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a b s t r a c t

The automatic segmentation of the musculoskeletal system from medical images is a particularly chal-
lenging task, due to its morphological complexity, its large variability in the population and its potentially
large deformations. In this paper we propose a novel approach for musculoskeletal segmentation and reg-
istration based on simplex meshes. Such discrete models have already proven to be efficient and versatile
for medical image segmentation. We extend the current framework by introducing a multi-resolution
approach and a reversible medial representation, in order to reduce the complexity of geometric and
non-penetration constraints computation. Our framework allows both inter and intra-patient registration
(involving both rigid and elastic matching). We also show that the introduced representations facilitate
morphological analysis. As a case study, we demonstrate that muscles, bones, ligaments and cartilages of
the hip and the thigh can be registered at an interactive frame rate, in a time-efficient way (<30 min),
with a satisfactory accuracy (�1.5 mm), and with a minimal amount of manual tasks.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Musculoskeletal disorders are certainly the most notorious and
common causes of severe long-term pain and physical disability.
For their diagnosis, the surgical planning and their post-operative
assessment, the patient-specific modeling of the musculoskeletal
system from medical images is an important problem (Blemker
et al., 2007). The musculoskeletal system exhibits a complex
geometry, difficult to model realistically (multiple organs in con-
tact), a complicated mechanical behavior (viscoelastic, aniso-
tropic, hyperelastic and non-linear), and complex interactions
(e.g. confined cartilages within articulations). While simplified
representations such as stick-figures and action lines (Delp and
Loan, 1995) have proven to be useful for many applications in
biomechanics, they have a limited accuracy as stressed in Teran
et al. (2005), Ng-Thow-Hing (2000), Blemker and Delp (2005):
they are unable to represent large attachment areas and accu-
rately simulate global constraints such as volume preservation
and non-penetration. Improvement in terms of accuracy could
be achieved using surfacic models (Blemker et al., 2007) or equiv-
alent reduced representations such as medial axis (Blum, 1964).
Current interactive modeling methods (Ng-Thow-Hing, 2000; Au-
bel and Thalmann, 2001; Teran et al., 2005; Blemker and Delp,

2005) remain time-consuming and are not suitable for clinical
use. Indeed, orthopaedists, biomechanicians and kinesiologists
would like to simulate, visualize and navigate through articula-
tions with a minimum amount of manual tasks. The automatic
segmentation of bones and cartilages from medical images has
been achieved in previous studies (Lorigo et al., 1998; Fripp et
al., 2007). However, the complete segmentation of muscular com-
plexes is not yet available.

Diagnosis tools used in the daily medical practice, especially
medical scanner, are becoming increasingly precise, available,
standardised, as well as less and less invasive. Besides traditional
3D images available from various modalities such as Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI), kine-
matical data are now getting more accessible (e.g. cine MRI, real-
time MRI, ultrasound). MRI is a flexible modality for imaging both
soft and bony tissues non-invasively, and has been chosen in this
study. The potentially large amount of data makes data difficult
to exploit. In this context, 3D anatomical models (e.g. shapes, sur-
faces, volumes) and 4D kinematical models (e.g. joint angles, defor-
mation maps) could provide more insight and help in fusing
(registering) data from diverse modalities or scan sessions. Regis-
tration is a fundamental problem in image and geometry process-
ing (Maintz and Viergever, 1998; Zitová and Flusser, 2003). The
matching problem is often expressed as an energy minimization
and is generally difficult to solve due to the presence of local solu-
tions. To tackle this, researchers are focusing on finding, in specific
contexts, adequate registration features, similarity measures,
parameterizations of the deformation and optimization methods.
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The goal is to evolve the solution (i.e. transformation) in a spatially
coherent way through the introduction of priors, and along an as-
convex-as-possible matching energy. Prior shape information re-
lies on assumptions about surface regularity (smoothness, curva-
ture) and variability across the population, while topological
constraints exploit prior knowledge about organ interrelationships
(e.g. contacts, motion discontinuities). These constraints can be
efficiently applied on deformable models (Terzopoulos and Flei-
scher, 1988; Montagnat and Delingette, 2001). Particularly, dis-
crete deformable models offer both flexibility and efficiency
(Delingette, 1994; Montagnat and Delingette, 2005; Park et al.,
2001; Ghanei et al., 1998; Lötjönen and Mäkelä, 2001), and are
thus well suited for large datasets and displacements such as the
ones involved in musculoskeletal imaging. Since complexity is an
important issue, scalable approaches (McInerney and Terzopoulos,
1995; Szeliski and Lavallée, 1996; Lötjönen et al., 1999; Park et al.,
2001) are also particularly adequate in our context.

In this paper, we present a new framework for image segmen-
tation and registration based on discrete deformable surfaces, that
is well suited to the musculoskeletal system. Our main contribu-
tion is the introduction of scalable simplex surfaces equipped with
reversible medial representations. We consider the different issues
involved in this process: the initial construction and adaptation of
generic models, the computation of relevant internal and external
constraints and the model evolution. Although our methods could
be adapted to any type of discrete models (and most parametric
models), we focus on simplex surfaces that are efficient in terms
of flexibility and computational cost (Delingette, 1994; Montagnat
and Delingette, 2005). To perform multi-object registration, we
also introduce non-penetration and attachment constraints that
take advantage of the multi-resolution and medial representations.
Finally, we present quantitative results for the hip joint and the
thigh using different MRI protocols. We show that our method
can achieve quasi-automatic musculoskeletal MRI segmentation
with a satisfactory accuracy and computational cost.

2. Methods

2.1. Simplex meshes

In this section, we describe the geometry and topology of sim-
plex surfaces, and propose new local and global mesh adaptation
mechanisms.

