
MIC∗: An Agent Formal Environment

Abdelkader GOUAICH1, Yves GUIRAUD1,2, Fabien MICHEL1

1LIRMM, Montpellier
2 Laboratoire GTA, Université Montpellier2, Montpellier

{gouaich,yguiraud,fmichel}@lirmm.fr

Abstract
Ubiquitous systems can be considered as good challenges and
case studies for the reliable development of open, cooperative
and mobile systems in a globally uncontrolled environment. Fur-
thermore, the complexity of these systems could constitute a
real barrier to classical engineering approaches and validate the
foundations of agent based computing. In this paper, we have
abstracted a composable multi-agent system environment in an
algebraic structure where mobile, interacting and autonomous
entities evolve. We present also, a simple ubiquitous applica-
tion developed according to the abstract model principles.

keywords: agent formal deployment environment, agent-
based software system, ubiquitous software system.

1. INTRODUCTION
Network technologies are offering the opportunity to inter-

connect several heterogeneous software systems anytime and
anywhere. Within the context of these systems, commonly iden-
tified as ubiquitous systems, the surrounding environment, which
we identify as the deployment environment, influences the in-
teraction scheme of the entities and thus affects considerably
the characteristics and the functionalities of the global system.
This phenomenon has already been identified by L. Cardelli in
[Car99], where he argues that the design and the realisation of
a complex software system should handle the properties of the
targeted deployment environment: LAN, WAN or mobile envi-
ronment. This leads to the clear identification of a new entity,
which was previously ignored in software system engineering:
the deployment environment [GG02a]. F. Zambonelli and H.
Parunak in [ZP02] have also mentioned that intergrading the de-
ployment environment in software engineering process is a cru-
cial issue especially for complex and dynamical systems. Fur-
thermore, they have described some general properties of future
deployment environments such as:

• situatedness: software components are executed in the
context of an environment;

• openness: software systems are decentralised and dy-
namically change their structure;

• locality in control: the components of software systems
are autonomous and proactive computational entities;

• locality in interactions: despite living in a fully con-
nected world, software components interact accordingly
to local patterns.

Besides, ubiquitous environments exhibit a composability
property allowing them to be joined or separated. For instance,
when some physical (or logical) conditions are satisfied, such
as distance or signal intensity, a new environment is created by
the composition of sub environments. The entities of this new

composed environment may behave differently since they can
interact with entities that were previously unavailable. Simi-
larly, when these environmental conditions are unsatisfied, the
global system is split into several independent sub systems.

1.1. Motivations

In this paper, we argue that understanding and explicitly repre-
senting the deployment environment where computational en-
tities evolve is a crucial issue especially for dynamic and un-
predictable environments like ubiquitous environments. There-
fore, we have defined an algebraic model named {Movement,
Interaction, Computation}∗ (or MIC∗ for short). MIC∗ is an
abstract model where autonomous, interacting and mobile enti-
ties evolve. It has not to be considered as a formal model of a
mobile calculus such as Ambient [Car99], PI calculus [Mil00]
and the Join calculus [Fou98]. In fact, MIC∗ suggests a sepa-
ration between the environment surrounding the calculating en-
tities and the internal calculus of these entities. MIC∗ studies
the environmental properties, while calculus models study the
properties of the calculus (algorithm). Finally, the motivations
of our approach can be summarised as following:

Rigorous description: ubiquitous and more generally complex
systems use concepts that are overloaded and shared be-
tween several research fields. MIC∗ does not give uni-
versal definitions, but at least characterises formally, in
the scope of its study, some fundamental concepts such
as interaction, movement and observable computation.

Implementation ready model: The MIC∗ algebraic structure is
implemented using simple computational structures that
satisfy the constraints imposed by the algebraic objects.
Consequently, it is possible to link the concrete computa-
tional system that is executed to its corresponding MIC∗

formal term and obviously it is possible to implement
any MIC∗ formal description in concrete software sys-
tem.

1.2. Paper outlines

This paper is organised as following: section 2 presents some
related fields that deal with similar problems encountered in
ubiquitous environments; section 3 introduces informally a sim-
ple ubiquitous application scenario; section 4 introduces semi
formally the MIC∗ structure; section 5 presents the implemen-
tation of the application; and finally, section 6 concludes and
gives future perspectives.

