
GPU Environmental Delegation of Agent
Perceptions: Application to Reynolds’s Boids

Emmanuel Hermellin, Fabien Michel

LIRMM - CNRS - University of Montpellier, 161 rue Ada, 34095 Montpellier, France
{emmanuel.hermellin, fmichel}@lirmm.fr,

Abstract. Using Multi-Agent Based Simulation (MABS), computing
resources requirements often limit the extent to which a model could be
experimented with. Regarding this issue, some research works propose
to use the General-Purpose Computing on Graphics Processing Units
(GPGPU) technology. GPGPU allows to use the massively parallel ar-
chitectures of graphic cards to perform general-purpose computing with
huge speedups. Still, GPGPU requires the underlying program to be
compliant with the specific architecture of GPU devices, which is very
constraining. Especially, it turns out that doing MABS using GPGPU
is very challenging because converting Agent Based Models (ABM) ac-
cordingly is a very difficult task. In this context, the GPU Environmental
Delegation of Agent Perceptions principle has been proposed to ease the
use of GPGPU for MABS. This principle consists in making a clear
separation between the agent behaviors, managed by the CPU, and en-
vironmental dynamics, handled by the GPU. For now, this principle has
shown good results, but only on one single case study. In this paper,
we further trial this principle by testing its feasibility and genericness
on a classic ABM, namely Reynolds’s boids. To this end, we first re-
view existing boids implementations and propose our own benchmark
model. The paper then shows that applying GPU delegation not only
speeds up boids simulations but also produces an ABM which is easy to
understand, thanks to a clear separation of concerns.

Keywords: Multi-Agent Based Simulation, Flocking, GPGPU, CUDA

1 Introduction

Because Multi-Agent Based Simulation (MABS) can be composed of many inter-
acting entities, studying their properties using digital simulation usually requires
a lot of computing resources. To deal with this issue, the use of General-Purpose
computing on Graphics Processing Units (GPGPU) can drastically speed up
simulation runs for a cheap cost [8]. GPGPU relies on using the massively par-
allel architectures of usual graphic cards to perform general-purpose computing.
However, this technology implies a very specific programming approach and re-
quires advanced GPU (Graphics Processing Unit) programming skills [11].

Because there are many different MAS (Multi-Agent Systems) models, there
is no generic way for implementing MAS using GPGPU. So, it is very difficult



2 Emmanuel Hermellin, Fabien Michel

to adapt an Agent Based Model (ABM) so that it can be run on the GPU.
Considering this issue, hybrid systems represent an attractive solution. Because
the execution of the MAS is shared between the Central Processing Unit (CPU)
and the GPU, it is thus possible to select only what is going to be translated
and executed by the graphics card.

In this paper, we propose to challenge the feasibility and interest of the
GPU Environmental Delegation of Agent Perceptions (for short GPU Delega-
tion) principle which is based on an hybrid approach. This principle consists in
delegating to the environment some computations made by the agents. A case
study is presented in [9] and shows good results in terms of performances, acces-
sibility and reusability. We propose to trial this principle by using it on a classic
ABM, namely Reynolds’s boids [15].

In Section 2 we review how Reynolds’s Boids is implemented in several MABS
platforms and then propose our own flocking model in Section 3. In Section 4,
we present the GPU Environmental Delegation of Agent Perceptions principle.
In Section 5, we describe the implementation of our model and how we applied
GPU Delegation. In Section 6, we present and discuss the results of our tests.
Finally, we conclude and present perspectives in Section 7.

2 Reynolds’s Boids

2.1 Original Model Overview

Reynolds wanted to achieve a believable animation of a flock of artificial birds,
namely boids [15]. He remarked that it was not possible to use a scripted flock
motion to achieve a realistic animation. Reynolds’s idea was that boids have
to be influenced by the others to flock in a coherent manner: “Boid behavior is
dependant not only on internal state but also on external state.” [15].

Reynolds proposes that each agent of the model is subjected to forces that
make it move by taking into account the interactions with the others. So, each
entity has to follow three behavior rules:

– R.1 Collision Avoidance: Avoid collisions with nearby flockmates
– R.2 Flock Centering: Attempt to stay close to nearby flockmates
– R.3 Velocity matching: Attempt to match velocity with nearby flockmates

Today, Reynolds’s Boids is recognized as one of the most representative agent-
based model. So, many agent-based platforms integrate their own boids model.