2.1.1. Definition
A k-simplex mesh is a k-manifold discrete mesh where vertices

have exactly kþ 1 distinct neighbors. Depending on their connec-
tivity k, simplex meshes can represent various objects such as
curves ðk ¼ 1Þ, surfaces ðk ¼ 2Þ or volumes ðk ¼ 3Þ, with any kind
of topology. They were first described in Delingette (1994) for con-
strained 3D shape reconstruction and segmentation, and extended
in Montagnat and Delingette (2005) for 4D segmentation, through
the introduction of spatiotemporal constraints. Simplex meshes
are dual to standard solid meshes exhibiting constant cell connec-
tivity (e.g. three edges per face in a triangle mesh). In this present
work, we focus on simplex surfaces ðk ¼ 2Þ as we perform object
boundary registration. Volumetric properties are however given
to the surfaces through our proposed medial representation (see
Section 2.2.4). The power of simplex meshes lies in their simple lo-
cal geometric description due to their constant vertex connectivity.
The global three degrees of freedom of vertices can be turned into
three local simplex parameters. From them and vertex neighbors, it
has been shown that vertex positions are uniquely defined (Deling-
ette, 1994). Simplex parameters can be viewed as reduced pyramid
coordinates (Sheffer and Kraevoy, 2004). These parameters are

translation, rotation and scale invariant, so they are particularly
suited for estimating the elastic, the bending and the strain energy
of the surface, thus deriving geometric constraints. Fig. 1 shows the
local geometry of simplex surfaces around a vertex P. The linear
combination of neighbors positions Pi with weights ei (i.e. the met-
ric parameters) defines the orthogonal projection P? onto the
neighborhood domain along the normal n. The angular parameter
/ is related to the elevation h of P above P?. The discrete mean cur-
vature is given by sinð/Þ=r (Delingette, 1994).

2.1.2. Local topology adaptation
The geometric quality (uniformity of vertice repartition) and

topological quality (uniformity of edge number among faces) of
simplex meshes are important to ensure a good matching of the
model with the object we want to represent. A regular simplex sur-
face (constant edge length) is made of hexagons and its dual mesh
of equilateral triangles (this is the centroidal Voronoi tessellation).
Delingette (1994) shows that there are six basic operators from
which all possible mesh connectivity changes are realizable. Most
of the time, one wants to keep the object topology (same genus
and number of holes) while optimizing the mesh topology. Just
two operators (TO1 and TO2) remain in this case. It is possible to
combine them to form macro-operators such as the exchange
operation that changes the repartition of edges across faces with-
out changing the total number of vertices, edges and faces (Deling-
ette, 1994). For the dual triangle mesh, it corresponds to the
swapping operator applied to two adjacent triangles. When pro-
ceeding to an exchange on 2-simplex meshes, we want to decrease
the deviation of the number of edges per face. This yields to the cri-
terion in Table 1 where ni is the number of edges of the face i. Local
resolution adaptation can be performed by combining TO1 and TO2.
These operations replace a faces with b faces inside a given domainP

aSi where Si is the surface of the face i. Given the target face sur-
face eS, the improvement criterion is

P
bðSi � eSÞ2 <PaðSi � eSÞ2.

Supposing that elements are equally distributed in space (similar
size), the criterion is reduced to:X

a

Si < eS ffiffiffiffiffiffi
ab
p

; ifðb� aÞ > 0 ðres: decreaseÞX
a

Si > eS ffiffiffiffiffiffi
ab
p

; ifðb� aÞ < 0 ðres: increaseÞ
ð1Þ

We have retained two particular macro-operators (TOd and TOi

in Table 1) because they maintain a quasi-regular mesh (hexa-
gons). Criteria based on the surface are not sufficient to ensure a
good geometric quality, as faces can stretch in one direction. So

Fig. 1. Simplex surface local geometry.
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we compute the two principal lengths L1 and L2 of the face and
subdivide it along the 2nd direction if it leads to more homoge-
neous edge lengths.

2.1.3. Global mesh adaptation
It is necessary to change mesh resolution globally in order to

adapt the complexity of the system according to the complexity
of the problem. In image registration, the global-to-local approach
(or coarse-to-fine approach) is widely used since it increases
robustness at a lower computational cost (McInerney and Terzopo-
ulos, 1995, Szeliski and Lavallée (1996), Lötjönen et al. (1999), Park
et al. (2001)). With simplex meshes, it is possible to define differ-
ent level of details through multi-resolution schemes that preserve
the constant vertex connectivity. We propose a multi-resolution
scheme that is based on the tessellation of the dual triangle mesh
(see Fig. 2). This scheme preserves shape features as low-resolution
vertices are contained in higher resolutions. When increasing the
resolution, edge length is approximately divided by two and the
number of vertices quadrupled (this is exact for regular hexagons).

2.2. Internal constraints

Because of noise, local solutions and aperture problems (appar-
ent motion), it is desirable to incorporate prior geometric informa-
tion through internal constraints. Here, we formulate for simplex
surfaces three different types of constraints (smoothing, shape
memory and volume conservation) that are particularly relevant
in the context of musculoskeletal segmentation. We subsequently
introduce radial constraints based on a medial representation. Due
to the simple local geometric description of simplex meshes, con-
straints take computationally efficient formulations. Here, we ex-
press constraints related to a vertex P through its desired
position eP. In Section 2.5, they will be converted into forces.

