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1.1 Introduction

This chapter discusses the intersection between two research fields: (1) Muti-Agent Systems
(MAS) and (2) computer simulation.
On the one hand, MAS refer to a computer research domain that addresses systems which

are composed of micro level entities -agents-, which have an autonomous and proactive
behavior and interact through an environment, thus producing the overall system behavior
which is observed at the macro level. As such, MAS could be used in numerous research and
application domains. Indeed, MAS are today considered as an interesting and convenient
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way of understanding, modeling, designing and implementing different kind of (distributed)
systems. Firstly, MAS could be used as a programing paradigm to develop operational
software systems. MAS are particularly suited to deploy distributed software systems that
run in computational contexts wherein a global control is hard or not possible to achieve,
as broadly discussed in [ZP02]. At the same time, MAS also represent a very interesting
modeling alternative, compared to equation based modeling, for representing and simulating
real-world or virtual systems which could be decomposed in interacting individuals [PSR98,
KOPD02].
On the other hand, computer simulation is a unique way of designing, testing and studying

both (1) theories and (2) real (computer) systems, for various purposes. For instance,
according to Shannon, simulation is defined as [Sha75]:

“The process of designing a model of a real system and conducting experi-
ments with this model for the purpose either of understanding the behavior of
the system and/or of evaluating various strategies (within the limits imposed by
a criterion or a set of criteria) for the operation of the system.”

With respect to this definition, simulation could be thus considered as a computational
tool used to achieve two major motivations which are not mutually exclusive:

• The understanding of a real system;

• The development of an operational real system.

So, the opportunities of using both MAS and simulation are numerous, precisely because
they can be applied and/or coupled in a wide range of application domains, and for very
different purposes. In fact, the number of research works and software applications that
belong to the intersection between MAS and simulation is simply huge. To have an idea
of how close MAS and simulation are today, one can consider that there are about 800
instances of the word simulation, distributed among more than 35% of the 273 papers
published the 2007 agent community’s most known conference: AAMAS’07 [DYHS07].
Moreover, considering this already very high percentage, one has to take also into account
that, in this conference, there was no session directly related to simulation at all.
So, numerous works belong to the intersection between MAS and simulation. In this

book, this intersection is considered according to two main perspectives:

1. Modeling and Simulation (M&S) for MAS;

2. MAS for M&S.

Roughly, the first case refers to projects wherein computer simulation is used as ameans
for designing, experimenting, studying, and/or running a MAS architecture, whatever the
objectives. Especially, simulation could be used to ease the development of MAS-based
software, by following a software-in-the-loop approach (e.g. [RR03]): Simulation allows to
design, study and experiment with a MAS in a controlled and cost-efficient way, using sim-
ulated running contexts in place of the real running context (e.g. the Internet). Examples
of related application domains are Supply Chain Management (SCM), Collective Robotics,
self-organized systems, and Distributed Artificial Intelligence (DAI) to cite just a few of
them.
The second case is related to simulation experiments that use MAS as modeling paradigm

to build artificial laboratories. Well known examples are the simulation of virtual insect
colonies (e.g. [DF92]), artificial societies (e.g. [EA96]), social systems (e.g. urban phenom-
ena [BDP06]), etc. Today, using artificial laboratories represents a unique way of testing
theories and models for many application domains.
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The first part of this chapter provides the reader with an overview of some historical
motivations belonging to each perspective. As it would be endless to enumerate them all,
the chapter only focuses respectively on (1) DAI aspects for illustrating the M&S for MAS
perspective, and on (2) some relevant works done in the scope of Artificial Life (AL) for
illustrating the MAS for M&S perspective.
Beyond the previous distinction, there is of course only a thin line between concerns

belonging to each category as they both rely on simulating MAS. So, the second part
presents and studies some basic concepts of MAS in the scope of simulation. However,
although this study highlights some general concerns related to MAS simulations, in the
third part we will argue on the idea that it does not represent the full picture of the
intersection between MAS and simulation. In fact, understanding this intersection requires
to shift our point of view from the MAS field to the simulation field. Indeed, simulation
is not only a computational tool, but a real scientific discipline. As such, M&S already
defines some general issues, whatever the application domain. That is why one has also
to consider these issues to apprehend some of the challenges that the MAS community is
facing regarding simulation.
So, the next parts of the chapter studies MAS simulation works according to a pure M&S

perspective, derived from the Zeigler’s framework for M�S proposed in the early seventies
[Zei72]. Doing so, our goal is twofold: (1) put in the light the relevance of studying MAS
simulation according to this perspective, and (2) highlight some major challenges and issues
for future research.

1.2 M�S for MAS: The DAI Case

In the literature, MAS are often related to the history of DAI [Fer99]. Not surprisingly, most
of the first MAS researches wherein simulated systems are involved belong to the DAI field.
To understand why there is a need for simulation to engineer MAS, let us here consider three
historical researches which are often cited as forerunner examples of MAS: (1) the Contract
Net Protocol [Smi80], (2) the Distributed Monitoring Vehicle Testbed (DVMT)[LC83], and
the MACE platform [GBH87].

The CNET Simulator

Proposed by Smith, the Contract Net Protocol [Smi80] specifies problem-solving commu-
nication and control for task allocation (or task sharing) over a set of distributed nodes.
To experiment with this negotiation protocol, Smith needed some instances of relevant dis-
tributed problems. To this end, Smith developed a simulated system called CNET, which
purpose was to simulate such instances. For instance, CNET was used to simulate a dis-
tributed sensing system (DSS): A network of sensor and processor nodes distributed in a
virtual geographic area. In this experiment, the agents was in charge of constructing and
maintaining a dynamic map of vehicle traffic in the area.
With these experiments, Smith was able to test and refine his protocol. Obviously, it

would have been very hard to achieve such experiments without the use of a simulated
environment. The reason is twofold: (1) The deployment of the system in a real running
context would have been costly and (2) real-world experiments cannot be entirely controlled
(e.g. hardware reliability) so that they do not ease the development process, as they include
irrelevant noise in it. So, CNET simulations were used to provide the suitable testbed
which was required by Smith to experiment with the Contract Net Protocol.
The point here is that the CNET simulator has played a fundamental role in this research:

CNET was themeans by which the Contract Net Protocol has been evaluated and validated.
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Therefore the CNET settings were a critical parameter doing this research and this was
already noticed by Smith in the original paper. This historical research is a forerunner
example of the importance that simulation has always taken in DAI research, and also
MAS engineering. This is even more clear with the second example.

The DVMT Project

Initiated in 1981 by Lesser and Corkill and continued through 1991, the Distributed Moni-
toring Vehicle Testbed (DVMT) project [LC83] has been one of the most influential research
for the MAS field. The purpose of the DVMT project was clear: Provide a generic software
architecture, a so-called testbed, for experimenting with cooperative distributed problem
solving networks composed of semi-autonomous processing nodes, working together to solve
a problem (an abstract version of a vehicle monitoring task in this project). In this perspec-
tive, the DVMT was clearly presented as a simulation tool, which purpose was to enable
researchers to explore design issues in distributed problem solving systems.
The interesting thing is that this research emphasized more on the need of a real DAI

tool than on a particular DAI problem to solve. Indeed, considering the DAI research
experiments which were previously conducted till that time, such as the well known Hearsay
II project [EHRLR80], it was clear that further investigations was required to understand
and explore all the issues raised by the use of these Functionally Accurate, Cooperative
Distributed Systems (FA/C) [LC81], especially regarding the size of the network and the
communication topology of the nodes. Questions like, how to select an appropriate network
configuration with respect to the selected task characteristics, was at the heart of such
researches, and this did require extensive experimentation. Lesser and Corkill pointed out
the difficulties of doing such experimentations because of the inflexibilities in the design of
the existing systems: The design of these systems were focused on the problem to solve
rather than on the corresponding testbed. Thus, experimenting with the existing systems
was time consuming or even not feasible.
Therefore, designing the DVMT, the approach of Lesser and Corkill was to [LC83]:

• Abstract a realistic distributed solving task to make it more generic and parametriz-
able.

• Develop the related distributed problem solving system using a software archi-
tecture as flexible as possible.

• Build a simulation system able to run this system under different environmen-
tal scenarios, node and communication topologies, and task data.

Motivating this approach, Lesser and Corkill said [LC83]:

“We feel this approach is the only viable way to gain extensive empirical
experience with the important issues in the design of distributed problem solving
systems. In short, distributed problem solving networks are highly complex. They
are difficult to analyze formally and can be expensive to construct, to run, and
to modify for empirical evaluation. . .Thus, it is difficult and expensive to gain
these experiences by developing a “real” distributed problem solving application
in all its detail.”

Obviously, Lesser and Corkill were right as they were generalizing approaches like Smith’s.
But, more than a pragmatic method of doing this kind of research at that time, the approach
followed by Lesser and Corkill clearly highlights (1) that modeling and simulation is a key
for most of the DAI researches and thus (2) why the simulation aspects on which rely these
researches cannot be bypassed or underestimated.
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Here, considering the scope of this chapter, one question is: Is it possible to generalize
the importance of modeling and simulation aspects to MAS engineering in general? The
answer is a strong yes. Indeed, in the preceding citation, it is possible to replace the words
distributed problem solving systems by MAS to have a statement that still holds today in
most cases when engineering multiagent-based software.

Still, DVMT was only a first step toward a more general way of engineering agent-based
systems as it was focused on the simulation of a particular domain, considering a specific
paradigm (FA/C), and motivated by pure DAI purposes. The next step relied on proposing
a more generic testbed which would not have been built with a dedicated domain in mind.
This step was achieved few years later by another historical pioneer work that has also
deeply influenced MAS research: the MACE platform [GBH87].

MACE: Toward Modern Generic MAS Platform

TheMulti-Agent Computing Environment, MACE, is the result of a work initiated by Gasser
and his colleagues in the mid eighties [GBH87]. At that time, thanks to the previous works
done on DAI testbeds, there was a general agreement in the DAI community that having a
framework embedding simulation tools was essential for exploring DAI issues (see [Dec96]
for a detailed discussion on historical DAI testbeds and their essential features). However,
MACE represented a historical shift for several reasons:

• MACE was not related to a particular domain nor based on a particular DAI
architecture;

• MACE was completely focused on providing DAI system development facilities
able to model various kinds of DAI systems, and considering different levels of
granularity for the agents;

• MACE proposed both (1) modeling and simulation tools to experiment DAI
systems and (2) a physically distributed software environment able to deploy the
corresponding systems over a real network;

• the MACE software was itself designed as a community of system agents that de-
fined the concrete means for building agent-based software systems with MACE:
MACE was agentified.

So, even though MACE was tagged as a DAI tool, it could be considered as the ancestor
of many generic MAS platforms that were designed in the years that followed (e.g. Mad

Kit [GFM01], James [HRU03], Spades [RR03], and the new version of MACE, MACE3J
[GK02]). Indeed, most of the existing MAS testbeds and platforms (DAI related or not) pro-
vide simulation tools, particularly to enable a software-in-the-loop approach for designing
MAS architectures.