2.2 Boids in Current MABS Platforms

In this section, we compare several available implementations of boids models.
Among the related works found, we only introduce models we were able to down-
load and try with an open source code: NetLogo, StarLogo, Gama, Mason and
Flame GPU. For each model, we describe how the three rules are implemented
(Collision Avoidance (R.1), Flock Centering (R.2), Velocity matching(R.3)).



Boids and GPU Environmental Delegation of Agent Perceptions 3

NetLogo In NetLogo1 [19], all the agents (called Turtle in the Logo language)
move and try to get closer to their peers. If the distance between them and
the nearest neighbor is too small, the agent tries to get away (avoid collision
(R.1)), otherwise the agent aligns with its neighbors (R.2). However, there is
no speed management (R.3): All the agents have the same velocity during the
entire simulation.

StarLogo In StarLogo2 [14], the agent searches for his closest neighbor. If the
distance between him and his peer is too small, it turns and gets away (to avoid
collision (R.1)). Otherwise, it moves toward him and use his direction. The search
for cohesion (R.2) is not explicitly expressed and the velocity of the agents is
fixed throughout the simulation (R.3).

Gama In Gama3 [3], agents are looking first for a target (similar to a goal)
to follow. Once agents have a target, they move according to three functions
that implement Reynolds’s rules: A separation function to avoid collision (R.1),
a cohesion function (R.2) and an alignment function for speed and direction
(R.3). The model differs from Reynolds’s because the agents need a target to
actually make the flocking.

MasOn MasOn4 [7] uses the computation of several vectors to integrate R.1
and R.2. Each agent computes a motion vector composed of an avoidance vector
(this is computed as the sum, over all neighbors, of a vector to get away from
the neighbors (R.1)), a cohesion vector (this is computed as the sum, over all
live neighbors, of a vector towards the ”center of mass” of nearby flockers),
a momentum vector (a vector in the direction the flocker went last time), a
coherence vector (this is computed as the sum, over all live neighbors, of the
direction of other flockers are going (R.2)), and a random vector. The speed is
not managed in this model (R.3).

Flame GPU Flame GPU5 [17] is the only GPGPU implementation that we
were able to test. In this model, R.1 R.2 and R.3 are implemented into three
independent functions. The special feature of this framework is the necessity
to adopt a design formalism using XMML (based on XML) and C to hide the
GPGPU from the user. Due to the use of these two programming languages, the
implementation is not intuitive.

Summary Table 1 summarizes the implementations of Reynolds’s rules, sets
out the main features of the models and gives performance informations.

1 https://ccl.northwestern.edu/netlogo/
2 http://education.mit.edu/starlogo/
3 https://code.google.com/p/gama-platform/
4 http://cs.gmu.edu/˜eclab/projects/mason/
5 http://www.flamegpu.com/



4 Emmanuel Hermellin, Fabien Michel

Performances We evaluate for every model the average computation time in
milliseconds for an iteration. The purpose of this evaluation is to give an idea of
the possibilities of every implementation. So, we use as common parameter an
environment of 512 by 512 containing 4000 agents. Our test machine is composed
of an Intel i7-4770 processor (Haswell generation, 3.40 GHz) and an Nvidia
K4000 graphics card (768 CUDA cores).

It is necessary to note that for StarLogo, we observed a computation time
higher than a second from 400 simulated agents. The performances being very
below the other platforms, we did not push the tests farther. Finally, for Flame
GPU, it was not possible to modify the number of agents in the simulation which
is of 2048.