2.2.1. Smoothing
We first exploit the fact that biological tissues have a smooth

shape. First order elastic forces aim at minimizing the curvature.
The popular Laplacian smoothing attracts vertices towards the cen-
troid of its direct neighbors: eP ¼ hPii1 (h�ig operator denotes local
averaging in the neighborhood g of P). Globally, this does not reg-
ularly spread vertices. Instead, we propose to use a weighted sum
to average the size of the domains associated to vertices (rather
than their spatial positions). Let be si the surface associated to a
vertex Pi. The new target position is defined as the barycenter of
its neighbors, weighted by the size of their associated domains:eP ¼P siPi=

P
si. The normal component of ðeP � PÞ globally re-

duces the surface. To overcome this, several authors (Ghanei et
al., 1998; Montagnat and Delingette, 2005) have proposed to re-
place it by a 2nd order term that averages the curvature (bending
force). Here, we use a local average of the elevation h ¼ kP? � Pk
(see Fig. 1). The final goal position is given by:eP ¼X siPi=

X
si þ hhiign ð2Þ

2.2.2. Shape memory
During segmentation, it is effective to use prior shape informa-

tion through a reference template model. By predefining simplex
parameters, we can enforce hard constraints on shapes (Delingette,
1994). The use of the simplex angle / is restrictive because P is un-
iquely defined only if the projection P? lies inside the circum-
scribed circle (see Fig. 1). Instead we directly use the elevation
parameter h, and more exactly the parameter hn ¼ h:St�1=b where
St is the area of the triangle formed by the three neighbors and b
a parameter that tunes the scale invariant aspect. With b ¼ 2, the
definition is similitude invariant; with b ¼ 1, the definition is only
invariant through rigid transforms. In practice, we take b ¼ 4
which has proven to be adequate to limit surface distortion. Given
the three reference shape parameters fe1 ;fe2 and fhn , the final target
position is given by:

eP ¼fe1 P1 þfe2 P2 þ ð1�fe1 �fe2ÞP3 þfhn St1=4n ð3Þ

2.2.3. Global volume preservation
For intra-patient registration, it is useful to exploit the incom-

pressible property of biological tissues. We apply global volume
conservation through normal constraints. We perform fast volume
computation by applying the divergence theorem to the dual trian-
gle mesh. Let eV , V and 1 be the target volume, current volume and
current surface of a closed mesh. The assumption of a similar dis-
placement for all vertices along the normal yields to:

eP ¼ Pþ
eV � V

1
n ð4Þ

2.2.4. Medial representation and radial constraints
Muscles generally have a smooth and tubular shape, that can be

represented by an underlying piece-wise action line (Delp and
Loan, 1995; Blemker and Delp, 2005; Teran et al., 2005). However,
muscles with large attachment areas and several origins/insertions
require many action lines that are not well defined (Ng-Thow-
Hing, 2000; Aubel and Thalmann, 2001). On the contrary, the med-
ial axis, in the geometric sense, is unique and is able to reconstruct
exactly any object (Blum, 1964). It is defined as the union of max-
imal balls inside an object (parameters are positions and radii) and
is characterized by three main properties: homotopy equivalence,
good localization and reversibility. We propose a new method to
automatically compute medial surfaces of musculoskeletal tissues,
which will better follow these properties than previous methods. It
leads to enhanced mechanisms for constraining surfaces and char-

Table 1
Summary of mesh topology adaptation operators. ni; Si and L1=L2 are respectively the
number of edges, surface and principal lengths of a face i. eS is the target face surface.

Operators/criteria

Exchange
! n1 þ n2 � n3 � n4 > 2
 n3 þ n4 � n1 � n2 > 2

TO1=TO2

! L1 > L2
ffiffiffi
2
p

! S > eS ffiffiffi
2
p

 
P

2Si <
eS ffiffiffi

2
p

TOd=TOi

!
P

6Si >
ffiffiffiffiffiffi
42
p eS

 
P

7Si <
ffiffiffiffiffiffi
42
p eS

Fig. 2. Global resolution change. In black: coarse resolution. In grey: fine resolution.
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acterizing shapes. Several medial axis approximation methods
have been proposed, based on Voronoi diagrams, on distance maps,
or on thinning (see Attali et al. (2007) for a complete review). These
approximations need to be pruned to remove undesirable branches
and spikes (Amenta et al., 2001). To create a simplified medial axis,
we take a different approach: we iteratively fit a predefined shape
to the center of the object like in Terzopoulos et al. (1987) (where a
parametric curve is pushed towards the center of a parametric sur-
face by energy minimization). This guarantees homotopy equiva-
lence and smoothness properties as shown in Fig. 3.

We make the hypothesis that, for muscles, ligaments and carti-
lages, medial axis will be homeomorphic to planes. We represent
both the boundary and the medial sheet of these organs with sim-
plex surfaces, and apply constraints of them. Medial vertices Q j are
constrained to remain in the center of the object, while boundary
vertices Pi are constrained to match the reconstructed shape from
the medial axis. This dual representation is flexible as it allows
both the approximation of the true medial axis and the shape con-
trol of the object boundary through radial constraints. Our ap-
proach closely match the work on m-reps by Pizer et al. (2003).
In their study, additional parameters are considered for each med-
ial vertex (local frame and object angle) to explicitly derive geo-
metric sections of the boundary mesh. In our method, the
sampling and the geometry of the boundary mesh is not fixed by
the medial surface; the two surfaces being related by spring-like
forces.

