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Abstract

This paper presents the TURTLEKIT simulation plat-
form. This platform relies on the combination of a Logo
simulation model with high level programming languages.
Indeed, the agent model and the environment are largely in-
spired by the StarLogo system but can be easily extended
thanks to the use of the Java programming language. This
paper presents the TURTLEKIT main features and illustrate
them through experiments on artificial complex systems.

1 Introduction

Agent-based simulations (ABSs) is an attractive alterna-
tive to equation-based models [17]. ABSs allow to directly
model individuals, their behaviors and their interactions and
thus to model complex systems [6]. There is today plenty of
tools which provide different means to develop, execute and
analyze such models. Most of the existing platforms have
been designed according to a particular area of research
such as ecology (CORMAS [5], ECHO [10]), robotic (MIS-
SIONLAB [14]), multi-agent coordination (MASS [9]), etc.
Still, some platforms are not dedicated to a research field
but address a particular audience. For instance, SWARM
[3] defines a generic simulation mechanism and affords im-
portant libraries of environment, agent architectures, simu-
lation tools, etc. The underlying idea is to give advanced
programming tools that enable to develop simulators that fit
the experiment requirements. So this platform is designed
for advanced users. At the opposite, other platforms such as
STARLOGO [2] or NETLOGO [1], which are based on the
Logo language, have been originally designed to quickly
develop simulations for educational purposes. Thus, they
intentionally focus on simplicity and do not afford advanced
programming tools for extending the platform possibilities.
They are designed for newbie users.

This paper presents the TURTLEKIT platform [15],
which relies on a Logo-based simulation model. However,

TURTLEKIT keeps the simplicity of Logo programming ap-
proaches while giving all the possibilities afforded by high
level programming languages. So TURTLEKIT is dedicated
to both newbie and advanced users. The paper first presents
TURTLEKIT main features and then shows how it can be
used and extended.

2 TURTLEKIT overview

2.1 Logo programming approach

The Logo language was designed in the late sixties at
the Massachusetts Institute of Technology (MIT). The mo-
tivation was to provide a learning tool that did not require
programming skills. The principle is to manipulate a graph-
ical animat, a turtle, typing simple commands to make the
turtle move and draw shapes on the screen. For instance
the forward 10 command makes the turtle move forward 10
steps. Logo programs are usually collections of small pro-
cedures that define turtle behaviors which can be combined
to achieve more complex behaviors

In platforms like STARLOGO or NETLOGO, the idea is
to provide a simulation environment made of several tur-
tles (MultiLogo), and thus to model multi-agent systems
(MAS). TURTLEKIT is directly inspired by this approach.
Turtles are agents that live on a two-dimensional world
which is spatially discretized into patches. Each patch con-
tains local properties such as its color, pheromone concen-
trations, etc. Turtles have the ability to interact with the
world, other turtles and patches, using turtle commands:
they can move, perceive their local environment and mod-
ify the properties of patches and other turtles. So, imple-
menting a simulation with MultiLogo-like languages relies
on defining procedure commands which are collections of
primitive commands and other procedure commands:

to wiggle
fd 1 rt random 50 lt random 50

end
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For instance the wiggle procedure consists in using the
right turn (rt), left turn (lt), forward (fd) and random primi-
tive commands to define a random walk. The wiggle proce-
dure can then be used into another new procedure to define
a more complex behavior and so on.

2.2 Using high level programming languages

The main advantage of MultiLogo platforms is that they
propose an agent-based programming language that focuses
on simple agent/environment models. Despite this simplic-
ity, they provide an exhaustive list of primitive commands
and very complex and interesting behaviors can be easily
obtained starting from simple primitive commands. How-
ever, MultiLogo platforms have been designed to ease pro-
gramming and they intentionally do not afford advanced
programming tools which could be used to extend the plat-
form capabilities. For instance, it is not possible to display
the world according to various point of views simultane-
ously whereas having various graphical representations of
the world is crucial when studying complex systems [5]. On
the other side, high-level platforms provide code extension
facilities (inheritance, modular programming, etc.).

Developing TURTLEKIT, our main goal is to bridge the
gap between using Multi-Logo models and using high level
programming features. Hence, TURTLEKIT is an open
source platform written in Java providing a default set of
classes which can be used or extended regarding the sim-
ulation requirements. Thus programming facilities such as
inheritance are naturally available.

2.3 Agent oriented programming

Initially, TURTLEKIT has been developed to validate
the simulation tools we implemented in the MADKIT
(www.madkit.org) multi-agent platform [16]. Since MAD-
KIT is a generic MAS development environment, it pro-
vides support to design organizations, interactions be-
tween agents, debugging, system probing, distribution, etc.
TURTLEKIT naturally benefits of these features. More-
over, TURTLEKIT is a MAS itself and every module of
TURTLEKIT is a regular MADKIT agent having the ability
to communicate with any other agent using messages. For
newbie users, all these features are encapsulated and can be
ignored. However, advanced users can use these features to
extend the default tools of TURTLEKIT (see section 3.2).