Table 1. Boids in common MABS platforms

Platform
Compliance with Reynolds’s

Model Main characteristics Performances
Collision R.1 Cohesion R.2 Velocity R.3

NetLogo X X R.3 is not implemented: Velocity is fixed
throughout the simulation

214 ms (CPU / Logo)

StarLogo X A minimalist implementation of behavior
rules (only the collision avoidance is im-
plemented)

*1000 ms (CPU / Logo)

Gama X X X Flocking behaviour when agents have a
target to follow

375 ms (CPU / GAML)

MasOn X X The rules R.1 and R.2 are reinterpreted
into a global vector with addition of ran-
dom components, no speed management

45 ms (CPU / Java)

Flame GPU X X X The three rules are explicitly implemented *82ms (GPU / C,XML)

3 Reynolds’s Boids: Our Model and Implementation

Of the previous study, we notice disparities between the various presented mod-
els. Indeed, the flocking rules proposed by Reynolds allow a big variety of in-
terpretations. So, we notice that the speed adaptation rule (R.3) is least taken
into account in comparison with R.1 and R.2 implemented in every model seen
(except StarLogo). However, when R.3 is implemented, the collective behavior
becomes much more convincing and the global movement possesses then a dy-
namics and a more interesting fluidity. Also, in some works, the behavior of
alignment and cohesion is merged. The models clarifying the difference between
this two behavior offer more interesting movements.

The model that we propose will take into account the interesting points
observed previously. We indeed noticed that when the three rules are integrated,
the dynamics and the movement of the agents are more interesting. So, our model



Boids and GPU Environmental Delegation of Agent Perceptions 5

will integrate R.1, R.2 and R.3 and will follow the KISS (Keep It Simple and
Stupid) principle with the aim of creating a minimalist version (with the least
parameters possible) focusing on the speed and the orientation of the agent6.

Each entity has a global behavior which consists in moving while adapting
its speed and direction. To this end, the proximity with the other agents is
tested and the different Reynolds’s rules are activated according to the distance
found. More exactly, every agent looks in its vicinity. If no agent is present,
it continues to move in the same direction. Otherwise, the agent checks if the
neighbors are not too close. Depending on the proximity between entities, agents
separate (R.1), align with other entities or create cohesion (R.2). Then agents
adapt their speed (R.3), move and restart the process. Figure 1 summarizes the
global behavior process.

In our model, we have two types of parameters: 5 constants for the model
and 3 attributes specific to each agent. The constants are the following ones:

– fieldOfView (agent’s field of view);
– minimalSeparationDistance (minimum distance between agents);
– cohesionThreshold (necessary number of agents to begin cohesion);
– maximumSpeed (maximum speed of the agent);
– maximumRotation (maximum angle of rotation).

The attributes specific to each agent are the following ones:

– heading (agent’s heading);
– velocity (agent’s speed);
– nearestNeighborsList (the list containing nearest neighbors).

Fig. 1. Flocking: Global behavior process

Separation Behavior R.1 When an agent is too close from an other one, it
separates (R.1). This behavior consists in retrieving the heading of both agents.
If these two directions lead to a collision, agent rotates to avoid its neighbor (see
Algorithm 1).

6 The orientation is an angle in degree (between 0 and 360) which gives the heading
of the agent according to the landmark fixed in the environment



6 Emmanuel Hermellin, Fabien Michel

Algorithm 1: Separate behavior

input : myHeading, nearestBird, maximumRotation
output: myHeading (the new heading)

1 collisionHeading ← headingToward(nearestBird) ;
2 if myHeading inTheInterval(collisionHeading,maximumRotation) then
3 changeHeading(myHeading);
4 end
5 return myHeading

Align Behavior R.2 When an agent comes closer to other entities, it tries to
align itself with them, by adjusting his direction according to its nearest neighbor
(see Algorithm 2).

Algorithm 2: Alignment behavior

input : myHeading, nearestBird
output: myHeading (the new heading)

1 nearestBirdHeading ← getHeading(nearestBird) ;
2 if myHeading isClose(nearestBirdHeading) then
3 adaptHeading(myHeading);
4 end
5 else
6 adaptHeading(myHeading,maximumRotation);
7 end
8 return myHeading

Cohesion Behaviors R.2 When multiple agents are quite close to each other
without having to separate, they have a cohesion behavior. Each agent retrieves
the directions of its neighbors and adjusts its own direction based on the average
direction found, thus strengthening the cohesion of the group (see Algorithm 3).

Speed Adaptation R.3 Before moving, the agents adapt their speed (R.3).
During all the simulation, every agent modifies its speed according to that of
its neighbors. If the agent has just executed the behavior of separation (R.1),
it accelerates to get free more quickly. Otherwise, the agent adjusts its speed
to make it correspond to that of its neighbors (in the limit authorized by the
maximumSpeed constant).