2. Related fields
The importance of the deployment environment was already
identified in both multi-agents systems (MAS) and mobile code



communities. This section presents briefly these research fields.

2.1. Multi-agent systems

Multi-agent systems (MAS) consider a computational system as
a coherent aggregation of software entities, named agents. An
agent is an autonomous entity that achieves its local goals by in-
teracting with other agents and its environment [WJ95]. Since
the components of ubiquitous systems behave autonomously
and interact with other entities, they can be considered natu-
rally as agents and may benefit from several MAS works on
high level interaction languages (such as FIPA ACL [FIP96a]
and KQML [DAR93]) and coordination protocols (for instance
FIPA Protocols [FIP96b]) to allow interoperability between het-
erogeneous systems. On the other side, MAS community has
some difficulties to show what are the real contributions and
added values of its approach. In fact, for simple systems, the
object-oriented approach is a well satisfying solution. However,
dynamic, mobile and complex environments such as ubiquitous
systems could constitute a breaking point between traditional
paradigms and the MAS approaches for complex systems soft-
ware engineering.

2.2. Mobile computing

Mobile computing studies computational systems, where soft-
ware components can change execution environment during their
life cycle [RPM00]. Similarly to MAS, mobile code compo-
nents interact1 together to achieve some specific goals. Mobile
code community has already identified the central role played
by the coordination media to perform controlled and safe com-
ponents’ interactions [CLZ97, CLZ98]. Thus, several coordina-
tion media models were proposed such as Lime [PMR99], Tus-
con [OZ98] and MARS [CLZ98]. The coordination media can
be defined as an explicit entity, defined outside the applicative
system that performs the interactions between entities. More-
over, it may actively influence the interactions between compo-
nents and consequently the functionalities of the global system.
We propose to generalise this concept as the deployment envi-
ronment, which achieves not only the interactions between the
system’s components, but defines also their movement laws and
the ”acceptable” observations of their computation.

2.3. Mobile formal calculus

Calculus formal models describe a formal programming lan-
guage. The λ-calculus [Mor68] is probably one of the most
known of these models. Unfortunately, λ-calculus describes
just sequential and static algorithms. In order to describe some
modern computing concepts such as distribution, mobility and
security, others formal calculus were developed. Among these
models, one can find the π-calculus [MPW92] (and its derived
models for distribution handling Dπ [AG98] and security man-
agement Sπ[MH98]); Ambient [Car99] and the Join calculus
[Fou98]. MIC∗ is an alternative approach that defines mobility,
distribution and interaction concepts at the deployment environ-
ment level and not at the calculus or algorithmic level.

3. Informal example
In order to introduce the MIC∗ formal structure, this section
extracts the main concepts starting from a simple ubiquitous

1In the scope of this paper, we are interested in mobile components
that move in order to interact with other components, which excludes
load balancing motivated code mobility.

application scenario.

3.1. Ubiquitous electronic chat scenario

The ubiquitous electronic chat application emulates verbal con-
versations between several humans about some specific top-
ics. This kind of applications has already met a success in the
Internet context. For ubiquitous environment, the user is no
longer connected permanently to a central network, but owns a
small device equipped with some ad hoc networking capabili-
ties. Thus, when several users are spatially joined, for instance
in a metro station, they can converse together. The general de-
scription of the application can be summarised as following: (i)
each user participates in one or several discussions; (ii) the in-
teraction between the users are conducted by explicitly sending
messages.

3.2. Interaction Objects

The first reflection concerns the interactions among agents. These
interactions are materialised by concrete objects that we iden-
tify as interaction objects. Interaction objects are structured ob-
jects. For instance, they can be composed in simultaneous inter-
actions. Moreover, a special empty interaction object (the zero
0) can be abstractly identified to express ’no interaction’. In the
presented scenario, messages represent the interaction objects
and receiving simultaneous messages is viewed as receiving a
sum (

∑
oi) of interaction objects.

