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Abstract. This paper addresses the problem of the engineering diver-
gence phenomenon in ABS. This problem is related to the fact that a
particular conceptual model may give different outputs according to its
implementation. Through two experiments, the paper shows that the
implementation of the agents’ interaction is one of the factors that are
involved in this phenomenon. The underlying idea of this paper is that
this problem can be greatly diminished if the analysis of the concep-
tual model incorporates some key concepts which are crucial for the
implementation. To this end, this work proposes to identify two different
classes of interaction: weak interactions and strong interactions.

1 Introduction

Agent Based Simulations (ABS) constitute an experimental tool of choice. Agent
Based Modelling allows to directly represent the individuals, their behaviours
and their interactions [1]. Each individual is named an agent and is supposed to
represent an autonomous, proactive and social entity [2]. The autonomy relies on
the fact that agents have full control of their behaviours. Unlike passive objects,
agents proactively perform actions in their environment. In the scope of this
paper, the social feature is defined as the ability of an agent to interact with
others. Thus ABS are widely used to explore and design complex decentralised
systems such as ant colonies, autonomous robots, social systems and so on.

As for any computer simulation [3], the ABS engineering schema can be
described as follows:

1. Model design: during this phase, the simulation is expressed in a concep-
tual model (CM for short) that specifies the characteristics of the simulated
system.

2. Model execution: during this phase, the CM specifications are implemented
in concrete computational structures and programs that constitute the sim-
ulator of the experiment.

3. Execution analysis: during this phase, the outputs of the simulation are
checked according to some validation rules and then interpreted.
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Regarding this engineering process, a fundamental issue is raised using ABS:
there is no consensus about the specifications that must be given to a CM (e.g.
[4]). Thus, starting from a single CM and following this engineering process, sev-
eral computational models (implementations) can be elaborated. Consequently,
very different outputs may be obtained and the question of ABS experiments’ re-
liability must be raised. Recent works such as [5,6] clearly address this matter. In
this paper, this problem is identified as the engineering divergence phenomenon.
It is important to distinguish this phenomenon, observed at the engineering
phases, from the divergence of a particular CM due to its inherent properties.
For instance, a chaotic system diverges, for each execution, using the same pro-
gramming environment. This paper addresses the problem of the divergence of
the outputs when different expertises and technologies are involved.

This paper focuses on the management of the agents’ interactions and pro-
poses to classify them along two different classes: weak interactions and strong
interactions. The paper argues that simulations do not require the same pro-
gramming technology according to the nature of the interactions present in the
model. Thus, this distinction enables to refine the CM and diminish the engi-
neering divergence phenomenon by reducing the possible implementations of the
CM. This paper is structured as follows: Sect. 2 introduces the engineering di-
vergence problem and describes the aims of the paper. The next section details
the analysis of two experiments which are based on a minimalist CM. Section 4
discusses the results and proposes key concepts for refining a CM. The conclusion
of this paper summarises the hypothesis and proposals of the paper.

2 The Engineering Divergence Phenomenon

2.1 Principle of ABS

Let us assume that Σ defines the whole possible states of the studied system,
every ABS is based on the assumption that the environment evolution from
one moment t to the next t+dt results from the composition of the actions,
A1(t), A2(t)...An(t), produced by the agents and of the environment’s action
produced by its natural evolution, En(t), at t. In a simplified way, the problem
is to build a time function, Dynamic D : Σ �→ Σ, such as:

σ(t + dt) = D(�(An(t), En(t)), σ(t)) . (1)

The symbol � is used here to denote the action composition operator. It
defines how the actions produced at the instant t must be composed in order to
calculate their consequences on the previous world state σ(t). Without detailing
this calculus, it is easy to measure the difficulty of conceptualising such an op-
eration knowing the diversity and the nature of the concepts hidden behind the
word action: movement, decision-making, environment modification, and so on.
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2.2 Technical Structure of ABS Platforms

Since the ABS area of appliance is not restricted to a particular research field,
ABS software applications do not follow particular development rules. Thus they
are very heterogeneous regarding the way of using them, the nature of the mod-
els they consider and their internal computational structures and components.
However, from a technical point of view they always incorporate, explicitly or
not, at least three core components that we identify as follows (Fig. 1):

– The behaviour module: this module defines behaviours of the simulated en-
tities in concrete computational structures.

– The scheduler module: it defines the manner in which the agents are executed
during the simulation, namely the activation structure.