Boids and GPU Environmental Delegation of Agent Perceptions 7

Testing Our Model We have put online a set of videos which show our model
in action7. On this page are also available the source codes of the mentioned
models and the necessary resources to test our solution.

Algorithm 3: Cohesion behavior

input : myHeading, nearestNeighborsList
output: myHeading (the new heading)

1 sumOfHeading, neighborsAverageHeading = 0 ;
2 foreach bird in nearestNeighborsList do
3 sumOfHeading+ = getHeading(bird);
4 end
5 neighborsAverageHeading =

sumOfHeading/sizeOf(nearestNeighborsList) ;
6 if myHeading isClose(neighborsAverageHeading) then
7 adaptHeading(myHeading);
8 end
9 else

10 adaptHeading(myHeading,maximumRotation);
11 end
12 return myHeading

4 GPU Environmental Delegation of Agent Perceptions

4.1 MABS and GPGPU

About GPGPU To understand the principle of programming associated to
GPGPU, it is necessary to have in mind that it is strongly connected to the
material architecture of the GPU. One of the main differences between a CPU
and a GPU is the number of processing cores which is far more important for
the GPU case.

So, GPU are now composed of hundreds, or even thousands of processing
core (grouped into Streaming Multiprocessors, SM) forming a highly parallel
structure able to perform more varied computing. GPGPU relies on using the
SIMD (Single Instruction, Multiple Data) parallel model. Also called stream
processing, the underlying programming approach consists in performing the
same operation on multiple data points simultaneously. In other words, GPGPU
relies on the simultaneous execution of a series of computations (kernels) on a
data set (the flow - stream).

The programming models rely on the following philosophy: The CPU is called
the host and plays the role of scheduler. The host manages data and triggers

7 www.lirmm.fr/∼hermellin/Website/Reynolds Boids With TurtleKit.html



8 Emmanuel Hermellin, Fabien Michel

kernels, which are functions specifically designed to be executed by the GPU,
which is called the device. The GPU part of the code really differs from sequen-
tial code and has to fit the underlying hardware architecture. More precisely, the
GPU device is programmed to proceed the parallel execution of the same pro-
cedure, the kernel, by means of numerous threads. These threads are organized
in blocks (the parameters blockDim.x, blockDim.y characterize the size of these
blocks), which are themselves structured in a global grid of blocks. Each thread
has unique 3D coordinates (threadIdx.x, threadIdx.y, threadIdx.z ) that specifies
its location within a block. Similarly, each block also has three spatial coordinates
(respectively blockIdx.x, blockIdx.y, blockIdx.z ) that localize it in the global grid.
Figure 2 illustrates this organization for 2D case. So each thread works with
the same kernel but uses different data according to its spatial location within
the grid8. Moreover, each block has a limited thread capacity according to the
hardware in use.

Fig. 2. Thread, blocks, grid organization

So, a multithreaded program is partitioned into blocks of threads that execute
independently from each other. The distribution of blocks and threads on SM may
be automatic and is provided by the runtime and drivers. If we take the example
of the Nvidia environment (Compute Unified Device Architecture, CUDA), a
compiled CUDA program can be executed on any number of multiprocessors as
illustrated by Figure 3, and only the runtime system needs to know the physical
multiprocessor count.

Implementing MABS Using GPGPU In [4], we realized a state of the art
of the use of the GPGPU in the SMA context and identified two approaches
allowing to implement a model on GPU: (1) all-in-GPU, for which the simu-
lation runs entirely on the graphics card and (2) hybrid, the execution of the
simulation is shared between the CPU and the GPU. In the first case (1), it is

8 Thread is similar to the concept of task: A thread may be considered as an instance
of the kernel which is performed on a restricted portion of the data depending on
its location in the global grid (its identifier)



Boids and GPU Environmental Delegation of Agent Perceptions 9

Fig. 3. Automatic Scalability (Source: Nvidia programming guide)

not trivial to take an existing model and translate it to make it work on GPU.
GPU are very restrictive in operations and programming and the hardware can
only be used in certain ways that requires advanced GPU programming skills.
The hybrid approach (2) allows to use jointly the CPU and GPU and thus has
two major advantages. Firstly, it brings more flexibility because one can choose
what is going to be executed on the GPU, thus providing greater accessibility
to the developed tools (as clearly shown in [6] [5], [18], [20]). Secondly, as hybrid
systems are modular by design, they make it possible to use agents with complex
and heterogeneous architectures. The GPU Environmental Delegation of Agent
Perceptions principle relies on an hybrid approach.