3.3. Interaction Spaces

The interaction spaces are abstract locations where several en-
tities interact by exchanging explicitly interaction objects. An
interaction space is an active entity that rules the interactions
among agents and may alter the exchanged interaction objects.
In the ubiquitous chat scenario, each topic is represented by an
interaction space, where several human agents can exchange
messages. To illustrate the active nature of the interaction space,
it is easy to imagine some specific topics that sets some par-
ticipation rules or defines certain messages acceptance policy.
Hence, when a message violates the policy of the topic it is
simply ignored by the interaction space (reduction to zero); and
contrary to most of current MAS implementations the interac-
tion actually does not happen2 . Reduction to zero may appear
as a radical alteration of the interaction objects by the interac-
tion space. A more elaborated example can be sketched: for in-
stance, checking and correcting the spelling of messages. Con-
cerning the mobility over the interaction spaces, it is easy to
encode the agents’ desires to participate in certain topics as a
logical movement inside these interaction spaces. Naturally, an
agent can be present in several interaction spaces. This property,
defines its logical ubiquity.

3.4. Computational entities or agents

Agents perceive and react to external interaction objects by a
local computation and the emission of other interaction objects
in the interaction spaces. These reactions are considered as at-
tempts to influence the universe (others). In fact, the reactions
are materialised by explicit and discrete interaction objects that
are fully controlled by the local laws of the interaction space.

2The inboxes of the agents are structurally not changed: oldinbox +

0 = oldinbox . We consider that changing the structure of the inbox is
an interaction even if no reaction is observed



3.5. Ubiquity levels

In the presented scenario, two levels of ubiquity are identified:
physical ubiquity and logical ubiquity. Physical ubiquity can be
viewed as the ability to maintain the computational structures
of a system everywhere. For instance, when a group of users
take together the same metro wagon: the system computational
structures are still coherent and independent from the wagon
mobility. Logical ubiquity is defined as the ability of an entity
to interact coherently and simultaneously as a whole in several
interaction spaces. For example, a user sends messages to sev-
eral topics reacting as a whole to previously received messages.

4. {Movement, Interaction, Computation}∗

Due to space limitation, this section presents semi-formally and
briefly some aspect of the {Movement, Interaction, Computation}∗

structure. A full mathematical presentation is given in [GG02b].

4.1. MIC∗ Matrices

In order to present easily the formal structure, a more intuitive
view of the manipulated algebraic objects was designed. In fact,
matrix representations are familiar to computer scientists and
give spatial representation better than complex linear formulas.
To present the matrix view, the reader should assume the fol-
lowing minimal definitions:

• (O, +) represents the commutative group of interaction
objects. This means that interaction objects can be com-
posed commutatively by the + law, and that the empty
interaction object exists (0 ∈ O). Furthermore, each in-
teraction object x has an opposite (−x) and x+(−x) =
0;

• A and S represent respectively the sets of agents and in-
teraction spaces. S contains a special element: 1 ∈ S
representing the universe as a global interaction space.
Moreover, this special element has the following fea-
tures: (i) no interaction between the entities is possible;
(ii) all the interaction objects can move inside or outside
this interaction spaces without restriction.

Each MIC∗ term is represented by the following matrices:

Outboxes Matrix: The rows of this matrix represent agents
Ai ∈ A and the columns represent the interaction spaces
Sj ∈ S . Each element of the matrix o(i,j) ∈ O is the
representation of the agent Ai in the interaction space
Sj .

Inboxes Matrix: The rows of this matrix represent agents Ai ∈
A and the columns represent the interaction spaces Sj ∈
S . Each element of the matrix o(i,j) ∈ O defines how
the agent Ai perceives the universe in the interaction
space Sj .

Memories vector: Agents Ai ∈ A represent the rows of the
vector. Each element mi is an abstraction of the inter-
nal memory of the agent Ai. Except the existence of
such element that can be proved using the Turing ma-
chine model, no further assumptions are made in MIC∗

about this element.

For instance, the outboxes matrix presented in table 1 mod-
els the situation of the figure 1. When an agent is present in an
interaction space, its corresponding interaction object or repre-
sentation is different from zero. Similarly, a zero represents the
fact that an agent is not present in the interaction space.

Figure 1: Agents in an environment.

1 S T V

A a b c 0
B d 0 e 0
C f 0 0 g

D h 0 0 0

Table 1: Outboxes matrix of figure 1 environment.