1.3 MAS for M�S: Building Artificial Laboratories

1.3.1 The Need for Individual-Based Modeling

The interest of using MAS in the scope of M&S mainly appears when it comes to the sim-
ulation of complex systems (i.e. systems which are composed of many interacting entities).
The modeling of complex systems has always been a motivation for scientific researchers.
One historical example is the continuous deterministic model which has been proposed by
Volterra to represent the population dynamic of two animal species (preys and predators)
[Vol26].
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By mathematically relating the population dynamics of two species using a differential
equation system (DES), the purpose of this model was to explore the mechanism of interac-
tion between predator and prey (sharks and sardines in the original Volterra’s study). This
model was found appropriate because the solution of this DES shows an intuitively sound
result which is that both populations should oscillate: When the prey density is high, the
predator multiply until there are not enough preys, which leads in turn to the regeneration
of the preys, thanks to the lethal competition which occurs between the predators.

However, despite the apparent appropriateness of this model, some researches gave results
which did not exhibit oscillatory behavior with experimental predator/prey populations
[Gau34]. Therefore, many variations of the original model were done in order to reconcile the
discrepancy between observed experimental results and the model: Adding more complex
dynamics (e.g. variation of the predator’s voracity over time), new constraints (e.g. a
maximum number of animals in the environment), and/or new parameters (e.g. gestation
time of prey and predator) to the system [Ros71].

There were also early attempts to formulate a stochastic version of the system, but it was
only in the sixties that, thanks to the advent of computer simulations, it has been possible
to experiment with such versions of the model (e.g. [Bar60]). At that time, these researches
highlighted that one major drawback of deterministic models precisely relies on the fact
that they are unable to take into account the apparent not deterministic nature of real life
complex systems such as a predator/prey ecosystem. Indeed, real life interaction situations
seem to always involve randomness because of the actual complexity of real world processes.

However, the counterpart of the stochastic versions of the original equations was that
they exhibit more complex behaviors and great variability, even when used with the same
parameters [BS76]. This raises the question of the relevance of the parameters with respect
to the targeted system: Are they really capturing something form reality? Such models
finally seem to be more related to a mathematical exercice than a modeling that helps to
understand the targeted system. So, although this model has some interesting behavior
with respect to real population dynamics, it is criticized for the lack of insights it gives
about the dynamics of the true components of the systems: The preys and predators.

So, several problems remain with these approaches considering the modeling of complex
systems which involve individual entities [Fer99]:

• Only a global perspective is possible

• Equation parameters hardly take into account the complexity of micro-level in-
teractions

• The modeling of individual actions is not possible

• Integrating qualitative aspects is hard

As we have seen in the previous section, MAS platforms, relying on the modeling and
simulation of autonomous proactive entities, did appear practically at the time the agent
paradigm was defined, in the early eighties. However, the notion of agent itself, as a
fundamental unit of modeling could be found in models and experiments which took place
much more earlier, at least in the late fifties.

Indeed, the first attempts that tried to solve the previously cited problems, by integrating
several levels of analysis in the modeling, were proposed by the microsimulation approach.

1.3.2 The Microsimulation Approach: The Individual-Based Modeling
Forerunner
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In the scope of social sciences, the notion of agent has always been essential. So, one of the
first approaches which have been proposed as an alternative to mathematical models comes
from social science and is named microsimulation [Orc57].

In [Orc57], Orcutt pointed out that the macroeconomic models which were proposed
till that time failed to provide relevant information about the influence of governmental
policies on the evolution of micro level entities (households and firms). Therefore, Orcutt’s
point was to emphasize the need of integrating micro level entities in the development of
simulation models, making their results more relevant and useful for the study of social
systems dynamics. To this end, the basic principle of microsimulation is to concretely
integrate the micro level by means of rules, either deterministic or stochastic, that apply
on the attributes of individual units, leading to the modeling of changes in their state and
behavior.

Mainly used for population, traffic, and firm based models, microsimulation (or micro-
analytic simulation) is a modeling approach which is still intensively used today, as the
activity of the International Microsimulation Association (IMA) shows�. The IMA website
provides many references to actual works in the microsimulation field. Other introductions
to this field could be found in books such as [CHT97, Har96].

So, although microsimulation has its roots within the scope of social sciences, it can
be considered as the original starting point of Agent-Based Modeling (ABM) approaches
(sometimes called Individual-Based Modeling, e.g. in the modeling of ecological systems
[GR05]).

1.3.3 The Agent-Based Modeling Approach

Considering the integration of the micro level within the modeling, an ABM approach goes
a bit further than microsimulation. ABM suggests that the model not only integrates
the individuals and their behaviors, but also focus on concretely modeling the actions and
interactions that take place between the entities, through the environment. Similarities
and differences between ABM and previous approaches are discussed in more details in this
book in [Tro08].

So, with respect to Equation-Based Modeling (EBM), using the MAS paradigm to model
a system provides a completely different perspective which represents an attractive alter-
native regarding the problems raised previously: Contrary to EBM, wherein the system
global dynamics are defined a priori using mathematical relations between global system
properties (e.g. the total number of preys), ABM relies on the explicit modeling of micro
level entities and dynamics (e.g. individual characteristics and behaviors, actions and in-
teractions between the entities and the environment, etc.). The observed global behavior of
the system being thus considered as the result of these micro level dynamics. For instance,
considering a predator/prey system, each individual has to be modeled (cf. figure 1.1).

More generally, quoting [PSR98], the two main differences between EBM and ABM rely on
(1) the way they model relations between entities and (2) the level at which they focus their
attention. EBMmodel relations between system observables (i.e. measurable characteristics
of interest) while ABM represent individuals that evolve by interacting with one another
and the environment.

The interest of MAS relies on four main concepts:

�http://www.microsimulation.org. Accessed June 2008.



1-8 Agents� Simulation and Applications

FIGURE 1.1 An agent-based model: The micro level entities, their actions and interactions, and the

environment

1. Autonomous activity of an agent, i.e. its ability to carry out an action on its own
initiative, (pro-activity), by controlling its behavior in order to increase its sat-
isfaction and by deciding to help or to prevent others from satisfying their goals.
As it could be noticed, the previous definition of agent stresses the autonomy
of decision, which results from the independence with which an agent tries to
satisfy its objectives (in the broad sense of the term), by using its competences
and its own resources, or by asking for help from others.

2. The sociability of the agents, i.e. their ability to act with other agents from a
social point of view. An agent in a MAS is not an isolated entity, but an element
of a society. A society emerges from the interactions which take place between the
agents, and conversely, the organization of a society constrains the behavior of
the agents by ascribing them roles which will restrain their action potentialities.

3. Interaction is what connects the two preceding concepts. This interleaving of
actions, where each action is decided inside an agent’s mind, produces organized
patterns of activities, emerging social forms, which, in return, force and constrain
the behavior of agents. So it is through these interactions that forms of interaction
emerge, such as cooperation, conflict or competition. This, in return, produces
more or less stable organizational patterns which structure the individual action
of each agent.

4. The situatedness of the agents, i.e. the fact that the agents are placed into
an environment which defines the conditions in which the agents exist, act, and
interact. The environment is the glue that connects the agents together, enabling
interaction between the agents so that they are able to achieve their goals.

All the power of MAS comes from this cyclic process: Agents act in an autonomous way in
a space constrained by the structure of the society in which they act, this structure resulting
itself from the behaviors of these agents. There is a dependency loop between agents and
societies, between the micro and the macro level, between individual and collective, which
is finally at the core of complex system issues.

It is thus not by chance if MAS seem to be a major tool to model complex systems, as
societies of agents. They propose much more than a simple technique of modeling. They
are not simple abstract tools making it possible to numerically characterize the evolution of
a system from its parameters. Being societies by themselves, and being built on the same
basis as any complex systems, MAS prove to be ”artificial micro-worlds”, of which it is
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possible to control all characteristics and reproduce series of experiments as in a laboratory.
Compared to animal and human societies, and to complex systems in general, MAS may
be seen as ”microcosms”, small-scale models of real systems, like reduced size models of
boats and buildings, while having the same dynamics and following the same principles as
the real social systems.
Moreover, one of the main qualities of multi-agent modeling stands in their capacity of

integration and in their flexibility. It is possible to put together quantitative variables,
differential equations and behaviors based on symbolic rules systems, all in the same model.
It is also very easy to incorporate modifications in the behavior of the individuals, by adding
behavioral rules which act at the individual level. It is also possible to add new agents with
their own behavioral model, which interact with the already defined agents. For example,
in a forest management model, it is possible to introduce new animals, new plant species,
new farmers, and to analyze their interactions with already modeled agents.
Because of emergent processes due to interactions, MAS makes it possible to represent

complex situations where global structures result from interactions between individuals, i.e.
to spring up structures of the macro level from behaviors defined at the micro level, thus
breaking the barrier between levels.
Establishing an exhaustive list of all the simulations which rely on an ABM approach

would be endless. Therefore, we will only focus on some representative and forerunner
examples in the following sections.

1.3.4 Agent-Based Social Simulation: Simulating Human-Inspired Be-
haviors

Naturally, inspired by the forerunner works which have been done in the scope of microsim-
ulation, social science was one of the first research field wherein an ABM approach has
been applied. In this perspective, the seminal work of Schelling on residential segregation
[Sch71] has deeply inspired the field. Schelling’s model was one of the first to show clearly
how global properties (segregation among the agents in this case) may emerge from local
interactions.
Following this trend of research, Agent-Based Social Simulation (ABSS) becomes only

widely used in the mid-nineties (a number of examples can be found in [CHT97]). These
works model artificial (human-inspired) societies, considering various levels of abstraction
as discussed in [Gil05].
To depict the approach underlying these models, Epstein and Axtell coined the notion

of generative social science in the book Growing artificial societies [EA96]. As discussed in
more details by Epstein in [Eps07], this notion enables to highlight the differences between
ABM and both inductive and deductive social science. More on the different motivations
of using agent-based models for social science could be found in papers such as [CGS98,
Axt00, Gol02] and in the second edition of the book of Gilbert and Troitzsch which gives a
comprehensive view of the field [GT05].
ABSS concrete examples are the modeling of urban phenomena (e.g. [VTD00, BDP06]),

works done in game theory on the iterated prisoner dilemma (e.g. [BDM98]), and the mod-
eling of opinion dynamics [DAWF02]. One can find many other examples in the electronic
journal Jasss�, the Journal of Artificial Societies and Social Simulation.
Some generic ABSS related platforms have also been proposed (e.g. Ascape [Par01],

�http://jasss.soc.surrey.ac.uk



1-10 Agents� Simulation and Applications

Moduleco [Pha04]). Moreover, a modeling language relying on rule-based agents has
been proposed in [MGWE98], namely SDML. Today, the RePast toolkit [NCV06] is a
representative example of platform which is used for ABSS.