The goal of radial constraints is to reach a state where boundary
vertices Pi lie on the surface of the reconstructed object, that is the
union of maximal balls (see Fig. 4). In other words, we want that
the distances between Pi and their orthogonal projections on the
medial axis Pi? correspond to the interpolated radii ri. The error
can be calculated as err ¼ hjri � kPi? � Pikji (h�i denotes averaging
over all points). Let Rj be the radii associated to medial axis vertices
Q j and wij the barycentric coordinates of the projection such as:
Pi? ¼

P
jwij � Q j and ri ¼

P
jwij � Rj. The parameters wij and Rj define

the links of the medial surface with the boundary mesh. In the step
of building medial surfaces from boundary meshes, we fix the
boundary vertices and update these parameters at each iteration:
we compute wij by projecting Pi orthogonally to the medial surface
and estimate the radii Rj through the weighted mean:
Rj ¼

P
iwijkPi? � Pik=

P
iwij. We experienced that this expression

leads to nearly optimal rj, minimizing err, at a reasonable compu-
tational cost. Now, given that all wij and Rj are known (they have
been updated or memorized from a reference state), we derive par-
ticle constraints through the desired positions fQ j and ePi that min-
imize the error. We want to displace Pi and Pi? in opposite
directions, so we have:

Pi � ePi ¼gPi? � Pi? ¼
X

j

wijðfQ j � Q jÞ ð5Þ

To comply with the momentum conservation principle and thus
avoid ghost translation and spinning, we suppose that the dis-
placements of Q j are collinear with ðPi � ePiÞ and proportional to
wij. We obtain ðfQ j � Q jÞ ¼ wijðPi � ePiÞ=

P
jw

2
ij. The desired positionePi can be defined so that Pi? � Pi remains normal to the surface.

However, this would produce undesirable distortions and self
intersections when the model is bent. A better behavior is obtained
by seeking reference radii only. This allows model vertices to slide
onto the medial balls while smoothing forces will prevent from
excessive sliding. The final goal positions of boundary vertices
are given by:

ePi ¼ Pi? � ri
Pi? � Pi

kPi? � Pik
ð6Þ

Vertices Q j share multiple projections Pi?, so we average their con-
tribution. This leads to the goal positions of medial vertices:

fQ j ¼ Q j þ wij

Pi þ ri
Pi?�Pi
kPi?�Pik

� Pi?P
jw

2
ij

* +
i

ð7Þ

2.3. Inter-object constraints

In this section, we derive constraints related to the interaction
of the different objects (contact and attachments).

2.3.1. Medial axis-based collision handling
In multi-organ segmentation, collision handling is important to

guarantee that objects do not self-penetrate. Collision detection is
often considered as the bottleneck for simulation, since it involves
pair-wise penetration tests for all primitives (points, edges, faces,
cells) of all models involved in the simulation. Significant speed
up can be achieved based on distance fields, spatial subdivision,
image-space techniques, bounding volume hierarchies or stochas-
tic methods (Teschner et al., 2005). The distance field method with
uniform grids is superior for rigid models because collision query is
very fast (the main idea is to pre-process and store the distance to
the surface within a uniform grid). We apply this method after
bone segmentation, to accelerate soft tissues-to-bone collision

Fig. 3. From left to right: boundary surface of the biceps femoris muscle; its medial
axis constructed with the powercrust method (Amenta et al., 2001) where some
branches have been pruned; its medial axis constructed with our method. Colors
represent the radius parameter of the medial axis. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. A 2D illustration of the desired state (left) and deformed state (right). The
boundary surface is represented in red, the medial surface in black and the
reconstructed object from the medial surface in grey. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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detection. For deformable objects, we chose a bounding volume
hierarchy (BVH) method to quickly eliminate most of the non-col-
liding primitives. We use 18-Discrete Oriented Polytope (18-DOP)
quadtree (Mezger et al., 2003) that exhibits good properties (fast
tests and updates, compact bounding volumes). A k-DOP is a con-
vex polyhedron defined by k half-spaces Hi; i 2 f0; . . . ; k� 1g : Hi ¼
fP 2 R3jni � P 6 big where normal vectors ni are chosen by oppo-
site pairs to form k=2 intervals. They generalize the concept of
bounding boxes (6-DOP), by adding other directions such as edge
pairs (18-DOP) and corners (26-DOP).

Collision detection can benefit from our medial representation
which is more compact. The idea is to store faces of medial axis
into the BVH and inflate bounding volumes according to radii
(see Fig. 5). The object inside is always contained in the bounding
volume (contrary to the bounding volumes of the surface). So, col-
lision detection, like for any volumetric model, is simpler because
colliding primitives result in overlapping bounding volumes. Out of
the detection process, a collision vector Pc between a vertex P and
face composed of vertices Pi is expressed as the linear combina-
tion: Pc ¼

P
iwiPi � P. When permanent non-sliding contacts are

expected, we pre-detect collisions at the initialization (i.e. we store
the indexes of the colliding vertices and the weights). During sim-
ulation, we only need to update Pc according to the current posi-
tions, which is fast.

Collision response aims at constraining particles to reach a non-
penetrating state. Typically, from a current state where collisions
are detected, it consists in altering particle positions, velocities
and/or accelerations to cancel collisions in the current state and
to prevent from collisions in the next states. A good scheme has
to respond smoothly to particle changes. This is why a proximity
region is commonly considered to allow a gradual collision correc-
tion scheme and prevent particle jumping at object interfaces
(Volino and Magnenat-Thalmann, 2000a). After testing the conver-
gence time and stability of different alteration methods in our con-
text, we have decided to use an impulse-based method (Mirtich
and Canny, 1994): we alter collision velocities such as
DVc ¼ �Vc � Pc=dt. In the proximity region, the normal component
is gradually altered. Then, the different corrections related to each
particle are combined through a simple weighted sum.