– The interaction management module: this module defines how the interac-
tions among the entities are handled.

Fig. 1. The three core components of ABS platforms

2.3 Divergence of Simulation Outputs

As said in Sect. 1, if the specifications of the simulation CM are incomplete, the
CM can be implemented in several ways and thus can yield different outputs.
For instance, if the CM does not define clearly the model’s time evolution, it
is possible to implement it using a synchronous or an asynchronous simulation
technique. Problems related to this particular point have been clearly shown
and studied in works such as [7,8,9,10]. These works mainly focus on how the
implementation of the scheduler module influences the outputs. For instance, [8]
shows that The Sugarscape Model1 (an adaptation of the model used in [11]) does
1 The Sugarscape Model consists in a spatial distribution of generalised resource that

agents need where agents have the ability to reproduce themselves.
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not produce the same outputs for two different implementations. The authors ex-
plain that this divergence is due to the techniques used to schedule the execution
of the agents’ actions, namely the activation structure i.e. whether actions are
performed synchronously or asynchronously2. Such a correlation between activa-
tion structures and outputs is also made is the previous cited works. Specifying
the characteristic of the scheduler module in the CM, according to the nature of
the studied system, is an important step that has improved the practical real-
isation of ABS by reducing the engineering divergence phenomenon related to
this module.

As a matter of facts, the two other modules can also contribute to engineering
divergence phenomena. Indeed, as shown in the next section, the implementation
of the interaction module may also deeply influence the simulation outputs, even
if the activation structure remains unchanged. Thus the work presented in this
paper aims to:

– show that the interaction module is a key feature in the ABS framework.
– show that ABS involve different kinds of interaction that do not require the

same programming attention.
– introduce some key concepts which can be used to refine the CM by speci-

fying the nature of the interactions and thus the way they have to be imple-
mented.

3 Experiments

3.1 Experimental Protocol

This section presents two experiments. The first deals with the modelling of the
reproduction behaviour. The second consists in modelling resource consumption
behaviours. The experiments are carried out using a testing platform defined
by three modules as described in Sect. 2.2. As said in Sect. 2.3, the engineering
divergence phenomenon may rely on the implementation of these three mod-
ules. Thus each module may potentially modify the outputs of the simulation.
However, in this paper, the experimental protocol used for the two experiments
presented here consists in building simulations where only the interaction man-
agement module is modified. Doing so will clearly identify the influence of this
specific module on the obtained outputs.

3.2 Experiment 1: Reproduction Behaviour

In this section, a CM of reproduction behaviours is studied. The corresponding
CM is defined as follows: let us consider two compatible (fertile and of the
opposite sex) autonomous agents, A and B, with a simple behaviour which is only
a choice between two actions: reproduce (Agentrepro) or do nothing (Agentnone)
according to a defined probability Pr(Agentbehaviour).
2 Specifically, the authors were interested in finding a suitable activation structure to

simulate artificial societies.
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Behaviour Module. For this CM, the behaviour module is defined as follows:

Table 1. The behaviour of agents as probabilities

Pr(Arepro) = α and Pr(Anone) = 1 − α
Pr(Brepro) = β and Pr(Bnone) = 1 − β

Scheduler Module. The chosen activation structure consists in a discrete time
simulation used with a classic synchronous time evolution. This method consists
in activating all the agents in a sequential way and then incrementing the time
of the simulation by one time unit. Moreover, we have randomized the activation
list to avoid a possible advantage of one agent as proposed by [7]. As the agents
are autonomous, their behaviours are independent, which means that Abehaviour

is not correlated to Bbehaviour. Thus, for each step of the simulation, there are
four possible interaction situations which have to be handled by the interaction
module.

Table 2. Probabilities of interaction situations

Pr(Arepro and Brepro) = Pr(Arepro) × Pr(Brepro) = αβ
Pr(Arepro and Bnone) = Pr(Arepro) × Pr(Bnone) = α − αβ
Pr(Anone and Brepro) = Pr(Anone) × Pr(Brepro) = β − αβ
Pr(Anone and Bnone) = Pr(Anone) × Pr(Bnone) = 1 − β − α + αβ

Interaction Management Modules. These modules, the core part of the
experiment, are defined according to three different ways for managing the in-
teractions between agents. The first technique is inspired by the method used in
[11]: in this case, the agents’ actions are treated sequentially and each agent can
reproduce, at his own turn, due to the proximity of a compatible partner. Table
3 describes the obtained results for each possible situation. The second approach
for managing the agents’ interactions (Table 4) corresponds to the implementa-
tion of [8]. In this case, when an agent successfully reproduce, the other agent
cannot reproduce even if it has not acted yet3. The last interaction module is an
application of the influences / reaction principle [12]. In this model the agents’
action are considered simultaneously and we have assumed that it is necessary
that the two agents want to reproduce to obtain an offspring (Table 5).