1.3.5 Flocks and Ants: Simulating Artificial Animats

The Reynolds’s Boids

Considering the use of the agent paradigm for M&S purposes, a forerunner work has been
done by Reynolds on flocks [Rey87]. In the scope of computer graphic animation, the goal
of Reynolds was to achieve a believable animation of a flock of artificial birds, namely boids.
Reynolds remarked that it was not possible to used a scripted flock motion to achieve a
realistic animation of group motion. So, Reynolds was inspired by two stream of research:
(1) particle systems [Ree83] and (2) the Actor paradigm [Agh86].
Particle systems were already used for the animation of complex phenomena, such as

clouds or fire, which were modeled as collections of individual particles having their own
behavior and state. However, particles did not interact as their behavior only relied on
their own internal state (position, velocity, lifetime, etc.) and potentially on some global
parameters that could represent phenomena such as gravity.
The idea of Reynolds was that boids have to be influenced by the others to flock in

a coherent manner: ”Boid behavior is dependant not only on internal state but also on
external state”. So, Reynolds used the actor abstraction to define the boids behavior so
that they do interact to flock. Boids change their directions according to others’ to stay at
the center of the local flock they perceive.
The results obtained were very compelling and the impact of the Reynolds’s boids on the

community of reactive agents can still be perceived today as it was one of the first works
to be bio-inspired.
Indeed, beyond graphic animation, boids-inspired behaviors can be found in domains such

as mobile robotics (e.g. flocks of unmanned aerial vehicles (UAV) [NPL07]), and human
crowd simulation, e.g. like in [MT00] or [PAB07]. In this last reference, the research is
also inspired by the pioneer work of Helbing and Péter Molnár on human crowd which uses
the concept of social forces to model how pedestrian are motivated to act with respect to
external environmental conditions (e.g. others pedestrians or borders) [HM95]. A famous
example of application derived from these different technologies is the use of the Weta
Digital’s MASSIV ET� software for special visual effects in movies such as the Lord of the
rings, in which there are huge battle scenes.
Although the boids paradigm is well suited for modeling collective moves, it is limited

by the fact that it only relies on the direct perception of the others: The environment does
not play any role in the interaction between the agents. On the contrary, the environment
play an essential role for the modeling of ant colonies.

Ant Colonies

Regarding bio-inspired MAS related works, ant colonies probably represent the natural
systems which has inspired the most. Indeed, firstly ant colonies exhibit many features which
are expected from MAS such as self-organization, self-adaptation, robustness, emergent
properties, and so on. Secondly, the ability of ants in solving complex problems in an
efficient and constant way is fascinating considering their limited individual characteristics.
The most well known example of that being how ants use pheromones to find the shortest
path from the nest to food sources [BDG92].
So, as ant colonies was quickly recognized as a fascinating model of MAS, many MAS
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simulations done in the early nineties rely on simulating and studying characteristics of
ant-based systems (e.g. [CJ92]). Among these forerunner works on ants, one of the most
ambitious has been done in the scope of the MANTA (Modeling an ANTnest Activity)
project [DF92]. Firstly, MANTA relied on an innovative modeling and simulation framework
called EMF (EthoModeling Framework) which was sufficiently simple to be used by non
computer scientists to implement multiagent simulations. Secondly, the purpose of MANTA
was not only to simulate some characteristics of ants but to translate all the parameters of
a real biological study into a virtual ant farm. So, MANTA simulations were composed of
all the creatures that can be found inside an ant nest (ants, larvae, cocoons, eggs) and also
took into account time and some environmental factors such as light and humidity.
It is worth noting that, at the same time, Dorigo also took inspiration from ants to

define a new kind of optimization algorithms, namely the Ant system heuristic [Dor92].
Especially, he derived from this approach a distributed algorithm called Ant Colony System
(ACS) which was applied to the traveling salesman problem [DG97]. Today, Ant Colony
Optimization (ACO) [DS04a] represents a whole trend of research in the domain of swarm
intelligence.
The common point between all these researches is that they all identified that one ma-

jor characteristics of ants is their ability to use pheronomes (evaporative scent markers)
to indirectly communicate and coordinate through the environment. Indeed, pheromones
enable the ants to achieve complex tasks thanks to a simple environmental mechanism:
Pheromones evaporate, so that the system can forget obsolete information which is the
fundamental feature of such systems [Par97]. For instance, paths leading to depleted food
sources progressively disappear with time. This powerful mechanism has been successfully
translated into computer programs and simulations, thus defining the concept of digital
pheromones which has been used in numerous works. Additionally, using a pheromone-
based approach of course does not entail to only consider ant-like agents. One example can
be found in this book: Polyagents [PB08].

1.4 Simulating MAS: Basic Principles

MAS have been developed around a set of principles and concepts. These concepts are:
Agents, Environment, Interaction and Organizations, as presented in the Vowels approach
[Dem97]. We will give a brief overview of the first three aspects in this chapter. Then, we
will discuss issues related to the modeling of time in MAS simulations.

1.4.1 Agent

Many definitions of agency have been proposed in the field of MAS, each one being more
adapted to a specific flow of research (see [Woo02]). The following one is adapted from
[Fer99]: An agent is a software or hardware entity (a process) situated in a virtual or a real
environment:

1. Which is capable of acting in an environment,

2. Which is driven by a set of tendencies (individual objectives, goals, drives, satis-
faction/survival function),

3. Which possesses resources of its own,

4. Which has only a partial representation of this environment,

5. Which can directly or indirectly communicate with other agents

6. Which may be able to reproduce itself



1-12 Agents� Simulation and Applications

7. Whose autonomous behavior is the consequence of its perceptions, representa-
tions and interactions with the world and other agents (cf. figure 1.2).

FIGURE 1.2 A multiagent world

Agent Architectures

The term generally used to describe the internal organization of an agent is that of archi-
tecture, by analogy with the structure of computers.

It is generally considered that there are two main approaches for analyzing agent ar-
chitectures: (1) The reactive approach in which we only consider perception-action (or
stimuli-response) architectures and (2) the cognitivist approach which relies on mental is-
sues, such as the explicit representation of the environment (and other agents) by agents.
A third approach, called hybrid, consists in trying to get together the first two.

Reactive Architectures. A reactive agent does not have an explicit representation of its
environment nor of other agents. Its behavior is entirely described in terms of stimuli-
response loops which represent simple connections between what they perceive and the set
of available operations that may be performed. The most well-known architectures in this
domain are the subsumption architecture in which tasks in competition are arbitrated along
predefined priorities [BC86], the competitive task architecture, where concurrent tasks have
their weight modified through a reinforcement learning process [DF92], and connectionist
architectures which are based on neural nets. Some approaches combine these different
structures within an integrated architecture, like the one of Tyrell for instance, which com-
bines control by priorities and neurons, within a hierarchical structure [Tyr93]. There are
also architectures that combine behaviors, each behavior being represented as a vector of
actions. The Satisfaction-Altruism function allows to combine behaviors centered on the
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desires of agents with cooperative behaviors centered on the needs of others [SF00].

Cognitive Architectures. Cognitive architectures are founded on the computational metaphor
which considers that agents reason from knowledge described with a symbolic formalism.
This knowledge explicitly represents their environment (states, properties, dynamics of ob-
jects in the environment) and the other agents. The most well-known architecture of this
type is the BDI (Belief-Desire-Intention) which postulates that an agent is characterized by
its beliefs, its goals (desires) and intentions [RG92]. It is assumed that cognitive agents are
intentional, i.e. that they intend to perform their action, and that these actions will allow
them to satisfy their goals. In other words, a BDI agent acts rationally from its beliefs about
world states, its knowledge (and those of others), its intentions (and the one of others) to
achieve its goals. A BDI agent is assumed to possess a library of plans, each plan being
designed like a recipe making it possible to achieve a particular goal. An intention is set
when an agent makes a commitment about achieving a specific goal by using a particular
plan. The management and update of beliefs, goals and intentions are carried out by the
BDI engine which selects the plans and the actions to be undertaken.

FIGURE 1.3 A BDI architecture with its different modules

Figure 1.3 illustrates the functional representation of a BDI architecture. External per-
ceptions and messages are used to form beliefs. It is supposed that an agent may initially
have several goals. These initial goals, added with the goals resulting from requests of other
agents, are analyzed and selected in the decision component to trigger the set of plans com-
patible with the agent’s beliefs. If there are no plans that can be found, a problem solver
(not shown here) has the responsibility to decompose the initial problem into sub-problems,
by producing sub-goals that the agent will have to satisfy. When an agent chooses to ex-
ecute a plan, the actions of this plan are transformed into intentions which will produce
environmental actions and communications with other agents. The main quality of BDI
architectures is to create a behavior which mimics that of a rational human being. As an
example, The Jason platform, which is described in this book [Bor08], enables to design
Agent-Based Simulation Using BDI Programming.
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Hybrid Architectures. The two main types of agents, cognitive and reactive, propose solu-
tions apparently diametrically opposite, but in fact, they may be viewed as complementary.
In order to build best suited architecture to solve a problem (in terms of response time,
precision or efficiency), it is possible to create hybrid architectures which combine the two
types of approaches, and then build more flexible agent architectures.

In such architectures, agents are composed of modules which deals independently with the
reflex (reactive) and reflexive (cognitive) aspect of the agent behavior. The main problem is
then to find the ideal control mechanism ensuring a good balance and a good coordination
between these modules. Let us cite the Touring Machine [ABB�93] and InteRRap [MP93],
the most well know examples of hybrid architectures.

Developing MAS with a specific architecture in mind (cognitive, reactive and even hybrid
approaches), may be a disadvantage when developing open MAS: some developers think
in terms of reactive agents whereas others prefer to use a cognitive approach. In an open
system, all these agents must live together, conform to a framework of execution and of
behavior, and thus must be able to interact within the same interaction space.

Modeling the Behavior of Agents

In order to simplify the model of agents, the process which takes place between the percep-
tion of inputs and the production of outputs can be considered as the deliberation function
of the agent. So, an agent is a cyclic three phases process: (1) perception, (2) deliberation,
and then (3) action (cf. figure 1.4).

FIGURE 1.4 An agent as a three phases process

As the purpose of this section is not to explain the modeling details of existing agent
architectures, we here just present a formalism which is inspired by the work of Genesereth
and Nilsson [GN87] and focuses on representing the cyclic nature of the behavior of an agent.
Let σ ∈ Σ be the actual state of the world, the behavior cycle (perception / deliberation /
action) of an agent a is represented using a function Behaviora : Σ �→ Aa, Aa representing
the set of possible actions that the agent a can take:

• Perceptiona : Σ �→ Pa, that computes a percept pa ∈ Pa from the system’s state
Σ.

• Deliberationa : Pa × Sa �→ Sa, that computes the new internal state sa of the
agent.

• Actiona : Pa × Sa �→ Aa, that produces the action of a.