2.3.2. Attachments
Hard constraints on vertex positions can be enforced by setting

their mass to infinite. This technique is used to attach soft-tissues
(muscles, cartilages and ligaments) to bones. To select the vertices
to attach and their positions, we have developed a method to de-
fine attachment areas. We use cardinal splines with a reduced
number of control points to interactively place and adjust the
attachments. For each attachment, two splines are used: one on
the bone and one on the soft organ. By using simple projection
and filling techniques, we select boundary and internal soft tissue

vertices (see right picture of Fig. 6). Boundary vertices are easily
warped to bones through spline curvilinear coordinates. For inter-
nal vertices, we use a relaxation approach: we apply smoothing
constraints until convergence, and finally project internal vertices
to the bone surface. To transfer attachment locations from one sub-
ject to another, we warp spline control points through their local
coordinate on the bone surface (defined as barycentric coordi-
nates). As shown in Kaptein and der Helm (2004), most attach-
ments rely on bone geometrical features. Therefore, our approach
can effectively estimate subject-specific attachments from a gener-
ic model. Attachment localization from MRI was difficult. Instead,
we relied on the literature on anatomy to place the generic splines.

2.4. Image-based constraints

Here, we express different external constraints that can be ap-
plied to align models with the data. They will be compared in
the context of musculoskeletal MRI in Section 3.2.2. These con-
straints are expressed in terms of optimal shifts ~j in the surface
normal direction. Using normal direction reduces aperture prob-
lems (Lötjönen and Mäkelä, 2001; Montagnat and Delingette,
2005). Along this direction, we perform regular sampling according
to a step size s (set to the minimum voxel dimension). We haveeP ¼ Pþ~jsn.

2.4.1. Gradient maximization
To directly segment an image/volume T, the main criterion that

discriminates object boundaries is the gradient rT. We can either
maximize the gradient magnitude (G measure) or the alignment of
model normals with the gradient vectors (GV measure). Given a
search distance d, the goal positions are given by:

G : ~j ¼ argminð�d=s<j<d=sÞð�k$TðPþ jsnÞkÞ

GV : ~j ¼ argminð�d=s<j<d=sÞð�$TðPþ jsnÞ:nÞ
ð8Þ

In the GV expression, the sign is obtained ad-hoc from the structure
to segment. If not known, one can use the absolute value of the dot-
product.

2.4.2. Image registration
In deformable model-based image registration, the goal is to

align a source (reference) image S to the target image T via model
deformations. The model, initially aligned to the segmented refer-
ence dataset (vertex positions P0), is iteratively deformed until it
matches the target image, that is where the similarity in vertex
neighborhoods g is maximal:

~j ¼ argminð�d=s<j<d=sÞDðSðgðP
0ÞÞ;TðgðPþ jsnÞÞÞ ð9Þ

Fig. 5. In this 2D example, a vertex and a medial point (bounded by blue 8-DOP) are
tested towards a medial surface (bounded by red 8-DOPs). Our medial axis-based
collision detection method detects 4 collisions (dashed lines). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. An example of spline-based attachment between a muscle (gluteus
minimus) and hip bones. From left to right: a 3D visualization of the models; a
closer view showing the spline attached to the pelvis; the selected attachment
vertices of the muscle (in green: the boundary vertices; in blue: the internal
vertices). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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where D is an image distance measure (Holden et al., 2000; Maintz
and Viergever, 1998; Zitová and Flusser, 2003) such as the sum of
absolute differences (AD) or the normalized cross-correlation
(NCC). As in Montagnat and Delingette (2005), we apply a 1D regis-
tration of intensity profiles: vertex neighborhoods g are composed of
regularly sample points along the surface normal direction n, which
is the most relevant direction (i.e. direction of expected intensity
change). The sampling period is set to s. 1D intensity profiles have
a length sNo in the direction of the normal (i.e., outside the model)
and a length sNi in the opposite direction (i.e., inside the model). It
is possible to filter intensity profiles by convolving them with 1D
discrete masks in order to enhance edges (e.g. Prewitt mask
[�1,0,1] or [�1,2,1]). Different distance measures and masks will
be compared in Section 3.2.2.

2.5. Dynamic evolution

In this section, we describe how we deform models according to
the constraints derived in the previous sections, and how we ex-
ploit the multi-resolution scheme to globally and locally control
shapes.

2.5.1. Numerical integration
Deformation is obtained through the minimization of the inter-

nal and external energy. We combine target positions of the differ-
ent constraints through the weighted sum: E ¼ 1=2

P
aið ePi � PÞ2

with
P

ai ¼ 1 (here ePi denotes the target position of P for the con-
straint i and ai is the stiffness of this constraint). Because of the
non-convex aspect of the energy (noise, multiple local minima,
etc.), there is no analytical solution for the minimization and one
must use traditional multivariate optimization strategies (Maintz
and Viergever, 1998; Zitová and Flusser, 2003). By analogy with a
mechanical system, one strategy is to consider discrete models as
punctual masses (lumped mass particles) evolving under the New-
tonian law of motion. The Newton equation leads to a first-order
differential equation system relating forces to particle state (veloc-
ity and position). Time discretization leads to either explicit or im-
plicit methods (Press et al., 1992). Finite differences lead to explicit
resolution methods (e.g. explicit Euler, Runge-Kutta) that are
known to go forward blindly so that the stability is only ensured
for small time steps. A Taylor expansion of the force is more suit-
able but requires the evaluation of force derivatives with regards
to particles position and velocity and the inversion of a sparse ma-
trix. This is known as the implicit method. It has shown good per-
formances for stable real-time applications (Baraff and Witkin,
1998; Volino and Magnenat-Thalmann, 2000b), despite its possible
inaccuracy (ghost numerical damping due to non-linear non-stiff
behavior). In this work, we have chosen an implicit Euler integra-
tion and a conjugate gradient resolution such as in Baraff and Wit-
kin (1998), Volino and Magnenat-Thalmann (2000b). We have
observed its faster convergence and higher stability in our context,
compared to other schemes (explicit Euler, Runge-Kutta, Implicit-
Midpoint, BDF, Newton-Raphson).

