S
=
JAVA

Les Collections

Cours Java - F. Michel

I La notion de collection

I * Une collection est un objet qui regroupe d'autres
objets formant un groupe logique :

I — une main de poker -> une collection de cartes
— un dossier mail -> une collection de lettres

- un répertoire telephoniqgue -> une collection de noms
associes a des numeros

* VVous connaissez deja des objets de ce type

— ArrayList
- HashTable
* On peut parler de structures de donneéees

I Les collections en informatique

* Un framework informatique manipulant des
collections contient :

de manipuler des collections sans connaitre le detail de

I - des interfaces : types de donnee abstraits permettant
leur implementation

- des impléementations : des classes concretes qui
Implementent les interfaces : des structures de données
reutilisables

- des algorithmes : methodes permettant des opérations
utiles sur les collections (chercher, classer, ajouter,
etc.). lls sont polymorphiques : applicables sur
différentes implementations d'une interface

e La STL de C++, |a hiérarchie des collections en
smalltalk, ...

I Bénefices

I » Réduire les efforts de programmation
I — pas de programmation « bas niveau »
» Rapidité et qualité des programmes

— |'utilisation des collections garantie I'utilisation
d'algorithmes eprouves

 |Interopérabilité simplifiee

- des programmes independants manipulant les mémes
structures de données sont beaucoup plus simples a
connectes

I Caratéristiques communes

I * Toutes les collections du JDK sont genériques :

— public interface Collection<E>

I Pour réduire le nombre des interfaces du JDK, il
n'y a pas d'interface spécifique pour chaque
variante d'une collection (immuables, taille fixe,
ajout uniguement, etc.)

* Ainsi, les opérations definies par une interface sont
dites « optionnelles »

— une implémentation particuliere ne fournit pas
forcément toutes les opérations d'une interface

— Si une operation non supportée est invoquée, alors la
collection renvoie une UnsupportedOperationException

java.util

Method Summary 1Nterface Collection<E>

boolean

add(E o)
Ensures that this collection contains the specified element (optional operation).

boolean

addAll(Collection<? extends E> c)
Adds all of the elements in the specified collection to this collection (optional operation).

void

clear()
Removes all of the elements from this collection (optional operation).

boolean

contains (Object o)
Returns true if this collection contains the specified element.

hoolean

containsAll(Collection<?> c)
Returns true if this collection contains all of the elements in the specified collection.

boolean

equals(0Object o)
Compares the specified object with this collection for equality.

int

hashCode()
Returns the hash code value for this collection.

boolean

isEmpty()
Returns true if this collection contains no elements.

Iterator<E=

iterator()
Returns an iterator over the elements in this collection.

hoolean

remove (Object o)
Removes a single instance of the specified element from this collection, if it is present (optional operation).

boolean

removelAll(Collection<?= c)
Removes all this collection's elements that are also contained in the specified collection (optional operation).

boolean

retainAll(Collection<?> c)
Retains only the elements in this collection that are contained in the specified collection (optional operation).

int

sizel)
Returns the number of elements in this collection.

Object[] tDA.I'I'a![(}
Returns an array containing all of the elements in this collection.
<T= T[]

toArray(T[] a)
Returns an array containing all of the elements in this collection; the runtime type of the returned array is that

of the snecified arrav

java.util

Interface Set<E>
Method Summary

boolean add(E o)
Adds the specified element to this set if it is not already present (optional operation).

boolean|aqdall(Collection<? extends E> c)
Adds all of the elements in the specified collection to this set if they're not already present (optional operation).

void|c1ear()

Removes all of the elements from this set (optional operation).

boolean|contains (Object o)

Returns true if this set contains the specified element.

boolean|containsAll(Collection<?> c)

Returns true if this set contains all of the elements of the specified collection.

boolean|epuals(object o)

Compares the specified object with this set for equality.

int| hashcode()
Returns the hash code value for this set.

boolean isEmpty()

Returns true if this set contains no elements.