So, firstly an agent obtains a percept pa which is computed by the Perception function
using the current state of the environment σ. Such a function may simply return some raw
data (quantitative variables) used to defined the state of the environment (e.g. coordinates
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of objects, the current temperature in celsius degrees, etc.), but it may also represent more
complex processes that transform raw data to high level percepts representing qualitative
aspects of the environment (e.g. near or far from an object, the temperature is hot or cold,
etc.), thus easing the deliberation of an agent as discussed in [CCC�05].
Secondly, the Deliberation function (Memorization in [GN87]) defines how the agent

uses pa to make its internals evolve according to pa, updating its own representation of the
world for instance. The deliberation process of an agent defines the core part of its behavior
and characterizes its architecture (reactive or cognitive). As such, it is obviously the part
which has been studied the most. Still, it is worth noting that this function is skipped for
tropistic agents (without memory) as they directly match percepts to actions.
Finally, the Action function represents how an agent makes its decision, based on its new

internal state and current percept, and thus chooses the action to take. Most of the time,
this action is directly concretized by the modification of the environment which is supposed
to succeed the action (e.g. σ = �door(closed)} �→ σ = �door(open)}). In other words, the
direct modification of the environment is the means by which is the result of the action of
an agent is computed.

1.4.2 Environment

An Essential Compound of MAS

In the beginning of MAS, in the old days of DAI, the concept of environment has not
been given an important consideration. But the development of MABS has shown the
importance of the environment because, in MABS models, agents are situated in a concrete
environment: the simulated environment.
More recently, the environment has also been pointed out as an essential compound of

MAS as it in fact broadly defines all the perceptions and actions that an agent may have
or take: The environment defines the conditions in which the agents exist in the MAS
[OPFB02]. Especially, the term environment could also refer to the infrastructure in which
agents are deployed and thus be studied as a first order abstraction from an agent-oriented
software engineering perspective, as thoroughly discussed by Weyns et al. in [WPM�05b].
To distinguish the different concerns which could be related with the concept of en-

vironment in MAS, Valckenaers et al. have proposed a structured view on environment-
centric MAS applications, thus identifying three base configurations which one is simulation
[VSSRA07]. So, in the scope of a simulation configuration, according to this proposition
the environment simply refers to the part of the simulation that models the relevant portion
of the real world (either it exists, needs to be realized or no longer exists) or a imaginary
world. From now on, we will only consider this aspect of the environment, i.e. the modeling
part that represents the world in which the simulated agents evolve.

Modeling the Environment

The inputs an agent receives comes from the environment is situated in (and of which the
other agents are part). Similarly, the outputs an agent produces go in the environment.
From a M&S perspective, the environment is another dynamical system (ABM relies

on a multi-model approach). However, contrary to an agent model, the dynamic of the
environment does not represent any autonomous behavior. Regarding the characteristics
and dynamics of the environment, Russell and Norvig propose to consider several properties
[RN03]:

• Accessible vs. inaccessible. An environment is defined as accessible if its complete
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FIGURE 1.5 An agent receives inputs from the environment and produces outputs on it

state can be can perceived by an agent.

• Deterministic vs. nondeterministic. An environment is deterministic if its next
state is entirely determined by its current state and the actions selected by the
agents.

• Episodic vs. nonepisodic. In an episodic environment, an episode (an agent
perceiving and then acting) does not depend on the actions selected in previous
episodes.

• static vs. dynamic. In a static environment, changes only occur under the influ-
ences of the agents, contrary to a dynamic environment which posses an endoge-
nous evolution.

• Discrete vs. continuous. In a discrete environment, the number of possible
perceptions and actions is limited and clearly defined.

The modeling of the environment usually embeds the representation of some physical
places wherein the agents evolve. As the environment defines the perceptions and actions
of the agents, two main approaches can be distinguished with respect to the granularity of
these perceptions and actions:

1. Discretized: The environment is discretized in bounded areas that define space
units for the perception/action of the agents (environment-centered)

2. Continuous: The range of each perception/action depends on the acting agent
and the nature of the perception/action (agent-centered)

The first approach consists in modeling the environment as a collection of connected
areas, which thus defines the topology of the environment. Figure 1.6 shows three examples
for such an approach: The rooms of a house thus defining non-uniform cells (a), a physical
space divided in regular zones (uniform cells) (b) and the nodes of a network (c). With
such a modeling, the idea is to use the environmental characteristics to define the range of
the perceptions and actions (e.g. an entire room, a cell, or a network node).
The most usual examples of this kind of approach are those wherein the environment is

discretized in a regular grid of cells (or patches) (cf. figure 1.6 (b)). Platforms allowing
such a modeling of the environment are numerous (e.g. StarLogo [Res94], TurtleKit

[MBF05]).
Widely used for their simplicity of implementation, grid-based environment models have
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FIGURE 1.6 Examples of discretized environments

also the advantage of easing the modeling of environmental dynamics such as the diffusion
and evaporation of digital pheromones. As major drawback, a grid-based model raises the
problem of the granularity of the perceptions/actions which an agent can make. Indeed,
whatever the perceptions/actions of an agent, which can be very heterogeneous, their range
will always be the same (modulo a factor): The cell.
On the contrary, the continuous approach considers each agent as the reference point from

which the range of perceptions/actions is computed (cf. figure 1.7. This kind of modeling
is required when accurateness is needed. For instance, this modeling is usually used to
simulate soccer robots (e.g. in RoboCup soccer simulators [KAK�97]): The granularity of
the movements of both the agents and the ball has to be accurately modeled.

FIGURE 1.7 Continuous approach for the perception of the agents
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Except from the fact that such a modeling could be required, the main advantage is that
the continuous approach is far more flexible than the former considering the integration of
heterogeneous perceptions/actions within the modeling of the agents. The counterpart is
that it is of course more difficult to model and implement such an approach.

1.4.3 Interactions

Communications between agents are at the core of interactions and social organizations.
Without communicating, an agent is totally isolated, deaf and dumb, closed on its perception-
deliberation-action loop. Because they communicate, agents can cooperate and coordinate
their actions, and become true social beings. Communication is expressed through language
items (messages, signals) which, once interpreted, will produce an effect on agents. There
are a great number of approaches of communications: social sciences, linguistics and phi-
losophy of language developed a whole set of concepts, in particular in all what is known as
speech acts. Biology and ethology have also produced theories on communication through
signals.

Communication by Message Passing

The traditional model of communication between agents relies on message passing. A
transmitter sends a message to a recipient knowing directly (or indirectly via a directory)
its address. This simple model is used in most of the MAS. It has been extended by the
speech act theory, which gives precise semantics to the interaction. Appeared with the work
of Austin [Aus62] and Searle [Sea69], the concepts of speech act theory have been simplified
with the development of the KQML [FFMM94] and ACL [Age] languages. Speech act
theory considers that communications may be interpreted as mental acts. For example, if
an agent A, with the goal of having the world in state S sends a request to an agent B to
perform the action a, it supposes that A believes that the world is not in state S, that a
has not been performed, and that the achievement of a would result in the state S, and
that A believes that B is able to do a. It is the same if A informs B that a proposition p is
true. Its meaning resides in mental issues: A believes that p is true, that B has no beliefs
about p, and the expected result by A is that finally B eventually believes that p is true.
Research works have also been conducted to define interaction protocols, i.e. to define

the sequence of messages which characterize an interaction situation. For example, if A
requests B to perform a, it waits for an answer from B saying if B agrees to accomplish
the job. If B does agree, it will inform B when the task a will be achieved. This means
that it is possible to represent interactions between agents with communication diagrams.
Proposed by Odell, Bauer and Müller, AUML [BMO01] is a MAS description language
which extends UML sequence diagrams by adding specific extensions and by reducing some
of the obviously too specifically ”object-oriented” aspects.

Interactions Using Signals

Besides speech acts and communication standards, agents may communicate by using sig-
nals. This type of communication is based on biology and ethology, where animals tend
to behave collectively by using signals. In the MAS domain, two main kinds of signals are
used: marks and fields. Marks are traces that agents make while moving. Like little thumb,
they may drop marks on their way (pheromones, tracks, pebbles, objects of any sort,..)
which could then be interpreted by other agents. This mechanism produces the famous
ant lines. The tracks, in the form of pheromones dropped by the ants while returning to
their nest, are used as interaction medium to signify to other ants where food can be found
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(figure 1.8).

FIGURE 1.8 Ant agents, represented as robots, carry resources back to their base while dropping

pheromones which are used as marks

Signals may be spread in the environment. And in this case, they may be used to
indicate, remotely, the presence of obstacles, desirable objects, agents to help or to avoid.
These signals are used to coordinate a set of agents acting in a common environment. Let
us consider the intensity of signals relative to the distance between the source and a location
in the environment. If these signals are propagated in a uniform and homogeneous way,
they form potential fields. It is then possible to define attractive and repulsive forces from
the gradient of these fields [Ark89]. The goals are then represented as attractive fields and
obstacles as repulsive fields. The movement is obtained by a combination of attractive and
repulsive fields, and an agent has only to follow the greatest slope direction (figure 1.9).
When obstacles can move, i.e. when there are other agents, it is necessary to add avoidance
behaviors [ZF93, SF00, CSF02].

One has to notice that these signals may either be real (and part of the environment)
or virtual, i.e. rebuilt by agents as simple means to coordinate their movements in the
environment, like it is done in [MGMB07] in the scope of image segmentation: Simulated
agents create potential fields, without affecting the pixels, to attract others in areas of
interest (object edges).

1.4.4 Modeling Time
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FIGURE 1.9 An agent moves in a field by following its gradient

Like for the simulation of other kinds of system, the evolution of time should be modeled
when simulating MAS. Especially, all the agents are supposed to act and interact concur-
rently with respect to the principle of causality [FTPD98].

Time could be modeled using three main approaches: (1) continuous time (by means
of time functions which can compute the system state for any time stamp, e.g. DES),
(2) discrete time (time evolves discretely with respect to constant time intervals), and
(3) discrete event-based (time evolves discretely from one event to the next considering a
continuous time line, i.e. the time interval between two events could be any real number).
In this respect, modeling time for a MAS supposes to consider at least three aspects:

1. The modeling of the behavior time of the agents

2. The modeling of the endogenous dynamics of the environment

3. The evolution of the environment with respect to the agent actions.

Modeling the Behavior Time of an Agent

The models which are used to represent how an agent reacts to external events and deliber-
ates are inherently discrete. Indeed, although an agent could be put in an environment which
dynamics are modeled using a continuous approach, the deliberative process of an agent
is usually modeled as a process that makes its internal state variables change discretely,
i.e. instantaneously. Moreover, in almost every agent-based model, the perception/deliber-
ation/action cycle is associated to a single instant t for simplicity reasons.

However, in some application domains, the temporal thickness of the behavior of an agent
has to be explicitly taken into account, and therefore modeled. For instance, in the scope of
DAI, the evaluation of the deliberation efficiency of an agent could be the aim of the study.
For example, this efficiency could be modeled as a function of the actual computation time
which is used by a deliberating agent, like in the Phoenix simulator [CGHH89]. The goal
is to be able to measure and compare the efficiency of different agent architectures.