For simplicity, we consider that target positions are indepen-
dent from the current positions. So, the force F acting on P is ex-
pressed as: F ¼ �rE ¼

P
Fi ¼

P
aið ePi � PÞ. Taking into account

the dependence improves the accuracy but leads to complex
expressions (particularly for the Jacobians) that significantly in-
crease computational cost. Our tests showed that, in our context,
it does not improve convergence time and positions. This assump-
tion allows us removing all non-diagonal terms of the stiffness ma-
trix (which is equivalent to the Jacobi preconditioner):
@Fi=@Pj ¼ 0; i – j. For diagonal terms, we approximate the Jacobian
of the constraint i by:

@Fi

@P
¼ �aicI� aið1� cÞFiFiT=kFik2 ð10Þ

where c is a constant related to force isotropy (see Volino and
Magnenat-Thalmann (2000b) for more details). For smoothing and
shape memory forces, we consider an isotropic variation: c ¼ 1
(an infinitesimal displacement does not change the target position).
The other constraints (volume preservation, radial constraints, im-
age-based forces) are anisotropic (an infinitesimal displacement
does not change the direction of the force). For them, we set
c ¼ 0:1 (a perfectly anisotropic variation leads to instability, and a
small isotropic contribution, that act as a damping factor, need to
be added in practice). To reduce oscillations that can occur in the
particle system, we add a damping force inversely proportional to
the particle velocity V in the direction of the force:
Fd ¼ �cðVTFÞF=kFk2 with c ¼ 0:5.

2.5.2. Multi-resolution scheme
The use of different levels of details (LODs) during the deforma-

tion process is valuable for registration since it reduces system
complexity and sensitivity to local solutions. Here, we propose to
use the different scales generated with our global topology adapta-
tion scheme to derive multi-resolution constraints. A straightfor-
ward approach is to use LODs successively and independently to
allow a coarse-to-fine optimization, as done in most multi-scale
registration methods (McInerney and Terzopoulos, 1995; Szeliski
and Lavallée, 1996; Lötjönen et al., 1999; Park et al., 2001). On
the contrary, our approach combines all LODs at the same time.
Our goal is to keep global constraints when fine LODs are used
and thus prevent from global drifting. The idea is to quickly prop-
agate constraints from lower resolutions to a current simulation le-
vel. This is simply done by linear interpolation using the same
technique than for positions (see Fig. 2). Given a vector Ur

i attached
to the vertex i at resolution r and the mean vector Ur

l related to the
face l, the vector interpolation scheme is given by:

Resolution increase : Urþ1
i ¼ ðUr

j þ Ur
l Þ=2 or Urþ1

i ¼ Uir

Resolution decrease : Ur
i ¼ Urþ1

i

U can be either a force, a displacement, a velocity correction term or
a Jacobian. So, all constraints can be finally summed into a unique
LOD. A significant benefit of our multi-scale method is related to
collision handling: collision detection can be performed at coarser
LODs, while the response is being passed to the current resolution.
Exact contact computation is most of the time not relevant in our
context, as fat separates organs.

For image constraints, multi-resolution forces are not appropri-
ate because they do not depend on the local resolution of the mesh.
Because image constraints are noisy, we need to regularize them
globally. Such as in Montagnat and Delingette (2005), we compute
for each model the linear transform fM that optimally approxi-
mates the target displacements ð ePi � PiÞ in the least-squares
sense: fM ¼ argmin

P
k ePi �MPik2. Closed form formulas exist for

common linear transformations such as the affine, similarity and
rigid transforms (Horn et al., 1988). To tune the global/local effect
of image-based constraints, we replace target displacements by the
weighted sum k ePi þ ð1� kÞfMPi where k 2 ½0;1� is the control
parameter.

3. Results

In this Section, we apply our algorithm on one part of the mus-
culoskeletal system: bones, muscles, ligaments and cartilages of
the hip of the thigh. We generate regular generic models through
our mesh adaption techniques and construct the associated medial
surfaces. We individualize these models from patient-specific MRI
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images and validate the methods through comparisons with man-
ual segmentation. We finally present performance tests.

3.1. Generic model reconstruction

3.1.1. Mesh topology optimization
Thanks to our fast collision handling method, users can con-

strain models according to manually-defined positions in space.
By putting internal/external/boundary constraint points, we have
reconstructed generic models to be used as reference models for
quasi-automatic registration. For the different organs to be recon-
structed, a simplex sphere or a cylinder is used as a starting prim-
itive. Meshes are progressively optimized to improve their
geometric and topological quality according to the shape we want
to approximate (Section 2.1.2). Here, we present the example of
the femur due its particularly irregular shape. The straightforward
matching of a simplex sphere (without any mesh optimization)
leads to undesirable folding and overstretched faces as shown in
Fig. 7, left picture. To test our method, we fix the target edge length
to ~l ¼ 15 mm, to 8 mm and then back to 15 mm (Fig. 8). As we
want to seek hexagons, the corresponding target face surface iseS ¼ 3

ffiffiffi
3
p

~l2=2. In our tests, the average edge length quickly matched
the target values with a low standard deviations (typically
1.5 mm). A common measure of the regularity of triangle meshes
is to plot the histogram of radius ratio (that is 2r/R where r is the
radius of the inscribed circle and R the radius of the circumscribed
circle of a triangle). As shown Fig. 8, our resulting meshes possess
quasi-regular elements (the histograms of the dual triangle meshes
are close to 1). The introduced operators TOi=TOd are clearly valu-
able compared to the use of TO1=TO2 only, since they reduce com-
putation time and closer match target edge lengths.