2.4 TURTLEKIT turtles

TURTLEKIT turtles are written in Java. Every kind of
turtle is implemented in single Java class that inherits of the
super class Turtle that implements the basic Logo-like pro-
cedures. Implementing TURTLEKIT turtles simply consists

in defining Logo procedures using the Java programming
syntax. So, the wiggle procedure code is as follows:

public void wiggle(){
fd(1);turnRight(random(50));turnLeft(random(50));
}

Each turtle can achieve a collection of actions during a
single simulation step. A turtle behavior is defined as an
automaton that represents a sequence of atomic behaviors
which are Logo primitive sequences. So, when activated, a
turtle executes all the primitives associated with an atomic
behavior Then the behavior the turtle wants to do next is re-
turned. Figure 1 illustrates this mechanism through a clas-
sical example: the termite behavior

Figure 1. The termite behavior

For instance, the findNewPile behavior code is entirely
executed when the turtle’s turn comes. Then in the next
simulation step, the turtle will execute either findNewPile or
find empty patch. The findNewPile behavior is implemented
as follows:

public String findNewPile(){
if (getPatchColor() == Color.yellow)
return("findEmptyPatch");

else{
wiggle(); return("findNewPile"); } }

2.5 The environment model

Although the environment is discretized into a patch
grid, turtles move in a continuous way. For instance, if a
turtle has a 45 degree orientation and moves of one unit
(fd(1)), the turtle will have its x and y coordinates increased
by

√
2. It is thus possible to make the turtles doing par-

ticular moves such as a perfect circle. The patch grid
is rather used to define the turtles local environment, en-
abling them to perceive and act on the world using prim-
itive commands (setPatchColor(Color.yellow); dropPatch-
Variable(”Pheromone”,1500); etc.). The patch grid also
defines a plain diffusion model that permits to simulate the
diffusion and evaporation of substances (see section 3).
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2.6 Observers and Viewers

As in SWARM, it is possible to probe the model using the
Observer agent of TURTLEKIT. The observer is also a regu-
lar MADKIT agent and can interact with any available agent
within MADKIT. Especially, an observer may send data to
MADKIT agents which are specialized in doing particular
tasks (e.g. drawing line charts, data analysis, etc.) An ob-
server can also create a probe according to a group/role cou-
ple to extract data according to organizational characteristic,
probing only turtles playing a particular role. Users can ex-
tend the Observer class regarding their needs. Furthermore
it is possible to launch as many observers as required (see
sections 3.1.3 and 3.2.4).

To graphically represent the simulated world, we
have implemented particular observers: the Viewers.
TURTLEKIT affords a default viewer that displays the world
in a classical way (the color of the patches and turtles).
However, many viewers have been implemented to define
new point of views: turtles displayed by role, substances
displayed by types, etc. This is done by overriding the de-
fault viewer’s paintPatch and paintTurtle methods. Then,
through multiple representations, using several specialized
viewers, it is possible to graphically extract many aspects of
a model (see sections 3.1.3 and 3.2.3).

2.7 The Scheduler agent

The Scheduler is designed to organize the simulation ac-
tors activity: environment, observers, viewers and turtles.
This agent can be ignored in the platform default configu-
ration. However it can be extended to achieve a particular
scheduling: activating a particular kind of turtle twice per
turn or activating the display only when a particular condi-
tion is verified.

2.8 The Python Command Center

Java has one shortcoming: the code must be compiled
and cannot be interpreted at runtime. But interacting with
the simulation is a desirable feature when studying complex
systems. To this end, TURTLEKIT permits the use of the
Python language: we have implemented the Python Com-
mand Center (PCC) which allows to take control of the tur-
tles by typing commands or loading a predefined script. No-
tably, this feature allows to dynamically execute compiled
Java behaviors during a regular simulation to interact with
the simulation (see section 3.1.5).

3 Experiments

To illustrate the capabilities of TURTLEKIT, we present
two experiments involving the design of complex systems.

The first experiment involves a newbie use of TURTLEKIT
to produce multi-level emergence (MLE) of complex struc-
tures within a MAS. The second simulation, implemented
with an advanced use of TURTLEKIT, develop an evolu-
tionary approach to construct multi-agents organisms.