4.2 Converting Agent Perceptions in Environmental Dynamics

The Principle GPU Environmental Delegation of Agent Perceptions princi-
ple was proposed in [9]. This principle consists in making a clear separation
between the agent behaviors, managed by the CPU, and environmental dynam-
ics, handled by the GPU. The underlying idea is to identify in the behavior
of the agents some computations who can be transformed into environmental
dynamics. It has been stated as follows: Any agent perception computation not
involving the agents state could be translated to an endogeneous dynamic of the
environment, and thus considered as a potential GPU environment module.

Related Works The GPU delegation can be linked with other works which
try to separate and/or move a part of the computations made by the agents in
other structures such as the interactions or the environment.

For example, within the MABS context, the EASS (Environment As Active
Support for Simulation)[1] approach aims at strengthening the role of the envi-
ronment by delegating him the policy of scheduling and adds a filtering system



10 Emmanuel Hermellin, Fabien Michel

for the perceptions. IODA (Interaction Oriented Design of Agent simulations)
[13] is centered on the notion of interaction and considers that agent behaviors
can be described in a abstract way as a rule called interaction. Finally, [12] pro-
poses to reduce the complexity of the models by using an centered environment
approach: The environment becomes then a shared space dedicated to the execu-
tion of dynamics. The purpose is to facilitate the reusability and the integration
of the various processes of the agents.

In a more general context, the artifacts approach integrates into the environ-
ment a set of dynamic entities representing the resources and the tools that the
agents are going to be able to use and share [16]. These entities, called artifacts,
structure and organize the environment by proposing a generic programming
model including the features that the agents are going to have access.

GPU Delegation on a Case Study The integration of GPU computations
was performed in TurtleKit9 [10]. TurtleKit is a generic spatial ABM, imple-
mented with Java, wherein agents evolve in a 2D environment discretized in
cells. The proposed hybrid approach integrated in TurtleKit focuses on mod-
ularity. In this context, this allows to achieve three objectives: (1) maintain
accessibility in the agent model while using GPGPU, (2) to scale and work with
a large number of agents on large environment sizes and (3) promote re-usability
in the particular context of GPU programming.

GPU Delegation has been used only once on a model of multi-level emer-
gence (MLE) [2] of complex structures in TurtleKit. This very simple model
relies on a unique behavior which allows to generate complex structures which
repeat in a fractale way. The agent behavior is extremely simple and is based on
the perception, the spread and the reaction to pheromones. So, in these works,
GPU modules dedicated to the perception and the spread of pheromones were
proposed.

5 GPU Delegation for Boids

5.1 Application of the GPU Delegation

The GPU Delegation stated that we cannot turn all the behaviors into envi-
ronmental dynamics. Only agent perception computations that do not involve
the agents state could be translated. It was clearly visible in the presented case
study (MLE): The modules used to compute gradients and diffusion are com-
pletely independent from agents’ states.

In our flocking model, it is not possible to find a computation independent
from agents’ attributes. However, we are able to identify some computations
independent of agent’s behaviors: Cohesion behavior is an ideal candidate and
a part of it can be translated into a GPU module.

9 http://www.turtlekit.org



Boids and GPU Environmental Delegation of Agent Perceptions 11

Cohesion behavior consists in averaging the orientations of neighboring agents
according to the selected FieldOfView10. All agents should therefore perform this
computation in their own behavior and use the result to adapt their direction.
The sequential implementation of this process is defined below:

for bird in nearestNeighborsList do
sumOfHeading+ = getHeading(bird);

end
neighborsAverageHeading =
sumOfHeading/sizeOf(nearestNeighborsList) ;

This loop is heavy because all the agents perform this computation in their
own behavior at every step of simulation.