3.1.2. Medial axis construction
We apply the methodology of Section 2.3.2 to attach muscles,

ligaments and cartilages to bones. From the attachments, we auto-
matically generate medial axis as following: for each model, we
initialize a simplex plane as the optimal plane approximating
attachment centroids (see Fig. 9B and C). We project vertices of
the boundary model to the plane and prune exterior faces (see
Fig. 9D). After this cropping stage, we simulate the medial surface
with radial and smoothing forces, while projecting model vertices
and updating radii at each timestep as described in Section 2.2.4.
The medial surface converged to the medial axis in a couple of sec-
onds. This process has proven to be robust for all the models we
have tested (21 muscles, 3 cartilages, 3 ligaments). We have mea-

sured the error err between the reconstructed surface from the
medial axis and the boundary mesh. As shown in Fig. 10, there is
a relation between the error and the sampling of the medial sur-
face. We measure the compression factor as the ratio between
the number of model vertices times 3 (three spatial coordinates)
and the number of medial vertices times 4 (three spatial coordi-
nates plus the radius). As a trade-off between the compression fac-
tor and the error, we have decided to use an initial edge length of
8 mm for planes, leading to an average compression factor of 14
and an average error of 0:61� 0:65 mm. It allows, on one side, a
precise shape representation (for shape analysis, radial regulariza-
tion and medial axis-based collision handling) and, on the other
side, a significant reduction of the required information (about
14-fold reduction).

3.2. Patient-specific model reconstruction from MRI

3.2.1. MRI acquisition
MRI protocols definition has been done in close collaboration

with physicians from radiology and orthopaedic departments
(HUGE – Geneva). The goal was to obtain images carrying sufficient
information with clinically achievable protocols (fast). Acquisition
has been performed on a 1.5 T Intera MRI system (Philips Medical
Systems, Best NL). We have investigated a high-resolution and a
low-resolution protocol to perform the full acquisition of the hip
and the thigh. The first protocol is based on an Axial 2D T1 Turbo
Spin Echo sequence (Table 2, sequence A). Due to restricted acqui-
sition time, it was not possible to achieve a precise (isotropic)
acquisition over the full region, so the slice thickness was adjusted
to 2 mm for the hips, 4 mm for the knees or 10 mm for the thigh.
The total acquisition lasted about 40 min (�250 slices). To improve
image quality (SNR), a surface coil around the hip was used. This
protocol was applied on 13 young healthy volunteers (7 male, 6 fe-
male). Besides this high-resolution protocol that provided a set of
high-quality models, we performed a clinical study on 30 young fe-
male dancers where several poses were analyzed: the neutral posi-
tion and the right and left splits. The former protocol was not
applicable, so a faster (but low-resolution) protocol was proposed
(Table 2, sequences B., C. and D.). It consisted of two axial 3D series
(acquisition time: 3 min). A high-resolution sequence centered on
joints with isometric voxels was run to improve cartilage/ligament
and bone models near articulations (acquisition time: 4 min per
hip). Moreover, because the purpose was to study coxo-femoral
conflicts and labrum deformations, radial acquisitions were run
to provide highly detailed images around the acetabulum (acquisi-
tion time: 6 min per hip).

3.2.2. Optimizing image-based constraints
To improve contour discrimination in images, we have opti-

mized and compared parameters related to the constraints defined
in Section 2.4. Our gold standards are manually registered models
from two subjects. They correspond to the optimal shifts bji s of ver-
tices Pi in the normal directions, and their accuracy is about 1 mm

Fig. 7. The unoptimized femur model (left) presents a poor topological and
geometrical quality as shown by its radius ratio histogram, while the optimized
model (right) possess quasi-regular faces.

Fig. 8. Example of mesh topology adaptation: the target edge length is successively
fixed to 15, 8 and 15 mm. The addition of TOi=TOd (in black) to TO1=TO2 (in grey)
significantly speeds up convergence.
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(voxel size). Fig. 11 shows intensity and similarity profiles for the
femur bone.

In a first step, we compute the optimal size of intensity profiles
by minimizing the distance between the optimal shifts eji s found
with the considered profiles (see Section 2.4), and the gold stan-
dard shifts bji s. Optimal inside and outside lengths (sNi and sNo)
were found fairly independent from the similarity measure. Being
more variable, the external part of intensity profiles was less rele-
vant. The final lengths were Ni ¼ 25 and No ¼ 5 for bones and
Ni ¼ 20 and No ¼ 10 for muscles, with a step size of s ¼ 0:5 mm.

No similarity measure has proven to perform the best in the
general case (Holden et al., 2000). Here, we compare, in our con-
text, gradient maximization techniques with standard similarity
measures widely used in mono-modal registration: the sum of
absolute differences (AD) and the normalized cross-correlation
(NCC). Our similarity profile length (search space) is fixed to
d ¼ 1 cm. We applied the five evaluation criteria proposed in Skerl
et al. (2006). The normalized cross-correlation (NCC) was always
the best similarity measure. The use of gradient images is not
worth for this type of mono-modal registration. However the dis-
crete mask [�1,2,1] (gradient enhancement) slightly improves

the results without significant extra computational cost. Gradient
maximization (G and GV measures) leads to good results in the
close neighborhood of the solution and is not sensitive to errors
in the generic models. Therefore, for registration, we combine a
measure based on intensity profile (NCC) with a large search space,
and a measure based on the gradient with a reduced search space.

3.2.3. Model registration
Our registration scheme works sequentially. Bones are first

aligned. Then cartilages, ligaments and muscles are initialized from
the bones. These soft-tissues are deformed to match individual
anatomy.

3.2.3.1. Bone initialization. First, generic bone models are coarsely
initialized using manually placed points corresponding to anatom-
ical landmarks (7 per pelvis and 8 per femur) and thin-plate-spline
(TPS) interpolation.