For example, the Multi-Agent System Simulator (MASS), which has been designed to
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study the efficiency of agents’ deliberation in multi-agent coordination/negotiation pro-
cesses, explicitly integrates time models of the mechanisms involved in the deliberation
processes (method invocations, access to resources, etc.) [VHL01]. A similar approach
has been used in the Sensible Agents platform [BMM�01] to experiment with agent-based
systems in dynamic and uncertain environments. Other example, Uhrmacher and Schatten-
berg have proposed to model the overall behavior of an agent as discrete event system using
the DEVS (Discret Event Systems Specification) [Uhr01]. Doing so, the authors are able
to model not only the deliberation time of an agent, but also the reaction time of an agent
to external events, thus explicitly distinguishing, within the modeling of time, between the
reactive and the proactive processes of an agent. The James simulation platform relies on
this approach [SU01]. In this book, the reader will find a chapter about the new version of
this platform, namely James II [HR08].

Modeling the Temporal Evolution of the Environment

Depending on the application domain, modeling the temporal evolution of the environment
could be crucial. For instance, simulating agents in a network, it could be interesting to
model different lag times to evaluate the impact of network congestion, node failure, and
so on. Moreover, the environment may not only react to the agents inputs but also evolves
according to its own dynamic, namely its endogenous dynamic. For instance, in a robocup
simulation, a rolling ball continues to move even when the agents do not perform any
actions.

As the environment could represent very different kind of systems, continuous or discrete
time modeling could be considered depending on the experiment requirements. However,
due to the fact that the agents have their perception and produce their actions in a discrete
manner, the environment temporal dynamics generally embeds some event based mecha-
nisms to ease the coupling between the model of the environment and the agent models.

Coupling the Agents and the Environment: Scheduling the MAS

Once the agent behaviors and environment dynamics are defined, they have to be coupled
to finally model the targeted MAS, so that a MAS could be considered as three-tuple:
MAS =< Agents� Environment� Coupling > [Par97]. Figure 1.10 gives the overall picture
of this coupling.

FIGURE 1.10 Coupling the agents and the environment
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The main problem of the coupling is to make it coherent with respect to time [Par97,
FTPD98]. In other words, achieving this coupling relies on defining a function Evolution

such that the evolution of the MAS from one moment t to the next t+dt results from the
combination of the agent actions, A1(t)� A2(t)...An(t) with the dynamics produced by the
natural evolution of the environment, En(t), at t :

sigma(t+ dt) = Evolution(�(An(t)� En(t))� σ(t)) . (1.1)

The symbol � is used here to denote the action composition operator. It defines how the
actions produced at the instant t must be composed in order to calculate their consequences
on the previous world state σ(t). Intuitively, this coupling does not seem to be more than
scheduling the activation of each model considering the modeling of time which is chosen
(i.e. discrete time or event-based). However, several difficulties exist in the scope of ABM
as we will now briefly see.
Due to the simplicity of its implementation, discrete time simulation (i.e. dt is constant)

is the most used technique for simulating MAS. Indeed, in a discrete time simulation, all
the models are sequentially activated for a time t, and then the global clock of the system is
increased of one time unit. So, the implementation can be as simple as the following loop:

while ( g loba lVir tua lTime �= endOfSimulation )�
for ( SimulatedAgent agent : AllTheAgents )

agent . act ( ) ; // percept ion , d e l i b e r a t i o n , ac t i on
virtualEnvironment . evo lve ( ) ; // f o r a dynamic environment
g loba lVir tua lTime++;

}

However, there is a major issue with such a scheduling technique: The order in which each
model is activated may change the result obtained for the system state since the environment
evolves for each action. This in turn may lead to very different system dynamics with the
same behaviors [MGF04]. Figure 1.11 illustrates this issue on a prey/predator problem: the
prey (the triangle) could be dead or alive depending on the activation list.

FIGURE 1.11 The prey could be dead or alive depending on its rank in the activation list

Several variations of the discrete time approach have been proposed to solve this problem.
One solution is to systematically shuffle the activation list at each time step in order to
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smooth the problem (e.g. [EA96]).Another solution is to simulate concurrency by having
all the agents operate on temporary variables, so that the perceived environment is the same
for all the agents. Once done, the next system state is computed. So, the activation list
has no effect on the results. However, the new problem is that one has to solve the conflicts
which may exist between two or more actions that produce different states for system (e.g.
the same ball at two different places). Solutions to such conflicts could be hard to find and
lead to complex solving algorithms, as discussed in [DH01] for instance.

More generally, whatever the time management (discrete time or event-absed), modeling
interaction (concurrent actions) in MAS is hard to achieve using action representations such
as the one presented in the end of section 1.4.1 because they directly match the decision of an
agent to a modification of the environment: One action gives one result. Quoting Parunak
[Par97], this leads to an (unrealistic) identity between an agent’s actions and the resulting
change in the environment, which in turn contributes to classical AI conundrums such as the
Frame Problem, as also further discussed in [FM96]. Therefore, the actions (equation 1.1)
are not composed to produce a result but rather produce results one by one, which indeed
leads to conflicting, sometimes unrealistic, situations. So, implementing simultaneity using
such procedures may still be done but it takes complex codes which are more related to
programming tricks than to an efficient and generic simultaneity modeling solution [Fer99].
In section 1.6.2, we will see that several works have addressed this particular problem by
relying on the Influence / Reaction model [FM96].

Besides concurrency, another issue which is raised by a discrete time approach is the tem-
poral granularity of actions. Indeed, in the same way the discretisation of the environment
raises problems about the modeling of heterogeneous perceptions/actions, the discretisation
of time implies to take care of the temporal granularity of actions. Figure 1.12 illustrates
this problem: If an agent is able to move across more than one spatial unit in one time step,
then several agents may have crossing paths without generating any collision, whatever the
discrete time algorithm (i.e. there is no conflict here). This is an important issue in MABS
involving mobile agents like traffic simulations (e.g. [DS04b]).

FIGURE 1.12 The problem of the temporal granularity of actions

So, depending on the application domain, an event-based approach could be required as
it represents a far more flexible approach when it comes to the modeling of heterogeneous
actions because it eases the integration of actions having different granularities. Moreover
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event-based simulations are often considered as more representative of the reality that we
observe in the everyday life. Indeed, it is difficult to think about reality as a system in
which all the entities would be “updated” simultaneously [HG93].

Like for the discrete approach, there are various way of modeling and implementing an
event-based approach, depending on how the events are generated and handled (classical
event-based implementations are presented in [Bal88]). The event list could be determined
using a predefined order, like in the Swarm platform [MBLA96], or generated dynamically
during the simulation, like in James which uses DEVS [HRU03], or in Dima which relies
on the activity notion [Gue00].

1.4.5 Simulating MAS as Three Correlated Modeling Activities

To sum up this section, we propose here a high level view of agent-based simulation models.
To this end, we consider that simulating a MAS relies on three correlated modeling activities:
(1) the modeling the agents, (2) the modeling of the environment, and (3) the modeling of
the coupling between the agents and environment models. Figure 1.13 illustrates this view:

FIGURE 1.13 Simulating a MAS as three modeling modules

• The first module is related to the modeling of the agent behaviors, namely the
behavior module. Considering this module especially involves to choose an agent
architecture and a behavior time model.

• The second module, the environment module, is related to the definition of the
virtual place wherein the agents evolve and interact. Modeling the environment
notably supposes to decide if the environment should be (1) discrete or continu-
ous, and (2) static or dynamic. If the environment has an endogenous dynamic,
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then a time model of this dynamic should also be defined. Additionally, as agent
interactions are mediated by the environment, how the agents interact is mainly
defined through the modeling of the environment, by defining (1) how the actions
of the agents affect the environment state and (2) how these actions are perceived
by the agents (messages and/or signals).

• Finally, the scheduling module defines how all the models, environment and
agents, are coupled and managed with respect to time. Besides choosing a par-
ticular time management, considering this module implies to define how the envi-
ronment evolution, the agent perceptions, actions and interactions are done with
respect to one another, thus defining the MAS causality model. It is worth not-
ing that this fundamental part of the modeling is not always specified nor even
considered during the elaboration of agent-based models as it is often regarded as
something for which the simulation platform should be responsible, thus ignoring
a major part of the model dynamics�. In section 1.6.3, we further discuss why
defining this module should be considered as a primary modeling activity.

This tripartite perspective also defines how the modules are related to each other. The
scheduling module controls how the agents and the environment are executed considering
the representation of time (e.g. actions and interactions management and ordering). The
relation between the agent module and the environment module concerns the definition of
all the possible agent actions and perceptions with respect to the environment. This relation
is bidirectional since adding new perceptions or actions requires to modify both modules.

1.4.6 A Still Incomplete Picture

This overall picture proposed in figure 1.13 highlights the different modeling activities which
have to be considered when designing a MAS simulation model. Each of these activities
raises very different issues according to the considered application domain. Most of them
are discussed in detail throughout this book. However, it is difficult to identify what are
the actual challenges for these different modules without going into the details of some
application domains. However, in the scope of this chapter, we want to provide a more
global perspective of the intersection between MAS and simulation that will help to identify
some fundamental questions and general concerns for the next years.

Going toward a global perspective of the intersection between MAS and simulation, it is
necessary to understand that the modules view is rather incomplete. Indeed, it is only a
“MAS-side” view of the problem, in the sense that it focuses on MAS design issues. The
other side of the coin is simulation itself. Indeed, simulating a system, whatever it is, also
relies on considering some general issues about the design process of the experiment. To
make this point clear, let us consider the Fischwick’s definition for simulation [Fis97]:

“Computer simulation is the discipline of designing a model of an actual
or theoretical physical system, executing the model on a digital computer, and
analyzing the execution output.”

Fischwick thus distinguishes between three fundamental activities:

�Other researchers usually have a different perspective and consider scheduling as an issue at the level
of the simulation framework, rather than at the level of modeling.
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1. Model design: The simulation is expressed in a model that specifies the charac-
teristics of the simulated system.

2. Model execution: The model specifications are implemented in concrete compu-
tational structures that constitute the simulator of the experiment.

3. Execution analysis: The outputs of the simulation are checked according to some
validation rules and then interpreted.

By avoiding to state what is the goal of simulation, the idea of Fishwick is to emphasize
that simulation is a real discipline, not only a tool. Like any other, this discipline has its own
characteristics and requirements (terminology, methodology, etc.) which are independent
from the way it could be apply.

Therefore, understanding the different issues which exist considering both MAS and sim-
ulation, it is also necessary to have some insights about the general issues which are related
to M&S. To this end, the next section briefly presents the Framework for M�S which has
been originally proposed by Zeigler in the beginning of the seventies [Zei72, ZKP00]. In the
scope of this chapter, the interest of the Framework for M&S is twofold: (1) Put in the light
the relevance of studying MAS simulation according to this framework, and (2) highlight
some major challenges and issues for future research in the MAS community.

1.5 The Zeigler’s Framework for Modeling and Simulation

In [ZKP00]�, Zeigler proposed the Framework for M�S which relies on defining the entities
of the framework and their fundamental relationships. This section briefly presents these
entities, namely the source system, the experimental frame, the model, and the simulator,
and these relationships, namely the modeling relation and the simulation relation.