4.2. Environmental composition

MIC∗ terms model naturally ubiquitous environments. In fact,
the union or split of computational environments are simply rep-
resented as an addition + and a subtraction − defined between
the matrices. For instance, let consider two environments e1

and e2 where the outboxes matrices are defined as following:

eoutbox
1 =

Sj

Ai oi,j
and eoutbox

2 =
Sj

Ai′ oi′,j

The agents Ai and Ai′ belong to the same interaction space
Sj but are contained in two independent environments e1 and
e2. Consequently, no interaction is possible between them since
their representations are unavailable to calculate the percep-
tions. Let consider now the union of these environments. e3 =

e1 + e2: eoutbox
3 = eoutbox

1 + eoutbox
2 =

Sj

Ai oi,j

Ai′ oi′,j

The result of this union is a new environment e3 where the
agents Ai′ and Ai can interact by exchanging their interaction
objects. Similarly, any environment can be split into sub envi-
ronments to model situations where ubiquitous components are
disjoint.

4.3. MIC∗

Figure 2: Movement, Interaction and Computation

The previous section has presented the static objects to de-
scribe environmental situations. In this section, we will charac-
terise three main transformations of this static description: the
movement, the interaction and the computation (see Figure. 2).
A movement is a transformation of the environment where both
inboxes and memories matrices are unchanged, and where out-
boxes matrix interaction objects are changed but globally in-
variant. This means that the interaction objects of an agent can



change positions in the outboxes matrix and no interaction ob-
ject is created or lost. The interaction is characterised by a trans-
formation that leaves both outboxes and memories matrices un-
changed and transform a row of the inboxes matrix. Thus, in-
teraction is defined as modifying the perceptions of the entities.
Finally, an observable computation of an entity transforms its
representations in the outboxes matrix and the memories vec-
tor.

4.4. Limitations

MIC∗ is a descriptive formal approach, which means that it
gives some abstract elements to model concrete systems and
defines rigorously some concepts such as movement,interaction
and observable computation. Until now, no general formal tools
are given to prove or to predict some properties of the environ-
mental model.

5. Ubiquitous chat
5.1. Application description

Section 3 has introduced ubiquitous chat application emulating
human verbal discussions. This demo was implemented using
a MIC∗ prototype written in PYTHON[Pyt02] and is fully func-
tional for both LAN and ad hoc networking environments.

5.2. Situation A:

Figure 3: Agent ’A’ moving inside two interaction spaces

As presented in section 3, each topic is represented by an
interaction space. For instance, ”sport” and ”computing” top-
ics are represented by two interaction spaces (figure 3). When
the user selects a chat topic x, the software agent express this
by sending an interaction object gox. This interaction object is
automatically absorbed by the correct interaction space. In fact,
the interaction space has a full control of its local movement
policy allowing certain interaction objects to enter and refusing
the access to others. In the presented scenario, the movement
policy of an interaction space x is to absorb all interaction ob-
jects gox and to move outside −gox interaction objects. The
situation expressed in figure 3 can be described formally by the
following outboxes matrices:

eoutbox
0 =

1 sport computing

A gosport + gocomputing 0 0

that evolves to :
µ(µ(eoutbox

0 )) = eoutbox
1 =

1 sport computing

A 0 gosport gocomputing

After these two movements, agent A exists in both interac-
tion spaces: sport and computation.

5.3. Situation B:

Figure 4: union and disjunction of environments

As illustrated in figure 4, when two environments E1 and
E2 are joined a new environment E3 is defined. In this envi-
ronment, the interaction schema among the entities is modified.
For instance, agents A and B are now able to interact since they
belong to same interaction space, sport, defined in the same
environment. On the other side, when the physical network link
is disconnected, the environment E3 is split into E1 and E2.
This situation is formally described by the following outboxes
matrices:

1 sport computing

A 0 gosport gocomputing +

1 sport computing

B 0 gosport 0
→

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0

5.4. Situation C:

Figure 5: Interaction among agents

Computation is an internal process of an agent that modi-
fies its memory (Turing model [Tur36]). Consequently, an agent
does not modify the state the surrounding universe directly, but
by sending some interaction objects. For instance, when a hu-
man agent computes internally what he should write as mes-
sage, the observation of this process is the written message (in-
teraction object) that is yielded in the interaction space. The
surrounding entities receive this interaction object through the
interaction space (see figure 5). For instance, when agent A
writes a hello message, the outboxes matrix is changed as fol-
lowing:

1 sport computing

A 0 gosport gocomputing

B 0 gosport 0

→
1 sport computing

A 0 hello hello

B 0 gosport 0



The following inboxes matrices describe interaction among
agents A and B:

1 sport computing

A 0 0 0
B 0 0 0

→
1 sport computing

A 0 hello hello
B 0 hello 0

Both agents A and B receive the hello message that was
emitted in the outboxes matrix. Therefore, they can consider
this interaction for their future computations.