Results. Figure 2 shows the different outputs according to the three interaction
management modules for hundreds of simulations: the A set of lines corresponds
3 Lawson and Park have modified the agent reproduction rule to be more realistic:

only one new entity can be produced by a pair of compatible agents.
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Table 3. First interaction module

situations birth(s) probabilty
Arepro, Brepro 2 αβ

Arepro, Bnone 1 α − αβ

Anone, Brepro 1 β − αβ

Anone, Bnone 0 1 − β − α + αβ

Overall probabilities
Pr(births = 2) = αβ
Pr(birth = 1) = α + β − 2αβ
Pr(birth = 0) = 1 − β − α + αβ

Table 4. Second interaction module

situations birth(s) probability
Arepro, Brepro 1 αβ

Arepro, Bnone 1 α − αβ

Anone, Brepro 1 β − αβ

Anone, Bnone 0 1 − β − α + αβ

Overall probabilities
Pr(birth = 1) = α + β − αβ
Pr(birth = 0) = 1 − β − α + αβ

Table 5. Third interaction module

situations birth(s) probabilty
Arepro, Brepro 1 αβ

Arepro, Bnone 0 α − αβ

Anone, Brepro 0 β − αβ

Anone, Bnone 0 1 − β − α + αβ

Overall probabilities
Pr(birth = 1) = αβ
Pr(birth = 0) = 1 − αβ

to the application of the first method, the B set to the second and the C set
to the third. This figure clearly shows the engineering divergence phenomenon
related to the management of agents’ interactions: even if the behaviour and
scheduler modules remain unchanged, the outputs obtained by each method
diverge. Thus, if the management of the interactions among the entities is not
specified the implementation of this model can lead to an EDP.
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Fig. 2. Simulation outputs of the three interaction modules used in the first experiment
with α = 0.4 and β = 0.6

3.3 Experiment 2: Resource Consumption

The objective of this experiment is to study the consumption of a single resource
by two agents A and B. Each agent has a life level L (0 <= L <= max life level)
that he must maintain above a particular threshold T (0 < T < 100) by con-
suming a resource up to the max life level. Thus the agents can exhibit two
behaviours: consuming or doing nothing; Agentconsume and Agentnone. When
the life level of an agent decreases to zero the simulation is stopped. Besides
the resource grows back at a rate of α units per time interval up to a defined
capacity. The key statistical output of this model is a measure of the agents’
average life level.

Behaviour Module. The behaviour module of the CM is defined as follows:

Algorithm 3.1: AgentBehaviour()

if life level < threshold
then consume resource : Agentconsume

else do nothing : Agentnone

Scheduler Module. The scheduler module used here is exactly the same as in
the previous experiment. Thus there are four situations that have to be handled
by the interaction module:

Interaction Management Modules. Two different management modules
have been used. The first method for managing the interactions is to imme-
diately execute the agent’s action. Hence the interactions between the resource
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Table 6. Interaction situations

Aconsume and Bconsume

Aconsume and Bnone

Anone and Bconsume

Anone and Bnone

and one agent are reduced to two situations: the agent consumes the available
resource to recover life points or the agent does not interact with the resource.

The second approach for managing the agents’ interactions with the resource
is to consider that actions can occur simultaneously. For instance both agents
can access the resource at the same time. In this case the resource is equitably
shared between the agents.

Results. Figure 3 shows the average of the outputs obtained for thousands of
simulations with different initial values (T and α). These results show the out-
puts are similar in average and do not depend on the initial parameters (notably
the abundance or scarcity of the resource, according to the α parameter) nor on
the interaction module type. These results show that whatever the interaction
module used and initial parameters, the results are similar in average. So even if
the second method seems more advanced than the first one (because it handles
simultaneity), the engineering divergence phenomenon is not observed consider-
ing this simulation model. In fact, the interaction management module has not
influenced the outputs of this simulation at all.