1.5.1 Source System

As shown by Fishwich’s definition, the terms real system used in Shannon’s definition do
not necessarily refer to a real-world system, but more generally to the system which is the
object of the current study, i.e. the phenomenon to simulate. This is what is called the
source system in the Framework for M&S: The real or virtual system which is targeted by
the simulationist. Thus, a source system may define a theoretical phenomenon which first
exists only in the mind of somebody, and which does not exist before it is simulated. So,
this terminology enables to distinguish the real or virtual targeted system from the system
which is finally obtained by executing the implementation of the model on a simulator.

If the source system does exist in the real world, it should be considered as the source
of observable data that define what is called the behavior database of the system (i.e. a
relation between inputs and outputs). For instance, if the purpose of the simulation is to
study a real ant farm, it is possible to collect data about the ants (e.g. lifetime, population
dynamics, etc.).

1.5.2 Experimental Frame

�The first edition of this book, Theory of �odeling and Simulation, was published in 1976.



Multi-Agent Systems and Simulation: a Survey From the Agents Community’s Perspective1-27

Since a source system could be modeled considering very different purposes and objectives,
the definition of a source system should be always done in the scope of an associated
experimental frame. Formally, an experimental frame is a specification of the conditions
under which the system is observed or experimented with. An experimental frame is the
operational formulation of the objectives that motivate a modeling and simulation project.
Stating the experimental frame is crucial. Firstly, it deeply influences how the modeling,

validation and verification processes are done with respect to (1) the information available
about the source system and (2) the level of abstraction at which the source system is
considered with respect to the resources and objectives of the experiment�. For instance,
for the study of a real ant colony, taking into account the velocity of the ants within the
modeling could be of interest, or even crucial in some cases, while not relevant in others.
Therefore, in a more general perspective, the experimental frame could be considered as
the definition of the experimental context. Especially, taken in a broad sense, this includes
the used modeling paradigm and its associated constraints as discussed later on.

1.5.3 Model

Model is an overloaded term. However, in the scope of the Framework for M&S, a com-
puter simulation model has a precise meaning. A model refers to all the computational
specifications (instructions, rules, equations, and so on) that entirely define how all the
possible state transitions of a system operate. In other words, a model is the specification
of the Evolution function (equation 1.1). This specification could be written using different
simulation formalisms or languages.

1.5.4 Simulator

A simulator is any software architecture on which the model could be executed to generate its
behavior. In other words the simulator is responsible for computing the Evolution function
and producing the outputs of the model with respect to acceptable inputs. A simulator
could also embed some verification and validation tools. Depending on its general purpose,
a simulator could be designed for only one experiment or a wide class of models.

1.5.5 Modeling Relation: Validity

The modeling relation concerns the study of the relation between a model and a source
system in the scope of a particular experimental frame. This relation thus globally raises
issues about the validity of the experiment by comparing the model (and its behavior) with
the source system (and its behavior database if it exists). Here, the main question is to
know if the modeling which has been done could be validated as an acceptable abstraction
of the source system, considering the chosen qualitative criteria and experiment objectives.
To answer this question, Zeigler proposes three main levels of validity:

1. replicative validity is achieved if the behavior of the model which is observed
matches the behavior of the source system considering an acceptability threshold;

2. predictive validity implies replicative validity but also requires that the model
is able to predict unseen source system behavior, which requires that the state

�See [BS05] for a focused discussion on these issues in the scope of ABSS
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transition function does reflect how the source system actually reacts to any
acceptable inputs;

3. structural validity implies predictive validity but also requires that the model
mimics the way in which all the components of the source system do their state
transitions.

1.5.6 Simulation Relation: Simulator Correctness

The simulation relation concerns the verification of the simulator with respect to the model.
The question is to ensure that the simulator does generate correctly the model behavior. In
other words, the simulation relation holds if the simulator guarantees that the consecutive
states of the model are correctly reproduced. Conversely, it is interesting to note that this
implies that the model specifications should entirely define the state transitions in both
a (1) computerizable and (2) unambiguous way, otherwise the simulation relation cannot
hold as it is possible to implement different interpretations of the model, thus implementing
simulators relying on different state transition functions, which in turn produce different
results for the same model.

Additionally, as the model specifications must be independent from the way they are
executed by the simulator, the simulation relation also implies that the evolution of a
simulated system must not depend on any simulator or hardware-related issues, enabling
the replication of the experiment, which is fundamental from a M&S perspective. For
instance, let us considered a simulated MAS executed on a Java Virtual Machine (JVM).
If the evolution of any part of the system does depend on how the JVM manages the
Java threads, replication is not achievable: the system is not simulated, but more simply
executed.

FIGURE 1.14 The Zeigler’s Framework for M&S
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1.5.7 Deriving Three Fundamental Questions

Considering the use of simulation, the Framework for M&S has several advantages. Firstly,
it gives a precise meaning to the different keywords which are related to simulation. Sec-
ondly, by relating these different key words to each other, thanks to the modeling and sim-
ulation relations, the Framework for M&S highlights the basic issues and problems which
are related to any M&S experiment. Especially, it gives some clear guidelines to study the
problem of the validation and verification (V&V). Although the purpose of this chapter
is not to directly discuss V&V issues in the scope of MAS simulations, it is interesting
to study MAS simulation works with respect to the basic relations of the Framework for
M&S. Especially, we propose to do this study according to three questions derived from the
Framework for M&S:

1. Does the model accurately represent the source system? (modeling relation:
model vs. source system)

2. Does the model accommodate the experimental frame? (modeling relation: model
vs. experimental frame)

3. Is the simulator correct? (simulation relation: model vs. simulator)

So, studying how these questions could be answered in the scope of MAS simulations,
the main goal of the next section is to extract and discuss some important issues which
represent relevant directions for future research within the MAS community.

1.6 Studying MAS Simulations Using the Framework for

M�S

1.6.1 Does the Model Accurately Represent the Source System?

Identifying the Nature of the Source System

One can easily see that the issues related to the study of the modeling relation (validity)
strongly depend on the source system being actual or theoretical. Indeed, in the case the
source system is purely theoretical, structural validity is a given property since the model
does represent the actual state transitions of the system: They do not exist elsewhere.
On the contrary, if the source system is actual, then the modeling should be done with

great care according to the behavior of the source system in order to, at least, achieve
replicative validity. For instance, in a DAI platform that simulates the environment as a
network, like in the DVMT experiment, the behavior of the simulated network has to match
with real-world conditions (messaging time, resource access time, node failure, etc.) to some
extent to be valid. So, doing a simulated MAS, one has to clearly state the nature of the
source system which is considered: Actual or theoretical.
One could argue that it could be subtil to decide if a source system is actual or theoreti-

cal, which is true. For instance, although ABSS are inspired by real-world human societies,
the level of abstraction used is sometimes so high that the model is considered as purely
theoretical, while being inspired by real-world dynamics (e.g. SugarScape [EA96]). Valida-
tion issues related with an actual vs. theoretical perspective are discussed in papers such
as [MDSC04, BS05] where continuum classifications of ABSS models are proposed accord-
ing to different goals, levels of abstraction, and empirical data availability and gathering.
The former proposes a general layered classification of paradigmatic models in ABSS with
respect to their targets. The latter gives a focused discussion on related methodological
issues and proposes a model maker perspective taxonomy of ABSS models (from case-based
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models to theoretical abstractions), suggesting various validation strategies according to the
characteristics of the empirical target matter. So, by characterizing and layering the level
of abstraction of ABSS models, these approaches help to decide how the modeling should
be validated and such approaches could be useful in other domains.
Nonetheless, defining the level of abstraction of a model is a subjective task to some ex-

tent, and it would probably be possible to define hundreds of model classes if all application
domains would be considered at once. In the scope of this chapter, we need a more general
criterion to decide if a source system should be rather stated as actual or theoretical. In
this respect, it is important to understand that such a criterion should not rely on the
level of abstraction which is used in the modeling. And, in fact, it is possible to solve this
problem in a general way with respect to the existence of the behavior database. Indeed,
if a behavior database could be established, then the results could be checked according to
it, thus the source system has to be considered as actual, whatever the level of abstraction.
Paradoxically, this also holds when it is not possible to establish the behavior database

before the experiment. For instance, a large number of DAI operational systems, such as
DVMT, are first design using simulation models before being deployed in real-world com-
putational structures (when they finally are). Therefore, no behavior database is available
a priori. However, if the system could be deployed, thus a behavior database could be
established and used to check replicative validity for the model. So, deciding if a source
system is theoretical or actual, one has to check if it could be possible to establish a behavior
database for the system. If it is not the case, the source system is theoretical.

Different Modules, Different Issues

Still, the previous analysis is not complete and should go further: In the scope of MAS,
raising the question about the nature of the source system, it is important to make a
distinction between the behavior module and the environment module. Indeed, it is possible
to define a system with theoretical behaviors embedded in a very realistic environment. So,
it is possible to distinguish between four situations as illustrated in Fig 1.15.
Each situation requires a different approach for validating the modeling: From fully theo-

retical systems for which structural validity is always true to fully actual systems for which
both the behavior module and the environment module have to validated (at least with
respect to replicative validity) according to the behavior of their targeted source systems.
Thus each situation raises different issues when considering the modeling validation. Let us
now discuss some of these issues according to the classification proposed in 1.15.

Environment Module Issues: The Need for Virtual Reality

From a validation point of view, the simplest case is to have a fully theoretical model.
For instance, in [BMF06], a morphogenesis model for multiagent embryogeny is proposed.
Although this model is inspired by real biological processes, the purpose of both the behavior
and environment modules is not to mimic any real system at all, but only to define a system
which is able to produce emergent phenomena having interesting properties such as self-
organisation and the like. Therefore, there is no need to check the validity of the model
with respect to the source system: The model is the source system itself, and therefore
structurally valid. As we will see later on, that does not mean that the overall modeling
could be directly considered as correct, but it clearly remains the less problematic case.
Next in difficulty are models where theoretical behaviors operate in an actual environ-

ment, namely in virtual reality (VR). For instance, in the Sims’s work [Sim94], virtual
creatures evolve in a 3D world. As the Sims’s goal is to study the evolution of the virtual
creatures in a realistic world, the environment model embeds complex dynamics such as
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FIGURE 1.15 Simulation and MAS with respect to the source systems of the behavior and environment

modules

gravity, collisions, friction and so on. In such a case, structural validity is true for the
behavior module as the agents are purely virtual (i.e. the source system of the behavior
module is theoretical), while the model of the environment has to be validated accord-
ing to real world dynamics (i.e. the source system of the environment module is actual).
Therefore, from a validation point of view, the environment module is more important than
the behavior module considering Simulated MAS applications that use VR. For instance,
designing the agents AI in realistic video games, it is crucial that, like for the virtual crea-
tures of [Sim94], “the environment restricts the actions to physically plausible behaviors”:
Observing and studying the behavior of the agents is not relevant if the modeling of the
environment is not valid.
If having a realistic model of the environment is a strong requirement in the scope of

VR-based applications, it is very interesting to see that the need for realism has also been
pointed out as a primary concern in the DAI field relatively early, in the late eighties. For
instance, studying teamwork and coordination of fire fighting units, a primary goal of the
Phoenix testbed was to simulate an environment as realistic as possible� [CGHH89]:

“Our position is that most AI systems have been built for trivial environments
which offer few constraints on their design and, thus, few opportunities to learn
how environments constrain and inform system design. To afford ourselves this
opportunity, we began the Phoenix project by designing a real-time, spatially
distributed, multiagent, dynamic, ongoing, unpredictable environment.”