5.2 GPU Translation of the Average of the Orientations

To succeed the GPU translation according to the principle, we extract informa-
tions from agents’ attributes (heading) and then delegate the associated com-
putation (the loop) into the environment. To do this, the agents left its heading
value, at each simulation step, in a 2D array (headingArray, identical in size to
the grid of the environment) according to its position. This array is sent to a
GPU module that, for each cell according to the selected FieldOfView, performs
the average of the directions simultaneously. More precisely, each thread com-
putes the average for a cell depending on its location in the global GPU grid
(its identifiers: i and j in Algorithm 4). The GPU translation thus consists in
transforming the sequential computation previously made in the cohesion be-
havior of the agents by a parallel computation made on the GPU and managed
by the environment. Once realized, the average headings are available in all the
environment. The agents recover in a 2D array (flockCentering, return by the
GPU module) the value corresponding to their position and then adapt their
movement.

The algorithm 4 present an implementation of the GPU module. Once the
coordinates i and j of the thread initialized, the algorithm test if the thread does
not possess coordinates superior to the size of the environment (represented here
by the 2D array headingArray). We add then in sumOfheading all the headings
of the neighbors being in the agent field of view then we divide this value by
the number of agents taken into account. The module then returns the array
flockCentering containing all the averages.

10 In the context of TurtleKit, we call ”FieldOfView” the number of cells (the radius
around the selected cell) which is chosen to take into account for the computation
of the average.



12 Emmanuel Hermellin, Fabien Michel

Algorithm 4: The Average Kernel

input : width, height, fieldOfV iew, headingArray and
nearestNeighborsList

output: flockCentering (the average of directions)

1 i = blockIdx.x ∗ blockDim.x + threadIdx.x ;
2 j = blockIdx.y ∗ blockDim.y + threadIdx.y ;
3 sumOfHeading, flockCentering = 0 ;
4 if i < width and j < height then
5 sumOfHeading = getHeading(fieldOfV iew, headingArray[i, j]);
6 end
7 flockCentering[i, j] = sumOfHeading/sizeOf(nearestNeighborsList) ;

Compared with the sequential version of the algorithm, we see that the loop
disappeared. So all the interest of the GPU version holds in the fact that the
parallelization of this loop is realized thanks to the material architecture.

We extracted here information of the heading attribute but it would be also
possible to make it with other attributes as speed.

5.3 Implementation and Integration of the Average Kernel

The implementation of GPU modules was made with CUDA and JCuda11. Fig-
ure 4 illustrates the integration of the GPU cohesion module in TurtleKit. The
implementation has been easy, thanks to the independence between this module
and the agent model.

Fig. 4. Integrating GPU modules in TurtleKit

6 Experimentation

6.1 Experimental Protocol

To test our implementation of Reynolds’s boids and the application of the GPU
delegation principle, we simulate several environment sizes while making the

11 The JCuda library allows to call GPU kernels, written in C, directly from Java



Boids and GPU Environmental Delegation of Agent Perceptions 13

number of agents change. We execute successively the sequential version of the
model (where the average is calculated in the agents behavior) then the GPGPU
version (using the Average kernel). To estimate the performance and remain
coherent with the criteria of analysis used in section 2, we observe the average
computation time in milliseconds for an iteration.

6.2 Performance Test

For those tests, we reuse the same configuration as that used in section 2. This
computer is composed of an Intel i7-4770 processor (Haswell generation, 3.40
GHz), an Nvidia K4000 graphics card (768 CUDA cores) and 16Go of RAM.
Figure 5 presents the results obtained for various populations size in an 256 x
256 environment (top) and in an 512 x 512 environment (bottom).

Fig. 5. Comparison of flocking simulations done with and without the GPU. Environ-
ment size: 256 (top) and 512 (bottom)

The use of the GPU module increases the performances by 25%. However, we
notice that the performances is linked to the density of population. Indeed, when
the density of the agents in the environment is lower, agents spend fewer time
in cohesion and more to align itself and to separate. The density of the agents
affects performance of the model when using the GPU module. The tipping point
is clearly visible in the results, when the density of present agents exceeds 5%
(respectively 1500 and 8000 entities), the joint use of the CPU and the GPU



14 Emmanuel Hermellin, Fabien Michel

becomes more effective. So, the more the density of agents in the environment
increases, more the observed gains of performances are important.