Iterator=g= iterator()

Returns an iterator over the elements in this set.

boolean|remove (Object o)

Removes the specified element from this set if it is present (optional operation).

boolean| removeAll (Collection<?> c)

Removes from this set all of its elements that are contained in the specified collection (optional operation).

boolean| etainAll(Collection<?> c)

Retains only the elements in this set that are contained in the specified collection (optional operation).

intlsize()

Returns the number of elements in this set (its cardinality).

Object[] toArra:g{ }
Returns an array containing all of the elements in this set.

<T> Tl toArray (T[] a)

Returns an array containing all of the elements in this set; the runtime type of the returned array is that of the

C‘“Dn""i'F‘iﬂl"] P TPAITR T T

java.util

Class HashSet<E>

java.lang.Object
L java.util.AbstractCollection<E=>
L java.util.AbstractSet<E>
L java.util.HashSet<E>

Constructor Summary

HashSet()
Constructs a new, empty set; the backing Hashmap instance has default initial capacity (16) and load factor (0.75).

HashSet(Collection<? extends E= c)

Constructs a new set containing the elements in the specified collection.

HashSet(int initialCapacity)
Constructs a new, empty set; the backing Hashmap instance has the specified initial capacity and default load factor, which
1S 0.75.

HashSet(int initialCapacity, float loadFactor)
Constructs a new, empty set; the backing HashMap instance has the specified initial capacity and the specified load factor.

Method Summary

HashSet

~ Adds the specified element to this set if it is not already present.

void| c1ear()

Removes all of the elements from this set.

Object clone()
Returns a shallow copy of this Hashset instance: the elements themselves are not cloned.

boolean|contains (Object o)

Returns true if this set contains the specified element.

boolean isEmpty()

Returns true if this set contains no elements.

Iterator=g= iterator()

Returns an iterator over the elements in this set.

boolean| remove (Object o)

Removes the specified element from this set if it is present.

Intlsize()

Returns the number of elements in this set (its cardinality).

Methods inherited from class java.util.AbstractSet

equals, hashCode, removeAll

Methods inherited from class java.util.AbstractCollection

addAll, containsAll, retainAll, toArray, foArray, foString

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.util.Set

addAll, containsAll, equals, hashCode, removeAll, retainAll, toArray, toArray

I exemple

I import java.util.*;

public class FindDups {
I public static void main(Stringl[] args) {

Set<String> s = new HashSet<String=|):
for (String a : args)
if (!s.add(a))

System.out.println{"Duplicate detected: " + a);

System.out.println(s.size() + " distinct words: " + sj;

¥
¥

> java FindDups | came | saw i left
Duplicate detected: |

Duplicate detected: |
4 distinct words: [i, left, saw, came]

java.util.List

Method Summary

boolean

add(E o)
Appends the specified element to the end of this list (optional operation).

void

add(int index, E element)
Inserts the specified element at the specified position in this list (optional operation).

boolean

addAll(Collection<? extends E> c}
Appends all of the elements in the specified collection to the end of this list, in the order that they are
returned by the specified collection's iterator (optional operation).

boolean

addAll(int index, Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list at the specified position (optional
operation).

void

clear()
Removes all of the elements from this list (optional operation).

boolean

contains(0Object o)
Returns true if this list contains the specified element.

boolean

containsAll(Collection<?> c)
Returns true if this list contains all of the elements of the specified collection.

boolean

equals({Object o)
Compares the specified object with this list for equality.

get{int index)
Returns the element at the specified position in this list.

int

hashCode()
Returns the hash code value for this list.

int

index0f(Object o)
Returns the index in this list of the first occurrence of the specified element, or -1 if this list does not
contain this element.

boolean

isEmpty()
Returns true if this list contains no elements.