6. Conclusion
In this paper, we have presented the MIC∗ algebraic structure
modelling combinable environments where mobile, autonomous
and interacting entities evolves. The next step of our work is to
generate specific environments and interaction spaces starting
from the engineering specification of a system. Following the
MIC∗ approach, it would be possible to guarantee these speci-
fications in unpredictable and dynamical environments such as
ubiquitous systems.

7. References
[AG98] M. Abadi and A.D. Gordan. A calculus for cryp-

tographic protocols: The spi calculus. Information
and Computation, 1998.

[Car99] Luca Cardelli. Abstraction for mobile computation.
Secure internet programming: security issues for
mobile and distributed objects, LNCS 1603, 1999.

[CLZ97] Giacomo Cabri, Letizia Leonardi, and Franco Zam-
bonelli. Coordination in mobile agent applica-
tions. Technical Report DSI-97-24, Dipartimento
di Scienze dell Ingegneria Universitá di Modena,
1997.

[CLZ98] Giacomo Cabri, Letizia Leonardi, and Franco Zam-
bonelli. Reactive tuple spaces for mobile agent coor-
dination. Lecture Notes in Computer Science, 1477,
1998.

[DAR93] DARPA. Specifiaction of the kqml agent-
communication language. Technical report,
DARPA, 1993.

[FIP96a] FIPA. Fipa agent communication language,
www.fipa.org/, 1996.

[FIP96b] FIPA. Foundation of intelligent and physical agents,
1996. http://www.fipa.org.

[Fou98] Cedric Fournet. Le join-calcul: un calcul pour
la programmation repartie et mobile. PhD thesis,
Ecole Polytechnique, 1998.

[GG02a] A. Gouaich and Y. Guiraud. (movement, interaction,
calculus)* : an algebraic environment for distributed
and mobile calculus. In ICAIS. Deakin University,
February 2002.

[GG02b] Abdelkader Gouaich and Yves Guiraud. Mic∗ al-
gebraic structure. Technical report, LIRMM, 2002.
http://www.lirmm.fr/˜gouaich/research.html.

[MH98] James Riely Mathew Hennessy. A typed language
for distributed mobile processes. In Proc. Of POPL,
ACM Press, 1998.

[Mil00] Robin Milner. Communication and mobile systems:
the pi-calculus. Cambridge University Press, 2000.

[Mor68] James Hiram Morris. λ-calculus model of program-
ming language, 1968. MIT.

[MPW92] Robin Milner, Joachim Parrow, and David Walker.
A calculus for mobile processes, parts 1 and 2. In-
formation and computation, 1992.

[OZ98] A. Omicini and F. Zambonelli. The tucson coor-
dination model for mobile information agents. 1st
Workshop on Innovative Internet Information Sys-
tems, 1998.

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-
Catalin Roman. Lime: Linda meets mobility. In
International Conference on Software Engineering,
pages 368–377, 1999.

[Pyt02] Python. Python web resources. web, March 2002.
http://www.python.org.

[RPM00] G.-C. Roman, G. P. Picco, and A. L. Murphy. Soft-
ware engineering for mobility: A roadmap. The Fu-
ture of Software Engineerin,, pages 241–258, 2000.

[Tur36] Alan Turing. On computable numbers, with an
application to the entscheidungsproblem. In Pro-
ceedings of the London Mathematical Soceity, num-
ber 42 in 2, 1936.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. In-
telligent agents: theory and practice. The Knowl-
edge Engineering Review, 10(2):115–152, 1995.

[ZP02] Franco Zambonelli and H. Van Dyke Parunak. Signs
of a revolution in computer science and software
engineering. In AOSE 02, AAMAS 2002, Bologna,
2002.