3.1 Multi-level emergence

3.1.1 Background

In nature, emergence generally exists in the form of multi-
level emergent structures (also called multiple emergence)
[7]. It is the production of emergence in a system composed
of subsystems which are themselves the product of previous
emergences. In [4], we have proposed a MAS model to pro-
duce MLE. This model distinguishes the environment, the
interactions and the agent model. The theoretical model has
been developed by simulating each step of its conception
on TURTLEKIT. Those simulations involved low-level pro-
gramming skills.

3.1.2 The agents

The agents interact via emission and perception of
pheromones. The structuring of the emergence is the result
of attractive/repulsive interactions between the agents. The
agents own a state which rules the agents’ attraction/repul-
sion behaviors by modifying the agents’ interaction abili-
ties. The agents are able to mutate modifying their own
state. To develop the final MLE model, several kinds of
agents have been easily implemented and tested thanks to a
modular programming. The agents pattern has been define
by inheriting the Turtle class. The subclass, called MleTur-
tle, implements the agent’s behavior automaton. This au-
tomaton involves four atomic behaviors: perception, emis-
sion, mutate, move. Several kinds of agents have been then
implemented inheriting the MleTurtle class. To design the
final prototype, a refining of each behavior has been done
through the use of numerous subclasses.

3.1.3 Using the TURTLEKIT viewers and observers

To characterize the emergent phenomenon, standard view-
ers have been used. The standard viewers permitted us to:
(1) observe the agents as a function of their state and (2)
observe the diffusion of interactionnal pheromones.

One of the important tasks for the analysis of the system
behavior was to observe and characterize the emergent phe-
nomenon. Figure 2 shows a simulation observed by four
different viewers: 1, 2 and 3 display the turtles and one
pheromone, 4 is a standard view. These viewers permit-
ted us to observe the formation of circular multi-emergent
structures while analyzing the role of pheromones in the
emergent structuring process.
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Figure 2. Multiple representations of the world with various TURTLEKIT standard viewers.

TURTLEKIT observers have been used to analytically
study the system’s behaviors Various observers have been
implemented to extract quantitative information from the
system: counting particular agents (with a particular state,
behavior or position), measuring distances between agents,
making computations on quantities of pheromones (aver-
age, maxima, standard deviation, etc.), and so on. For in-
stance, figure 3 shows a mathematical measurement of the
structural organization in a typical simulation for each level
of emergence (level 1 in black, level 2 in gray). This compu-
tation is based on the average of distances between agents
involved in the same structures. The chart is drawn by a
MADKIT agent interacting with the observer.

Figure 3. Structural complexity in the system.

synchronized public void watch(){
Turtle[] theTurtles = getTurtles();
for( int i = 0;i < theTurtles.length;i++ ){

if( Turtle[i].belongsToAnEmergedStructure() ){
Turtle myAttr = Turtle[i].attractor();
double dist = distance(Turtle[i], myAttr);
sendTo(dist, "ChartTracer"); } } }

If a turtle belongs to an emergent structure, the distance
between this turtle and the core of the structure is measured
and then sent to a standard MADKIT agent in charge of the
chart drawing.

3.1.4 Using the TURTLEKIT scheduler

The structuring of emergent organizations relies on the per-
ception of pheromones by the agents. However, the duration

of a substance diffusion increases exponentially as a func-
tion of the crossed distance. To quicken the emergence pro-
cess, we have defined a scheduler managing three diffusion
processes for each simulation step. It has greatly shortened
the simulation durations without altering the global behav-
ior of the implemented systems.

3.1.5 Using the Python Command Center

To study the behavior of the system at runtime, it was im-
portant to interact with the agents during simulations. The
use of the PCC permitted us to disturb the standard agents’
behavior during the simulation process. For instance, to
study the robustness of emergent structures, we invoked
random agent moves during the simulation. Such an invo-
cation can be done at runtime in two different ways: (1) by
invoking an existing procedure in the PCC or (2) by directly
using a script within the PCC.

def randomMove(self): #(1) Random move procedure
self.randomHeading() # in a Python agent
self.fd(10)

------------------------------------------------
public void randomMove(){ //(1) in a Java agent

randomHeading(); fd(10); }
------------------------------------------------
#(1) direct call of the behavior within the PCC
askTurtles("randomMove")
------------------------------------------------
# (2) Random move using a script in the PCC
askTurtles("randomHeading()")
for i in range (0,10):

askTurtles("fd(1)")

3.2 Evolutionary experiments

3.2.1 Background

Mimicking the mechanisms of complexity appearance in
living systems, the field of embryogeny (growth of em-
bryos) explores the possibilities to design artificial complex
systems [12]. How a single evolved cell can give birth to
complex organisms?