Iterator=g=

iterator()
Returns an iterator over the elements in this list in proper sequence.

int

lastIndex0f(0Object o)

java.util.List

int

lastIndex0f(Object o)
Returns the index in this list of the last occurrence of the specified element, or -1 if this list does not contain
this element.

!
ListIterator<E>

listIterator()
Returns a list iterator of the elements in this list (in proper sequence).

ListIterator<g>

listIterator(int index)
Returns a list iterator of the elements in this list (in proper sequence), starting at the specified position in
this list.

Im

remove (int index})
Removes the element at the specified position in this list (optional operation).

boolean remove (Object o)
Removes the first occurrence in this list of the specified element (optional operation).
boolean | removeAll(Collection<?> c)
Removes from this list all the elements that are contained in the specified collection (optional operation).
boolean| retainAll(Collection<?> ¢)
Retains only the elements in this list that are contained in the specified collection (optional operation).
E set(int index, E element)
Replaces the element at the specified position in this list with the specified element (optional operation).
int|sjze()
Returns the number of elements in this list.
List<E>|sypList(int fromIndex, int toIndex)
Returns a view of the portion of this list between the specified fromIndex, inclusive, and toIndex, exclusive.
Object[] toArra:g()
Returns an array containing all of the elements in this list in proper sequence.
<T= T[]

toArray (T[] a)
Returns an array containing all of the elements in this list in proper sequence; the runtime type of the
returned array is that of the specified array.

java.util

Interface Listlterator<E>

All Superinterfaces:
Iterator<E>

|
Method Summary

void

add(E o)
Inserts the specified element into the list (optional operation).

boolean

hasNext()
Returns true if this list iterator has more elements when traversing the list in the forward direction.

boolean

hasPrevious()
Returns true if this list iterator has more elements when traversing the list in the reverse direction.

Irm

nexti()
Returns the next element in the list.
int|pextIndex()
Returns the index of the element that would be returned by a subsequent call to next.
E previous(}
Returns the previous element in the list.
int previousIndex()
Returns the index of the element that would be returned by a subsequent call to previous.
void| remove ()
Removes from the list the last element that was returned by next or previous (optional operation).
voidlset(E o)

Replaces the last element returned by next or previous with the specified element (optional operation).

Element(0) Element{1) Element(2) Element(3)

T 1

Iincdex: 0O

I java.util.SortedSet

» SortedSet : Interface définie pour des collections
ou les elements sont classés suivant un ordre
particulier.

I * Implémentations : La classe TreeSet

import java.util.*;

public class Testz {
public static void main(Stringl] args) {
SortedSet<String= s = new TreeSet<String=();
s,.add("test");
s.add("abc");
s,add("01");
System.out.printlnis);

}
> [01, abc, test]

La classe java.util.Collections

Method Summary

static
<T=> boolean

addAll(Collection<? super T= c, T... a)
Adds all of the specified elements to the specified collection.

static
<T= int

binarySearch(List<? extends Comparable<? super T== list, T key)

Searches the specified list for the specified object using the binary search algorithm.

static
<T> int

binarySearch(List<? extends T> list, T key, Comparator<? super T= c}

Searches the specified list for the specified object using the binary search algorithm.

static
<f> Collection<E>

checkedCollection(Collection<E> ¢, Class<E= type)
Returns a dynamically typesafe view of the specified collection.

q5>15232§ checkedList(List<E> list, Class<E> type)
Returns a dynamically typesafe view of the specified list.
static

<k, V= Map<K,V=

checkedMap (Map<kK,V= m, Class<K> keyType, Class<V= valueType)
Returns a dynamically typesafe view of the specified map.

