String desc;

try {
while (true) {
price = in.readDouble();
unit = in.readInt();
desc = 1n.readUTF();
System.out.format("You ordered %d units of %s at $%.2f%n",
unit, desc, price);
total += unit * price;

¥
} catch (EOFException e) { }
System.out.format("For a TOTAL of: $%.2f%n", total);
¥
finally {

in.closel();

}

I Data Streams : exemple

I « Tous les data streams détectent la fin d'un stream
en attrapant I'exception EOFEXxception (pas avec
I un code de return)

« A chague méthode write correspond une meéethode
read correspondante

« C'est le programme qui doit s'assurer gue les types
correspondent : I'entrée contient uniguement des
données binaires — rien n'indique le type d'une
donneée, ni son debut ou sa fin dans le stream

I Object streams

I e Les object streams permettent de réaliser des I/O
d'objets java.

e La plupart (pas toute) des classes standards
supportent la « serialisation » de leur instances.

« En fait, seules les classes qui implementent
'Interface java.lo.Serializable sont sérialisables

» Les classes d'Object streams sont :
- Java.io.ObjectinputStream
- Java.io.ObjectOutputStream

« Ce sont des interfaces qui heritent des interfaces
DatalnputStream et DataOutputStream

I Object streams : exemple

Ipuhliﬂ class ObjectStreams 1
static final String dataFile = "involcedata";

I— static final BigDecimall] prices = {
new BigDecimal ("19.99"]),
new BigDecimal("2.99"),
new BigDecimal ("15.99"),
new BigDecimal("3.99"),
new BigDecimal ("4.99") };
static final int[] wnits = { 12, 8, 13, 29, 50 };
: static final Stringl[] descs = { "Java T-shirt",
"Java Mug",
"Duke Juggling Dolls",
"lava Pin",
"Java Key Chain" };

Object streams : exemple

public static void main(Stringl[] args)
throws IOException, ClassMotFoundException {

ObjectOutputStream out = null;
try {
out = new ObjectOutputStream({new
BufferedOutputStream(new FileOutputStream(dataFile)));

out.writeObject(Calendar.getInstancel));

for (int 1 = ©; 1 < prices.length; 1 ++) {
out.writeObject(prices[1]);
out.writeInt{units[1]);
out.writeUTF(descs[1]);

I

} finally {
out.close();

¥

ObjectInputStream 1n = null;
try {

1n = new CbjectInputStream({new
BufferedInputStream(new FileInputStream(dataFile)));

Calendar date = null;

BigDecimal price;

int unit;

String desc;

BigDecimal total = new BigDecimal(Q);

date = (Calendar) 1in.readObject();
System.out.format ("On %tA, %<tB %<te, %<tY:%n", date);

try {
while (true) {
price = (BigDecimal)] in.readObject();
unit = in.readInt():
desc = in.readUTF():
System.out.format("You ordered %d units of %s at $%.2f%n",
unit, desc, price);
total = total.add(price.multiply(new BigDecimal(unit)));

¥
} catch (EOFException e) {}
System.out.format("For a TOTAL of: $%.2f%n", total);

} finally {

1

in.closel():

I Object streams

Stream

writeObject (a) —P» & & & B E —J readObject ()
™% B

(b \ C (b \ C

d e d e

Aller plus loin

Pour tout ce qui est manipulation de fichiers et de dossiers :
création, déplacement, copie, propriéteés, etc. :

java.nio.*

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65