�Studying forest fires management in the Yellowstone National Park, Phoenix defined a highly dynamic
environment thanks to a complex simulation integrating several relalistic parameters such as weather
conditions, physical features of the park, and burn rates of different land types.



1-32 Agents� Simulation and Applications

Later, during the DAI testbeds explosion of the nineties, Hanks putted in the light the
“danger of experimenting in the small” in [HPC93]. Hanks’s point was that DAI testbeds
such as the TileWorld do not really fulfil their objectives, i.e. making progress in both the
engineering and the understanding of (efficient) DAI systems, because most of the time they
consider small, controlled, and deterministic world:

“THe ultimate danger of experimentation in the small is that it entices us
into solving problems that we understand rather than ones that are interesting.
At best it gives the mistaken impression that we are making progress toward our
real goal. At worst, over time it confounds us to the point that we believe that
our real goal is the solution of the small, controlled problems.”

Today, it is clear that experimentation in the small is still a reality, not only in the DAI
field. Of course, from a pragmatic point of view, we always have to experiment in the
small to some extent: We just cannot simulate all the details of reality and should focus
on the aspects of the environment which are the most relevant according to the experiment
objectives. However, one has to bear in mind that, with respect to the experiment objectives,
the modeling of the environment could be crucial when evaluating the appropriateness of
the overall modeling. In this respect, one major challenge for DAI researches in the years
to come is to move from theoretical environments to actual ones: Putting DAI systems
into VR, and thus experimenting in the large. Such a point of view also nicely bridges
the gap between concerns from Artificial Life and DAI, highlighting the importance of the
environment module for both [LA00]. Considering such an issue, the RoboCup [KAK�97]
is a really interesting step in the history of DAI testbeds because it represents a good deal
between realism and DAI testing. Additionally, one can find in this book a chapter dealing
with the fundamental role of the environment for software-in-the-loop simulations [HHW08].

Behavior Module Issues: Toward the Participatory Design of Simulation

Although checking the validity of an actual environment module could be a hard and time
consuming task, the general approach itself is relatively straightforward, because of our
everyday life experience of the causality principle. Indeed, as we are living inside this real
environment, we can directly observe it so that we are able to deeply analyse its functioning.
So it is easy (relatively of course) to see that an environment module does not agree with
real world dynamics, thanks to our own experience. Objects are supposed to be under the
influence of the gravity force for instance. Comparatively, it is much more difficult to decide
about the appropriateness of the behavior module when facing the modeling of real-world
behaviors.
In fact, considering the modeling of actual behaviors, we have to distinguish between two

different cases: (1) behaviors that refers to real-world computational structures (robots,
software agents, etc.) and (2) behaviors of real-world living entities (insects, animals or
human).
In the first case, checking the validity of the behavior module is not more difficult than for

the environment because we deeply know the real structure of the related behaviors as we
created them. For instance specifying the behavior module of a real robot simply consists
in modeling how the behavior program of the robot runs on some concrete hardware in real
conditions (software-in-the-loop). The same goes for an e-commerce agent as well.
However, when it comes to the modeling a living entities, we do not have such informa-

tion. In contrast with the environment, we cannot observe the internal mechanisms that
effectively conduct a living entities to make decisions: A living creature behavior is a black
box which internal mechanisms could be only modeled using very high level abstractions.
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Consequently, it could be difficult to decide about the validity of a behavior module with
respect to the experiment objectives as we are, once again, always experimenting in the
small to some extent: Validating a behavior module is a highly subjective task in such
cases. Moreover, evaluating a human-like behavior module could be by a huge order of
magnitude more problematic than one representing an ant-like behavior. It is obviously a
reason why there is a growing trend toward a participatory design of simulation: We need
to “put the human in the loop”.

In [DVM02], Drogoul et al. highlight the huge gap which usually exists between the
behaviors of the domain model (the behavior module) and the computational structure
which are finally used to implement them:

“This means that the resulting ”computational agents” (if we can still call
them this way) do not possess any of the properties generally assigned to the
agents used in MAS or DAI : they do not have any structural nor decisional
autonomy, are not proactive, and cannot, for instance, modify their knowledge
and behaviors through learning or adaptation.”

The authors thus proposed a MABS methodological process that more concretely involves
real stakeholders in the modeling activity, thus advocating the idea of the participatory de-
sign of simulations. Agent-Based Participatory Simulations could be considered as a more
strong merging between MAS and Role Playing Game (RPG) [GH06]. RPG was used in
[BBA01] to work on both the design and the validation of social MABS models. Still, in
such works, the participants of the RPG do not directly control an agent of the simulation
and the agents behavior are still encoded as computational structures. So, the main idea
of agent-based participatory simulations is to have real humans playing the role and taking
control of simulated agents to design and then refine the behavior module through an it-
erative modeling process (with steps with or without real human agents) [NDD07, GH06]
. The main advantage is that, as all the events could be recorded, the behavior of the
participants could be analysed in details during and, more importantly, after the simulation
runs using the trace of the simulation execution. This helps to understand why and how
the participants take decisions with respect to the information they gather during the sim-
ulation. So, the participatory design of simulation helps for the modeling of more accurate
artificial behaviors, thanks to the refining of the perception/deliberation/action processes
which is done at each iteration of the modeling loop proposed by this approach.

Although motivations for the design participatory simulation are numerous, in the scope
of this chapter, we can summarize the major idea of such approaches as follows. Modeling
the behavior of a real living entity is hard and structural validity could not be an objective
at present time considering the behavior module. We need high level abstractions. Build-
ing these abstractions, rather than trying to model existing behaviors from scratch using
complex deliberation models, and thus searching for an unreachable structural validity, we
should focus on studying what we could observed and analysed from real living entities:
The actions they produced with respect to their perceptions. In other words, rather than
focusing on the structural aspect of the behavior module, we should first focus on its abil-
ity to achieve replicative validity, thus relating perceptions with actions, i.e. inputs with
outputs.

If the relevance of participatory simulations is obvious considering social simulations, it
could also be very interesting to use a similar approach for the modeling of non human
species. The interest of the idea still holds: It could help for the design of the behavior of
artificial entities as it is of course possible for a human to play the role of a predator agent for
instance. Studying what makes a human decide what are the relevant perceptions/actions
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may significantly help for refining both the behavior module (modeling deliberation) and
the environment module (adding perceptions/actions).

Merging Participatory Design and VR: a Promising Future for MABS

In the previous sections, we have discussed only about few issues which are related to the
study of the modeling relation in SMAS. However we have highlighted two very interesting
tracks of research, each of which being related to either the environment module or the
behavior module: That is respectively VR and the participatory design of simulation. In
this respect, it is worth noting that very recent works integrate both in a very innovating
but unexpected manner.
In the pioneer work proposed in [INMN07], Ishida introduces the notion of augmented

experiment, in the scope of real-world experiments on disaster evacuation. The idea of a
Multiagent-Based Augmented Experiment is to do real-world experiments, with real-world
subjects evolving in an augmented reality: That is, in a real-world environment where
actions of simulated entities, evolving in a corresponding VR, could be perceived by real-
world subjects thanks to the use of suitable sensor devices. In this perspective, the related
design process of the experiment is particularly interesting as it involves a participatory
design loop for modeling VR, which is in turn used to do augmented experiments. Doing
so, such a work establishes a link between reality and VR as well as between humans and
virtual entities.
Here, we are at the frontier of what we can do with our today technologies as augmented

experiments raises a number of technical problems [INMN07]. However, this is obviously
a forerunner example of how we could finally experiment in the large in a near future. In
such a perspective, VR and participatory simulation are key concepts.

1.6.2 Does the Model Accommodate the Experimental Frame?

MABS are Supposed to Model MAS

One could think that considering a theoretical model implies that the overall modeling
could be directly validated. Especially, as discussed by Troitzsch in the scope of ABSS, a
simulation programme can be seen as a full model of a theory as it can be considered as a
structuralist reconstruction of this theory as discussed [Tro04].
However, beyond this legitimate consideration, it is also crucial to not forget that the

modeling relation is tripartite, implying that the source system and the model should always
be considered in the scope of a particular experimental frame, which defines modeling
constraints both explicitly and implicitly. Therefore these constraints must be taken into
account in the validation process, whatever the nature of the source system. Notably, this
is also true for fictitious worlds because they do also define environmental laws that impose
consistency and coherence, as does the real world [VSSRA07]. For instance, if a theoretical
source system is supposed to embed usual physical laws, then the modeling should not
define state transitions which contradict these laws: It is not a valid modeling otherwise as
it is an implicit constraint of the experimental frame.
So, as pointed out by Zeigler, it is crucial for the validity of a model that it at least co-

herently accommodates the experimental frame, thus verifying the accommodation relation
[ZKP00]. Considering this relation in the scope of MAS is more challenging that it seems
to be at first sight.
Verifying the accommodation relation, it is obvious that both the behavior module and

the environment module must follow some modeling guidelines so that they do not integrate
state transitions contradicting the experimental frame. For instance, it is obvious that an
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agent must not be able to perform an action that makes it go through a wall. Therefore,
there is not really a need to put forward the importance of such concerns here.

Nonetheless, all MABS rely on an implicit, but strong, hypothesis: They use MAS as mod-
eling paradigm. As such, their modeling should accommodate the properties of the agent
paradigm, whatever the objective of the simulation study. Verifying this particular accom-
modation is related to the study of what we define as paradigmatic validity/coherency�, i.e.
the validity of the model with respect to the multiagent paradigm itself. In the following
section, we only focus on two consequences underlying the consideration of such a level of
validity.

Modeling Simultaneous Actions and the Autonomy Feature

Firstly, that means we should be able to represent simultaneous actions as agents are sup-
posed to act in a concurrent manner on the environment. As Ferber has highlighted,
implementing simultaneity with usual formalisms is not trivial [Fer99].

Secondly, one has to bear in mind that agents are supposed to be autonomous entities. As
pointed in [MGF04], it is easy to model systems wherein agents are finally not autonomous,
since some of their behaviors are directly controlled by other agents.

Without going into the details of the problems which are related to each case, it is
interesting to see that the Influence/Reaction model has been considered as a solution for
both. Indeed, the Influence/Reaction model [FM96] relies on modeling the agent actions
as influences that do not modify the environment (and the other agents as well), but which
are treated as a whole to compute the reaction of the environment to these influences,
and thus the next system state. So, it is possible to easily model simultaneous actions by
combining the influences to compute the actual result on the environment. Works such
as [HVUM07, Mic07, WH04, DT00] show the interest of such an approach for modeling
simultaneous actions in different contexts. Moreover, as the agents do not directly modify
the others’ internal variables, it is easy to check that the autonomy feature is taken into
account [MGF04].