{Ebgzizi checkedSet(Set<E> s, Class<E> type)
T Returns a dynamically typesafe view of the specified set.
static

<K, V= SortedMap<K,V=

checkedSortedMap(SortedMap<K,V= m, Class<K>= keyType, Class<V= valueType)
Returns a dynamically typesafe view of the specified sorted map.

static
<E> SortedSet<E=

checkedSortedSet(SortedSet<E> s, Class<E> type)
Returns a dynamically typesafe view of the specified sorted set.

static
<T> void

copy(List<? super T> dest, List<? extends T= src)
Copies all of the elements from one list into another.

static boolean

disjoint(Collection<?= cl, Collection<?> c¢2)
Returns true if the two specified collections have no elements in common.

static
<T= List<T=

emptylList()
Returns the empty list (immutable).

static
<K, V= Map<K,V>

emptyMap()
Returns the empty map (immutable).

static
<[> Set<T=>

emptySet()
Retiitne the amnty cet (immiitabhley

static

; enumeration{Collection<T= c)
<T= Enumeration<T=

Returns an enumeration over the specified collection.

mﬁfﬁ; fill(List<? super T> list, T obj)
Replaces all of the elements of the specified list with the specified element.

static int|frequency(Collection<?> ¢, Object o)

Returns the number of elements in the specified collection equal to the specified object.

static int|jndex0fSubList(List<?> source, List<?> target)

Returns the starting position of the first occurrence of the specified target list within the
specified source list, or -1 if there is no such occurrence.

static int|1a5tTndex0fSubList (List<?> source, List<?> target)

Returns the starting position of the last occurrence of the specified target list within the
specified source list, or -1 if there is no such occurrence.

static

; list(Enumeration<T= e
<T= Arraylist<T= ()

Returns an array list containing the elements returned by the specified enumeration in
the order they are returned by the enumeration.

static :
. max(Collection<? extends T= coll
<T extends Object & Comparable<? super T»> ()

T Returns the maximum element of the given collection, according to the natural ordering
of its elements.

53:}? max(Collection<? extends T> coll, Comparator<? super T> comp)
Returns the maximum element of the given collection, according to the order induced by
the specified comparator.

static|g+ :
< =
<T extends Object & Comparable<? super T>> min(Collection<? extends T> coll)

T Returns the minimum element of the given collection, according to the natural ordering
of its elements.

static

s T min(Collection<? extends T> coll, Comparator<? super T= comp)

Returns the minimum element of the given collection, according to the order induced by
the specified comparator.

static

> U5tﬂ}-"coplestlnt n, T o)

Returns an immutable list consisting of n copies of the specified object.

o poialic| replaceAll(List<T> list, T oldval, T newval)
Replaces all occurrences of one specified value in a list with another.

static void | reyerse(List<?> list)

Reverses the order of the elements in the specified list.

static
<T> Comparator<T=>

reverselrder(Comparator<T> cmp)
Returns a comparator that imposes the reverse ordering of the specified comparator.

static void

rotate(List<?> list, int distance)
Rotates the elements in the specified list by the specified distance.

static void

shuffle(List<?> list)
Randomly permutes the specified list using a default source of randomness.

static void

shuffle(List<?> list, Random rnd)

o . : : .
R|mterface o J.am_utnlute the specified list using the specified source of randomness.

static
<[> Set<l=

singleton(T o)
Returns an immutable set containing only the specified object.

static
<T= List<T=>

singletonlist(T o)
Returns an immutable list containing only the specified object.

static
=K, V= Map<K, V=

singletonMap(K key, V value)
Returns an immutable map, mapping only the specified key to the specified value.

static
<T extends Comparable<? super T=>>
void

static
<T> void

sort(List<T= list)
Sorts the specified list into ascending order, according to the natural ordering of its
elements.

sort(List<T= list, Comparator<? super T= c})
Sorts the specified list according to the order induced by the specified comparator.

static void

swap(List<?> 1list, int i, int j)
Swaps the elements at the specified positions in the specified list.

static
<T> Collection<T=

synchronizedCollection(Collection<T> c)
Returns a synchronized (thread-safe) collection backed by the specified collection.

static
<T> List<T=>

synchronizedList(List<T= list)