The performance gains are interesting considering the used hardware: Our
Nvidia K4000 embeds 768 CUDA cores while the last Nvidia Tesla K40 card
embeds 2880 CUDA cores and the Nvidia Tesla K10 card embeds 3072 cores
(two GPU with 1536 cores on the same card). The fast evolution of GPGPU
and graphics cards promise very significant gains of performances in the future.

6.3 Discussion

In addition to the observed performance gains, we notice other benefits to ap-
plying the GPU Delegation principle : The translation of a perception computed
in the agent behavior into an environmental dynamics allows to remove a part
of the source code and thus simplify the understanding of the behavior. Indeed,
the agent makes a direct perception in the environment instead of a sequential
computation which can be rather heavy.

Another interesting aspect is the fact that the created modules are inde-
pendent from models thanks to this approach. They are not thus limited to the
contexts for which they were defined. We are going to continue to apply the GPU
Delegation principle to create new GPU modules and so increase the number of
generic modules available. It is going to allow to constitute a usable modules
library independant from models. This GPU functions library will improve the
accessibility of the approach and the use of the GPGPU dedicated to MABS
context with TurtleKit. This improvement in terms of genericness and accessi-
bility is important because work with GPGPU often leads to implementation
difficulties due to the specificity of this technology.

The application of the GPU delegation principle is based on a simple criterion
independent from the implementation. It allows to convert the model and to
create the GPU module in a rather fast way. TurtleKit being still in alpha
release, we are going to continue to work on its architecture in order to make
the conversion of a model as simple as possible.

Finally, translate a part of the agents behavior into an environmental dy-
namics allows to simplify its behavior because it takes away some of the source
code. It is more readable because the agent does not have to deal with raw data.

7 Conclusion and Perspectives

In this paper, we described how we used the GPU Environmental Delegation
of Agent Perceptions principle to implement a classic ABM, namely Reynolds’s
Boids, using GPGPU. Our purpose was to challenge the genericness and the
ease-of-use of GPU Delegation. However, we made evolved this principle to be
able to apply it to the boids model. Indeed, find a computation independent from
agents’ attributes was impossible, so we have identified in the cohesion behavior
some computations independent of agent’s behaviors. We thus translated these



Boids and GPU Environmental Delegation of Agent Perceptions 15

computations into a GPU module and made some tests to see the advantages
brought by the GPU Delegation.

Our experiments shows that, using the GPU Delegation, it is possible to
increase the size of the environments and the number of agents thanks to a
speed up which can reach 25% according to the chosen parameters.

From a software engineering perspective, the use of this principle allows to
consider important aspects of MABS with respect to the GPGPU context. By
promoting a clear separation between the agent behaviors (handled by the CPU)
and environmental dynamics (managed by the GPU), GPU Delegation repre-
sents an interesting design guideline for tackling the genericness issue and pro-
mote reusability of created tools. This essential criterion is often neglected in a
context GPGPU [4]. Indeed, the application of the principle allowed the creation
of a generic GPU module which is independent with respect to the agents.

Both implementations of the delegation principle, realized with MLE in [9]
and flocking here, show that if the analysis of the model is made by keeping in
mind the characteristics of the approach, the delegation of the computations and
the creation of the GPU module could be very easy and fast, which is a valuable
aspect of GPU Delegation, especially considering the technical difficulties related
with the GPGPU context. However, as the GPU delegation still requires specific
skills, we plan to apply to other models this principle in order to experiencing
and continuing to generalize the approach.

As a perspective, our goal is to propose an explicit design methodology,
a development guide consisting in rendering the use of GPU delegation more
explicit and accessible to external users. The idea is to allow everyone to take a
model and adapt it to make it work in a context GPGPU.

References

1. F. Badeig and F. Balbo. Définition d’un cadre de conception et d’exécution pour
la simulation multi-agent. Revue d’Intelligence Artificielle, 26(3):255–280, 2012.