We have developed a bio-inspired model that makes
agents evolve to form artificial organisms. This model is
inspired by the functioning of particular genes in natural
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Figure 4. Multiple representations of the world with the universal viewer.

embryos development [13] and implements techniques from
the evolutionary computing field [8]. The agents represent
cells that replicate and interact to construct organisms.An
evolution process is used to explore the space of behaviors
encoded in the agents’ genetic inheritance. The French flag
model of Wolpert [18] has been the inspiration for the first
task the model has to achieve: the goal has been to evolve a
population of agents able to form organisms that create flag
patterns. The evolutionary algorithm works as follows: (1)
generate a initial random population (2) assign a note/fitness
to the formed organism (3) select individuals according to
fitness for reproduction (4) reproduce offspring using two
parents (5) evaluate each offspring and assign fitness (6) re-
place old population by offspring using particular strategies
[11] (7) unless a high level of similarity with the predefined
pattern is reached, return to step 4.

Dealing with evolutionary computation requires the use
of numerous tools: evolution engine, fitness manager, re-
production operators, etc. To develop such simulations, we
have greatly improved the TURTLEKIT standard tools.

3.2.2 Extending the TURTLEKIT launcher

The study of evolutionary systems requires a systematic use
of the simulation process. To this end, we have improved
the formal description of the implemented simulations and
developed Launcher agents able to parse XML files. The
simulations are thus described by defining agents, envi-
ronment, observers and viewers in XML formalisms. The
XML Launcher has been implemented by simply overriding
the initialization functions of the standard Launcher and by
providing adequate Java libraries to parse XML.

3.2.3 Extending the TURTLEKIT viewers

New viewers have been implemented to achieve two mains
goals: (1) dynamic visualization of diffusing substances and
(2) had-oc interventions in the environment. We first have
developed a universal viewer which allows the mapping of
the substances concentrations with the viewer RGB (red,
green, blue) canals. This technique has permitted us to pro-
vide a dynamic view of diffusing substances by defining the
displayed colors as functions of substances quantities. Fig-
ure 4 shows a simulation observed by four different view-

ers. Every viewer monitors a lot of diffusing substances
represented by various scales of the RGB colors In the first
viewer, the substances dropped by agents are invisible be-
cause external substances are present in too great propor-
tions. Thus, when scaling the visualization with the exter-
nal substances, the substances dropped by agents become
visible. It is important to note that the visualizations can be
managed and modified at runtime (new viewers, new colors,
display agents on/off, etc.).

Secondly, we have developed an environment editor that
permits user interactions with the environment via mouse
clicks. It allows: the instantiation of new turtles within the
environment, the modification of patches colors, the inter-
action with simulated agents via a simple popup, etc.

These features have permitted us to design in a ad-hoc
manner the predefined flag patterns required for the step 2
and 5 of the evolutionary algorithm. To evolve a French flag
pattern, we have first drawn the predefined French flag by
modifying the colors properties of the patches (See figure
5). Then this predefined pattern has been used as a mask to
give fitness. Figure 5 shows the growth of a multi-agents or-
ganism from a single evolved agent (after 250 generations).

3.2.4 Extending TURTLEKIT observers

The Observer is naturally the main class to extend to man-
age the evolutionary process. So, we created new classes of
observers, the Managers. Managers are designed to handle
various types of artificial genetic objects (genes, genomes,
pools, etc.). The Managers interact with the scheduler and
the launcher to randomly generate pools of genes, give ge-
netic inheritance to simulated agents, manage the reproduc-
tion process, save genetic objects to reuse them, and so on.
The possibility to design interactions between the observers
and other MADKIT agents allowed us to break through the
standard functioning of TURTLEKIT. Indeed, the Managers
have permitted us to develop a coherent evolutionary model
without modifying the TURTLEKIT simulation engine.

4 Conclusion

The TURTLEKIT platform aims at providing to advanced
users the simplicity of a Logo simulation model while
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Figure 5. Growth of fittest program from a single agent to a mature French flag organism.

proposing flexibility, modularity and extensibility. We have
shown the importance of using multiple views of one single
simulation in order to extract the required information. We
have also exhibited that agent oriented programming have
permitted us to develop sophisticated simulation models
without modifying the original simulation engine. In fact,
we can clearly distinguish two ways of using TURTLEKIT:

• LOGO-like programming: dedicated to newbie users,
this approach simply involves the definition of the be-
havioral automaton of the agents. All simulations tools
are directly managed by TURTLEKIT.

• SWARM-like programming: for advanced users, it
is possible to extend greatly the possibilities of
TURTLEKIT by inheriting and modifying the exist-
ing classes, enabling (1) the extension of the platform
modules (scheduling, probing, visualization, agent
creation, etc.) and (2) the implementation of additional
features required by a particular experiment

TURTLEKIT is available for download on the MAD-
KIT web (www.madkit.org). It features a user guide, the
TurtleKit api, tutorial simulations and advanced projects.
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