Returns a synchronized (thread-safe) list backed by the specified list.

static
=K, V= Map<K, V=

synchronizedMap (Map<K,V= m)
Returns a synchronized (thread-safe) map backed by the specified map.

static
<[> Sei<T=>

synchronizedSet(Set<T= s)
Returns a synchronized (thread-safe) set backed by the specified set.

static
<K, V> SortedMap<K, V=

synchronizedSortedMap(SortedMap<k,V> m)
Returns a synchronized (thread-safe) sorted map backed by the specified sorted map.

static

ewuncrhranizadCartadCatr I CartadCat-T- i

I exemple
I import java.util.*;

public class Testz {
public static void main(Stringl] args) {

List<String= L = new ArrayList<=String=();
L.add("test");
L.add("o1");
L.add("abc");
System.out.println(l);
Collections.sort(1]);
System.out.println(l);
Collections.shuffle(l);
System.out.println(l);

} test, 01, abc!

(01, abc, test!
01, test, abc]

L'interface java.util.Queue<E>

java.util

Interface Queue<E>

Type Parameters:
E - the type of elements held in this collection

All Superinterfaces:
Collection<E>, Iterable<E=>

All Known Subinterfaces:
BlockingDeque<E=>, BlockingQueue<E=>, Deque<E=>

All Known Implementing Classes:
AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentLinkedQueue, DelayQueue,

LinkedBlockingDeque, LinkedBlockingQueue, LinkedList, PriorityBlockingQueue, PriorityQueue,
SynchronousQueue

public interface Queue<E=
extends Collection<E=

A collection designed for holding elements prior to processing. Besides basic collection Operations,
queues provide additional insertion, extraction, and inspection operations. Each of these methods
exists in two forms: one throws an exception if the operation fails, the other returns a special value
(either null or false, depending on the operation). The latter form of the insert operation is designed

specifically for use with capacity-restricted queve implementations; in most implementations, insert
operations cannot fail.

LI

interface java.util.Queue<E>

Method Summary

bool ean

add(E &)

Inserts the specified element into this queue if it is
possible to do so immediately without violating capacity
restrictions, returning true upon success and throwing an
I1legalStateException if no space is currently available.

Im

element (]
Retrieves, but does not remove, the head of this queue.

bool ean

offer(E &)
Inserts the specified element into this queue if it is

possible to do so immediately without violating capacity
restrictions.

Im

peek ()
Retrieves, but does not remove, the head of this queue, or

returns null if this queue is empty.

Im

poll ()
Retrieves and removes the head of this queue, or returns

null if this queue is empty.

Im

remove (]
Retrieves and removes the head of this queue.

L'interface java.util.Queue<E>

Throws exception |Returns special value
Insert add(e) offer(e)
Remove |removel) poll()
Examine |element() peek ()

Queues typically, but do not necessarily, order elements in a FIFO (first-in-first-out) manner. Among
the exceptions are priority queues, which order elements according to a supplied comparator, or the
elements' natural ordering, and LIFO queues (or stacks) which order the elements LIFO (last-
in-first-out). Whatever the ordering used, the head of the queue is that element which would be
removed by a call to remove () Or poll(). In a FIFO queue, all new elements are inserted at the tail of the
queue. Other kinds of queues may use different placement rules. Every queue implementation must

specify its ordering properties.

L'interface java.util.Queue<E>

Throws exception |Returns special value
Insert add (e) offer(e)
Remove |removel() poll()
Examine |element () peek ()

The offer method inserts an element if possible, otherwise returning false. This differs from the
Collection.add method, which can fail to add an element only by throwing an unchecked exception. The
offer method is designed for use when failure is a normal, rather than exceptional occurrence, for
example, in fixed-capacity (or "bounded") queues.