3.4 Discussion

The first experiment clearly shows the great influence of the interaction manage-
ment on the simulation outputs. Thus it stresses that it is fundamental to include
the specification of the interaction management module in a CM for avoiding en-
gineering divergence phenomena. However, on the basis of the two experiments,
a question must be raised: why does the interaction management module influ-
ence the outputs of the first experiment while having no consequences on the
second experiment?

The underlying idea of this paper is that these two experiments involve inter-
action processes which are very different in nature. And the paper argues that
they do not require the same programming solutions for being implemented cor-
rectly (see [13] for other recent works which are related to this idea). Here, the
question is to make the interaction management consistent with the meaning of
the model. It is not a question of checking if the simulation’s results model the
reality but to know if the simulation process truly represents the model’s reality
that we have in mind.
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Fig. 3. Agents’ average life level with first and second interaction modules

4 Weak and Strong Interactions

4.1 Strong Interaction

Let us analyse the three different implementations used in the first experiment
(Sect. 3.2). With the first interaction module, where the agents’ actions are
treated sequentially, the results are quite surprising. Indeed, as Epstein and
Axtell have noticed for their own experiments [11], one single agent can reproduce
himself several times per turn. If three agents are present, the first agent produces
a new entity, and then the second and the third may do the same thing4. So, it
is obvious that, for our experiment, this first implementation of the interaction
module does not agree with the meaning of the model.
4 Epstein and Axtell say on this matter that this does happen rarely as an agent has

a health parameter that decreases with a new birth.
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It is undoubtedly the reason why [8] added a gestation period so that an
agent cannot reproduce himself twice. However, this programming technique is
still criticisable. The selected partner does not have any choice: the initiator has
decided for both! The partner’s individual behaviour, its own goals are not
taken into account. What would happen if this agent was moving for a criti-
cal reason and found itself involved in a reproduction process that freezes its
movement? This would totally contradict basic foundations of multiagent sys-
tems where agents are autonomous and not under the control of another one
[2]. Indeed, when an agent modifies, directly by changing the internal state of
another agent (the boolean value pregnant is now true), or indirectly by ordering
the other agent to do it (“you are now pregnant”), the autonomy of the agent
is lost. Indeed, the multi-agent approach relies on taking into account each in-
dividual. Without this assumption, the system’s dynamic is not representing
individual entities interacting together.

That is why, to be correctly implemented (with respect to the autonomy
property), the reproduction interaction requires to take into account each be-
haviour before computing the result. The third implementation of the interaction
module follows this guideline and produces a birth iff both agents want to repro-
duce. Indeed, if we consider autonomous agents, each one must independently
generate a reproduction behaviour to finally interact and produce a new entity:

Pr(birth = 1) = Pr(AreproandBrepro) = Pr(Arepro)×Pr(Brepro) = αβ . (2)

In the first experiment, a reproduction attempt has only a meaning when another
agent is close. The result of such an interaction, a birth, requires at least that
two agents are present in the system. An agent will never reproduce itself nor
try to do it if it is alone in its environment. More precisely, reproduction is a
behaviour that produces a result on the environment which can be realized when
two agents are mating.

Definition 1 (Strong Interaction). Actions of agents define a strong inter-
action when the feasibility of each action’s goal depends on the action of another
agent.

This kind of interaction process requires considering all the involved agents be-
fore computing its result. It is important to notice that it is not a problem of
coordination (as defined by [14]) between agents like in [15] for instance. The
question is not to know how or why the agents internally produce or coordinate
their actions in order to achieve their goals, but to specify how autonomous
actions (decisions) are handled by the simulator.

4.2 Weak Interaction

The second experiment involves an interaction process that is less complex than
the first one. In fact, even if the agents interact through the environment by con-
suming the resource, they carry out actions which are not directly correlated.
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Moreover, the presence of other agents in the system is not necessary for con-
suming the resource: the feasibility of the goal of this action is not conditioned
by the action of another agent.

This does not mean that complex situations cannot arise when dealing with
weak interactions. For instance, the consumption of the resource can happen
simultaneously. However, explicitly handling this situation does not modify the
true meaning of the model because of this weak relation between the agents. In-
deed, the autonomy property is respected since the two autonomous behaviours
are taken into account. For instance, a collision between two robots is a weak
interaction since space can be considered as a resource that agents consume. In
this case the problem is not about managing sequentially or simultaneously the
movement of the agents and the question of realism/validity relies on the gran-
ularity of the considered actions5 and not on the management of simultaneity.