Toward Paradigmatic Validity: The Need of Linking the Micro and Macro Levels

In the previous section, we discussed about the opportunity of using the Influence/Reaction
model for simulating MAS. From a more general point of view, this shows that we need
approaches and formalisms specifically dedicated to the ABM approach in order to accom-
modate the experimental frame. All this is about studying issues related to paradigmatic
validity.

Considering this study, one difficulty relies on the fact that MAS define at least two levels
of dynamics: the micro level and the macro level. Most approaches only consider the micro
level specifications and do not evaluate their impact on the macro level dynamics (e.g. the
possibility of representing simultaneous actions for instance). So, most of the time, there
is a discrepancy between the system we want to model (i.e. the source system) and the
model we finally produced. In this respect, [DSC02] shows the interest of specifying both
the micro and macro levels for ABM. Notably, [DSC02] proposes modeling specifications
at different levels of granularity: atomic agentified entities (AE) are specified at the micro
level, and then aggregates of AEs (macro-AE) are specified at different levels of aggregation

�The word validity is intentionally used to make a parallel between paradigmatic validity and the other
forms of validity defined in the Framework for M�S.
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(first order macro level, second order, and so on). The Influence/Reaction model also makes
a difference between the micro level (influences) and the macro level (the reaction of the
environment to the influences) within the modeling.
Nonetheless, it is clear that many efforts have still to be done in such directions. One

major challenge for ABM approaches is indeed to reduce the gap between what we are
supposed to model (i.e. MAS) and the modeling abstractions and formalisms we use to
do it. In the scope of paradigmatic validity, this is a necessary requirement if we want
to have a clear understanding of the models we build, knowing they are becoming more
complex everyday. In this perspective, the problem is not only to represent simultaneous
actions or autonomy, but also to be able to express complex concepts such as stigmergy,
self-organisation, emergence and the like, in the model specifications. To this end, making
an explicit link between micro level and macro level specifications is definitively an avenue
for future research. As we will see now, such considerations also impact the study of the
simulation relation.

1.6.3 Is the Simulator Correct?

We now switch our focus from the modeling relation to the simulation relation, that is, to
the study of concerns related to the simulator correctness.

A New Day, a New Simulator

From a MAS perspective, it possible to classify MAS simulators according to three categories
according to their capability and focus:

1. limited to a single class of model: One shot;

2. able to accept a whole class of models related to a particular domain: Domain
related (e.g. Ecology: Cormas [BBPP98], Echo [HJF97]);

3. designed for implementing MAS simulations using a particular agent software ar-
chitecture, independently of a particular domain: Generic (e.g. Swarm [MBLA96],
MadKit [GFM01], Jason [Bor08], SeSam [Kl8]).

It is worth noting that there are far more One-shot MAS simulators than the two other
kinds. This clearly shows that there still no consensus on the way agent-based systems
have to be modeled and implemented. Indeed, one question is: Why a new simulator would
be required almost every time? One could say that it is due to the ability of MAS to
address numerous application domains, each of which having their own modeling require-
ments. This is probably true to some extent. However, another answer is possible if we
consider the problems raised in the previous section: The gap between the MAS paradigm
and the modeling tools we used. This gap does not allow a clear understanding of MAS
simulation frameworks. Consequently, it is not surprising that researchers prefer to define
their own simulation tools in order to (1) fulfil their requirements and (2) control entirely
the simulation process.
Having a majority of one shot simulators raises several problems for the community.

Firstly, it severely reduces the possibility of reusing previous works, which is an undisputed
drawback from a software engineering point of view. It is a sure bet to claim that similar
things (agent and environment models, simulation engines, etc.) have been coded hundreds
of time: The community hardly capitalizes experiences. Of course, it also increases the
possibility of facing bugged simulators. So, one major challenge for the community is to
find ways of doing MABS so that we can reuse and capitalize experiences in a more efficient
manner.
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Secondly, it raises the problem of reusing the simulation results themselves. Indeed, the
simulation relation is rarely studied and few MAS works do consider the simulator as a
first order entity of the experiment. Most of the time, the implementation of the model is
considered as a step of the experiment which correctness would be true a priori, which is
obviously a mistake. Moreover, this decreases the confidence we have in published simulation
results. Therefore, not considering the simulation relation is obviously a weak point that
should be addressed in the years to come because it dramatically limits how simulation
experiments can be evaluated: Verifying the simulation relation is not less important than
validating the modeling relation in the simulation process. To emphasize more on that
point, let us now consider a fundamental consequence of this state of affairs: The difficulty
of replicating existing models.

The Fundamental Problem of Replication

In section 1.4, we have shown that ABM implementations could raise many problems, in
many different ways. So, it is clear that going from model specifications to the implementa-
tion is not a trivial task in the scope of MAS. Not surprisingly, simulation results are highly
sensitive to the way the model is defined and implemented (see [MST08] for a recent and
very interesting study of that issue). Works such as [Axe97, LP00, Rou03, EH03] also clearly
address this issue by showing all the difficulties we face when trying to replicate published
results. Especially, they show that, since simulation results are usually published without
detailing enough the model and its implementation, replications have a high probability of
producing results which are (very) different from the originals.

This problem is identified as the engineering divergence phenomenon in [MGF04], i.e.
the possibility of implementing different simulations, considering a unique model. Such
a problem contradicts at the heart a basic hypothesis of the simulation relation of the
Framework for M&S : A model should be defined so that the produced results do not
depend on how it is implemented (cf. section 1.5.6). In the previous section we claim that
there is a gap between the MAS paradigm and the modeling tools/formalisms we used. We
can make a similar statement here: There is a gap between the agent-based models which
are defined and the computational structures we used to implement them. In fact, the
complexity of the implementation, which is dramatically real, is usually simply bypassed
when agent-based models are designed.

The scheduling module is particularly neglected during the modeling phase because it is
often considered as only related to the implementation. This is a mistake: The scheduling
module is fundamentally part of the modeling. Indeed, if this part is fuzzily or not defined
at all, thus the model specifications are ambiguous and could be implemented following
different interpretations, which in turn may lead to huge differences in the simulation results.

So, as highlighted by Axelrod in the scope of ABSS [Axe97], one major challenge for the
community is to find ways of sharing modeling specifications in an efficient way, enabling
the replication, and thus the study, of published experiments. To this end, it is clear that
making an explicit link between computational structures and models is the key. In this
respect, the Swarm platform design is of great interest [MBLA96]. Indeed, establishing a
Swarm-based model explicitly relies on defining, not only the behavior and the environment
modules, but also the order in which they are finally executed by the simulator. In other
words, a swarm-based model is directly related to its implementation, so that it is easy to
replicate it.

Generalizing such an approach is crucial for the years to come: Enabling replication
is what the community should go for. To this end, we claim that two things should be
placed on the agenda of multiagent simulationists: (1) Promoting the reuse of existing



1-38 Agents� Simulation and Applications

works as far as possible and (2) defining unambiguous models. The former will enable the
community to go toward the elaboration of a real simulator software engineering process,
ultimately making the reuse of existing works possible. The latter will help to really study
the simulation relation in ABM by making an explicit distinction between the model and its
implementation, which in turn will help to better understand the true dynamics of MAS as
they will be explicitly modeled. Only such approaches will enable us to ultimately answer
the fundamental question of this section: Is the Simulator Correct?

1.7 Conclusion

MAS and simulation are two research fields having a close relationship. Studying the
intersection between these two fields, it is important to keep in mind that simulation is
not only a tool, but a real scientific discipline which already defines some design guidelines.
This is the reason why we have argued on the interest of considering MAS simulation works
in the scope of a pure M&S perspective such as Zeigler’s. Indeed, the Framework for M&S
permitted us to study MAS simulation works according to the modeling and simulation
relations, which are essential for any M&S experiment.

FIGURE 1.16 Definning MAS simulation issues using the Framework for M&S
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Figure 1.16 illustrates the different challenges we have highlighted by studying MAS
simulation according to Zeigler’s Framework for M&S.
First of all, we have seen that VR is a concept of primary importance with respect to

the environment module. Experimentation in the small has been useful for exploring some
characteristics of the MAS paradigm in the past two decades. Today, the available technolo-
gies urge us to make the step toward VR-based models of the world to prove the usefulness
of the existing DAI architectures and develop new ones, more adapted to real-world ap-
plications. Additionally, considering software-in-the-loop approaches, VR is the only way
to go: Without an accurate model of the deployment environment, the system cannot be
developed in an efficient way. The reader will find more about the crucial importance of
the modeling of the environment in this book (ref Helleboogh). For the MAS community,
VR is the key for experimenting in the large.
About the behavior module, we have emphasized the difficulty of building representative

models of real living entity behaviors, either they are human or animal beings. Indeed,
contrary to software agents (e.g. robots), the real structure of the decision process cannot
be observed with our today technologies, so that we use theoretical approaches to model
them. Therefore we have to find ways to reduce, as far as possible, the inescapable gap
which exists between what we want to model (i.e. real decision processes) and what we could
model using the theories and computational modeling abstractions available today. In this
respect, we have discuss the relevance of the participatory design of simulation. There is
major idea in this trend of research: Rather than model real behaviors so that they somehow
fit our computational structures, we should make the computational structures evolve so
that they can reflect how a real living entity is motivated to act (which perceptions for
which actions). In other words, we should not directly use computational structures to
model real behaviors, but use real behaviors to model new computational structures, which
will in turn be more suited to our needs. Doing this shift of perspective is a major challenge
for the MAS community, considering behavioral modeling.
The two previous directions of research represent paths toward the accommodation of

future MAS models with the MAS experimental frame. Indeed, they force us to make
progress toward simulation formalisms that take into account the specificities and features
of the MAS paradigm, which in turn enables the study of issues related with paradigmatic
validity. For instance, the Influence/Reaction formalism permits to model MAS basic con-
cepts such as action simultaneity and autonomy. In a more general perspective, a major
feature of ABM relies on the fact that it requires at least two fundamental levels of model-
ing: The micro (agent) and the macro (multiagent) levels. Most of the approaches do only
consider the modeling of the micro level entities and do not clearly specify how their dy-
namics should be composed, leaving the developer free to choose during the implementation
phase. Providing abstractions for the macro level dynamics, such as simultaneous actions,
is a first step toward a concrete linking between these two fundamental levels.
Ultimately, studying the simulation relation, we have emphasized on a crucial issue for

the MAS community: Capitalizing passed experiences. This is necessary if we want to speed
up the research on MAS simulation in general, whatever the objectives. In this respect,
it is obvious that the software engineering perspective is neglected by most of the MAS
simulation works as the emphasize is always put on modeling issues. The MAS community
has to find the way of concretely sharing implementation experiences, promoting reusability
as a must. Without such concerns in mind, reinventing the wheel will continue to be a reality
for the community. More than that, it is the only way through which we will be able to
really do verification on MAS simulation experiments as it will ease replication, which is
fundamental from a M&S perspective. Trusting simulator implementations a priori is not
a viable option.
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