The remove () and poll() methods remove and return the head of the queue. Exactly which element is
removed from the queue is a function of the queue's ordering policy, which differs from
implementation to implementation. The remove() and poll() methods differ only in their behavior when
the queue is empty: the remove () method throws an exception, while the po11() method returns nutl.

The element () and peek () methods return, but do not remove, the head of the queue.

L'interface java.util.Deque<E>

java.util

Interface Deque<E>

Type Parameters:
E - the type of elements held in this collection

All Superinterfaces:
Collection<E>, Iterable<E>, Queue<E=>

All Known Subinterfaces:
BlockingDeque<E=>

All Known Implementing Classes:
ArrayDecque, LinkedBlockingDeque, LinkedList

public interface Deque<E>
extends Queue<E=

A linear collection that supports element insertion and removal at both ends. The
name deque is short for "double ended queue" and is usually pronounced "deck".
Most peque implementations place no fixed limits on the number of elements they

may contain, but this interface supports capacity-restricted deques as well as those
with no fixed size limit.

L'interface java.util.Deque<E>

First Element (Head)

Last Element (Tail)

Throws exception

Special value

Throws exception

Special value

Insert addFirstie) offerFirstie) addLast(e] offerLastie)
Remove |removeFirst() pollFirst() removelast () polllast()
Examine |getFirst() peekFirst () getlLast() peeklLast()

This interface defines methods to access the elements at both
ends of the deque. Methods are provided to insert, remove,
and examine the element. Each of these methods exists in two

forms: one throws an exception if the operation fails, the other
returns a special value (either null or false, depending on the
operation). The latter form of the insert operation is designed
specifically for use with capacity-restricted peque
implementations; in most implementations, insert operations

cannot fail.

L'interface java.util.Deque<E>

This interface extends the queue interface.
When a deque is used as a queue, FIFO (First-
In-First-Out) behavior results. Elements are
added at the end of the deque and removed
from the beginning. The methods inherited
from the qQueue interface are precisely
equivalent to peque methods as indicated in the
following table:

Queue Method [Equivalent beque Method
add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

L'interface java.util.Deque<E>

Deques can also be used as LIFO (Last-
In-First-Out) stacks. This interface should be
used in preference to the legacy Stack class.
When a deque is used as a stack, elements are
pushed and popped from the beginning of the
deque. Stack methods are precisely equivalent
to Deque methods as indicated in the table
below:

Stack Method | Equivalent peque Method

push(e) addFirst(e)

pop() removeFirst()

peek() peekFirst()

L'interface java.util.Deque<E>

This interface provides two methods to

remove interior elements, removeFirstOccurrence
and removelastOccurrence.

Unlike the List interface, this interface does

not provide support for indexed access to
elements.

I La classe java.util.ArrayDeque<E>

java.util

Class <E>

java.lang.0Object
L:iava.util.AhEtracttullectiunﬁE:
L java.util.ArrayDeque<E>

Type Parameters:
E - the type of elements held in this collection

All Implemented Interfaces:
Serializable, Cloneable, Iterable<E>, Collection<E>,

Deque<E>, Queue<E>

public class ArrayDeque<E>
extends AbstractCollection<E>
implements Deque<E>, Cloneable, Serializable

Resizable-array implementation of the peque interface. Array deques
have no capacity restrictions; they grow as necessary to support
usage. They are not thread-safe; in the absence of external
synchronization, they do not support concurrent access by multiple
threads. Null elements are prohibited. This class is likely to be
faster than stack when used as a stack, and faster than LinkedList
when used as a queue.

"-Z{mterface‘-'-*}

Collection

<<interface>>

<<interface>>

\'\

<<interface>>

Set List Queue
v »\ vV TV
<<interface>>
SortedSet
4
HashSet LinkedHashSet TreeSet ArrayList Vector LinkedList PriorityQueue
Object <<interface>>
Map
<<interface>>
SortedMap
o
Arrays Collections Hashtable LinkedHashMap HashMap TreeMap
...............................,

implements

extends