Definition 2 (Weak Interaction). Agent actions define a weak interaction
when the feasibility of each action’s goal does not depend on the action of another
agent.

A good example of this kind of interaction type can be found in the classical
“termites model” [16]. In this model the world is made of a set of termites and of
a set of wood chips initially equally distributed around a toroidal environment.
The termites follow a set of simple rules to gather wood chips into piles. This
behaviour can be summarized with the two rules that follow:

– Rule 1: “ If I do not have a wood chip, I look for one randomly. “
– Rule 2: “ If I have got a wood chip, I look randomly for another to put it

down aside”

Figure 4 shows four successive stages of a simulation where one can see that the
wood chips end up in a single pile. In this example, the set of possible actions
carried out by the agents is reduced to moving, taking and deposing an object.

It can be made an interesting remark on the behaviour of these electronic
termites. A termite’s behaviour does not suppose or integrate the existence of
the others. Indeed a termite has no representation of its kind. So, even if the
termites have the same goal, they interact in a weak interaction mode and,
whatever the interaction management used, a single pile of woodchips is always
the final result of this simulation6. The most interesting thing is undoubtedly
that the same result is obtained when only one termite is working, but this takes
only a greater amount of time.

5 It is not relevant to raise the problem of the simultaneity of a collision when the
selected space scale is coarse.

6 This is not true in the particular case where there are more termites than wood
chips.
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Fig. 4. The termites follow simple rules to gather wood chips into piles

4.3 Refining Conceptual Models

By classifying interactions along weak and strong classes, this paper made an
explicit link between the CM and its implementation. In models that contain
strong interactions the implementation techniques used to program them deeply
influence the results of the simulation. Furthermore they may contradict some
foundational agent concepts such as autonomy, resulting in skews in the sim-
ulation process. So, refining a CM according to such concepts offers a better
understanding of how to implement it. It is necessary to include the analysis
of the involved interactions into the conceptual model, if one wants to reduce
engineering divergence phenomena.

Therefore, a related methodology would have to check every event that can
occur in the environment (moves, agent birth, etc.) to decide which interaction
type generated it, and how to implement it appropriately: strong interactions
requires a specific management of the interaction itself, while weak interactions
do not.

Another interesting consequence is that both kinds of interaction dynamic
may coexist in one single simulation. So it does make sense to implement several
interaction dynamics to simulate a particular model. For instance, in [17] a
simulation of autonomous robots is proposed. In this model, robots are in charge
of recovering objects where some of need to be pushed by several agents. The
movements of the agents (weak interactions) are managed sequentially while the
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displacement of a too heavy object requiring that two agents push at the same
time (strong interaction) is implemented using an influences/reaction model:
first, forces resulting from the actions of the agents are summed up, and then,
the environment “decides” if the objects will finally move.

4.4 Future Works

By using the concepts presented in this paper, our future works suggest a sys-
tematic and formal way of implementing both kinds of interaction. To this end,
an algebraic model has been proposed [18]. In this model, agents are autonomous
entities that act only through explicit interaction objects. Interaction objects are
structured algebraically as a commutative group. Hence, they are combinable
by a + law to represent an aggregation of actions. Negative interaction objects
are defined abstractly without any concrete intuitive interpretation, but for the
internal definition and computation of the model. So, strong interactions are
modelled as a sum of elementary interaction objects that define a third inter-
action object that will be treated correctly by the simulation environment. For
instance, the sum of two attempts of reproduction are treated as a single in-
teraction object by the simulator that will actually produce a birth if both of
emitting agents want to reproduce themselves. In contrast, weak interactions are
treated linearly by the simulator and their composition does not produce a new
interaction object.

5 Conclusion

This paper has addressed the problem of the engineering divergence phenomenon
in ABS. This problem is related to the fact that a particular conceptual model
may give different outputs according to its implementation. Through two exper-
iments, this paper has shown that the implementation of the agents’ interaction
is one of the factors which are involved in this phenomenon. The underlying idea
of this paper is that this problem can be greatly diminished if the analysis of the
conceptual model incorporates some of the key concepts of the implementation.
To this end, this work has proposed to identify two different classes of inter-
action: weak interactions and strong interactions. The paper claims that this
distinction helps to refine the conceptual model by increasing its specification.

Most of engineering divergence phenomena are due to incomplete CM speci-
fications. Hence, conceptual model designers should emphasis the key properties
of their system and specify if the interactions among entities are in a strong or
a weak mode.
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