2. G. Beurier, O. Simonin, and J. Ferber. Model and Simulation of Multi-Level
Emergence. In ISSPIT’02, Apr. 2008.

3. A. Grignard, P. Taillandier, B. Gaudou, D. Vo, N. Huynh, and A. Drogoul. GAMA
1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation. In
PRIMA 2013: Principles and Practice of Multi-Agent Systems, volume 8291 of
Lecture Notes in Computer Science, pages 117–131. Springer Berlin, 2013.

4. E. Hermellin, F. Michel, and J. Ferber. Systèmes multi-agents et GPGPU : état
des lieux et directions pour l’avenir. In Principe de Parcimonie - JFSMA 14, pages
97–106. Cepadues Editions, 2014.

5. G. Laville, K. Mazouzi, C. Lang, N. Marilleau, B. Herrmann, and L. Philippe.
MCMAS: A Toolkit to Benefit from Many-Core Architecure in Agent-Based Sim-
ulation. In Euro-Par 2013: Parallel Processing Workshops, volume 8374 of Lecture
Notes in Computer Science, pages 544–554. Springer Berlin Heidelberg, 2014.

6. G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe. Using GPU for
Multi-agent Multi-scale Simulations. In Distributed Computing and Artificial Intel-
ligence, volume 151 of Advances in Intelligent and Soft Computing, pages 197–204.
Springer Berlin Heidelberg, 2012.



16 Emmanuel Hermellin, Fabien Michel

7. S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. MASON: A
Multiagent Simulation Environment. Simulation, 81(7):517–527, 2005.

8. M. Lysenko and R. M. D’Souza. A Framework for Megascale Agent Based Model
Simulations on Graphics Processing Units. Journal of Artificial Societies and Social
Simulation, 11(4):10, 2008.

9. F. Michel. Translating Agent Perception Computations into Environmental Pro-
cesses in Multi-Agent-Based Simulations: A means for Integrating Graphics Pro-
cessing Unit Programming within Usual Agent-Based Simulation Platforms. Sys-
tems Research and Behavioral Science, 30(6):703–715, 2013.

10. F. Michel, G. Beurier, and J. Ferber. The TurtleKit Simulation Platform: Appli-
cation to Complex Systems. In Workshops Sessions of the Proceedings of the 1st
International Conference on Signal-Image Technology and Internet-Based Systems,
pages 122–128. IEEE, november 2005.

11. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and
T. J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

12. D. Payet, R. Courdier, N. Sébastien, and T. Ralambondrainy. Environment as sup-
port for simplification, reuse and integration of processes in spatial MAS. In Proc.
of the 2006 IEEE International Conference on Information Reuse and Integration,
USA, pages 127–131. IEEE Systems, Man, and Cybernetics Society, 2006.

13. S. Picault. From multi-agent simulation to multi-level simulation. Reifying the
interactions. Habilitation à diriger des recherches, Université des Sciences et Tech-
nologie de Lille - Lille I, Dec. 2013.

14. M. Resnick. StarLogo: An Environment for Decentralized Modeling and Decen-
tralized Thinking. In Conference Companion on Human Factors in Computing
Systems, CHI ’96, pages 11–12, New York, NY, USA, 1996. ACM.

15. C. W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, volume 21 of SIGGRAPH Computer Graphics ’87, pages 25–34, New
York, NY, USA, 1987. ACM.

16. A. Ricci, M. Piunti, and M. Viroli. Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems,
23(2):158–192, 2011.

17. P. Richmond, D. Walker, S. Coakley, and D. M. Romano. High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in bioinformat-
ics, 11(3):334–47, 2010.

18. Y. Sano, Y. Kadon, and N. Fukuta. A Performance Optimization Support Frame-
work for GPU-based Traffic Simulations with Negotiating Agents. In Proceedings
of the 2014 Seventh International Workshop on Agent-based Complex Automated
Negotiations, 2014.

19. E. Sklar. NetLogo, a Multi-agent Simulation Environment. Artificial Life,
13(3):303–311, 2007.

20. G. Vigueras, J. Orduña, and M. Lozano. A GPU-Based Multi-agent System for
Real-Time Simulations. In Advances in Practical Applications of Agents and Mul-
tiagent Systems, volume 70 of Advances in Intelligent and Soft Computing, pages
15–24. Springer Berlin Heidelberg, 2010.