3.2.3.2. Bone modeling. Bone models are automatically deformed
from the coarse level to the fine level using multi-resolution shape

Fig. 10. Final medial axis error in function of the compression factor for different
models (average in bold).

Table 2
Summary of the MRI protocols.

Sequence TR (ms) TE (ms) FOV (cm) Matrix FA (�) Res. (mm)

A. Hi-res. axial 2D T1 TSE 578 18 40 512� 512� 250 90 0:78� 0:78� ð2—10Þ
B. Low-res. axial 3D T1 (VIBE) 4.15 1.69 35 256� 256� 150 10 1:37� 1:37� 5
C. High-res. sagittal 3D T2* (TrueFISP) 10.57 4.63 20 384� 384� 112 28 0:52� 0:52� 0:6
D. Radial 2D intermediate weighted TSE 2180 13 16 384� 384� 18 180 0:41� 0:41� 10�

Fig. 9. Medial axis generation. From left to right: A. Original gluteus minimus model, attached to hip bones. B. Attachment centroid faces (in green). C. Plane initialization. D.
Plane after cropping. E. Medial axis after fitting. F. Reconstruction error. In C, D and E, colors show the radius of the medial axis. In F, colors show the reconstruction error
(blue: max, red: min). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Left: Sample intensity profiles (femur). Center: The corresponding self-
similarity profile (NCC measure). Right: An inter-subject similarity profile (NCC
measure).
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memory forces, non-penetration constraints (multi-resolution col-
lision handling) and image-based external forces (NCC measure
and GV gradient maximization). We have found that setting the to-
tal contribution of external forces to 30% of the total forces led to
good results. During the process, the affine regularization is ap-
plied to external forces with a decreasing contribution (k = 0–
0.7). During the process, the search distance for computing inten-
sity profile-based forces is progressively reduced from 1 cm
(0.5 cm outside and 0.5 cm inside) to 0. The full process, including
both the femur and the pelvis lasts about 1 min. A comparison with
manually segmented bones from 13 high-resolution datasets
shows an average distance of 1:7� 1:6 mm. The use of multi-reso-
lution forces is effective as it prevents from large displacements
when using fine resolutions (the systematic difference in the error
is about 0.5 mm). Fig. 12 illustrates bone matching on images from
the high-resolution and low resolution protocols.

3.2.3.3. Cartilage, ligament and muscle initialization. Standard bone
coordinate systems (Wu et al., 2002) and soft-tissue attachment
locations are automatically wrapped from the generic models.
Then, soft-tissue models are initialized based on the joint angles
using a skinning algorithm adapted from Kalra et al. (1998).

3.2.3.4. Cartilage and ligament modeling. Cartilages and ligaments
are thin periarticular tissues. Despite of the highest resolution
achievable with conventional MRI (�0.5 mm), the use of image
information is not sufficient to allow an accurate reconstruction
and geometric constraints start to be more reliable. For the hip
joint, we know from anatomy literature that femoral and acetabu-
lar cartilages fill the inter-articular space, the interface being very
smooth (Shepherd and Seedhom, 1999). The labrum links the fem-
oral head and the acetabular rim to which it is attached. Ligaments
have a quasi-constant thickness. Using our methods, it is possible
to enforce such constraints: stable and accurate contact manage-
ment enforces inter-organ constraints while the radial representa-
tion provides a way to control the thickness. To ensure quasi-
constant thickness, we smooth medial axis radii locally. To ensure
a perfect contact between cartilages and between the labrum and
femoral cartilage, we add forces based on vertex projection (with
a ¼ 0:2). Other forces are divided into smoothing and radial forces.
We uniformly fix ligament thickness to 3 mm. Fig. 13 illustrates
the reconstruction of the two hip cartilages, the labrum and the
ilio/pubo/ischiofemoral ligaments (10,584 vertices in total). The
medial representations are made of 1216 vertices. The fitting is
performed sequentially: cartilages are deformed first, then the lab-
rum, then ligaments. At each step, the previous models are con-
strained with infinite mass. The complete process is performed in
�3 min with a minimum frame rate of 10 frames/s. Thus, interac-
tion (constraint point placement) is possible during the segmenta-

tion process. Because cartilage and ligaments are difficult to
identify in MRI, our geometrical-based algorithm is difficult to val-
idate. We have found a good agreement between 3D models and
anatomical structures, but a quantitative validation would be re-
quired from more suitable images (i.e. arthro-MRI using contrast
agent injected inside the capsule). The advantages of our algorithm
are the low computational time and the flexibility. It can be easily
tuned with different default thickness, different attachment areas
and with user constraint points.

3.2.3.5. Muscle modeling. We have modeled the 21 skeletal muscles
of the hip and thigh (71,328 model vertices and 4272 medial axis
vertices in total). To perform muscle segmentation, we can use a
different amount of prior information. The first level consists in
using segmented bones to perform attachment wrapping and skin-
ning as previously described (steps A and B of Fig. 14 and Table 3).
In a second level, generic muscle shapes and muscle relative posi-
tions can be used to approximate patient-specific models based
only on internal forces (the prior information is the medial axis
shape parameters). Permanent contact are enforced with a proxim-
ity distance of 10 mm (step C). At the third level, we introduce im-
age forces (combination of gradient and intensity profile
registration constraints) (step D). During the whole segmentation
process, we progressively increase the number of degrees of free-
dom while reducing the magnitude of admissible deformation
(see Fig. 14): we successively increase model level of details, we re-
duce image force search space and the global regularization
parameter, and we update, at the end of the segmentation, generic
shape parameters through medial axis radii updates. Until now,
our muscle segmentation method is fully automatic. But a fourth
level of prior information can be added from the user. Indeed, it
is possible to interactively place constraint points on the images,
to get a faster matching and a more accurate segmentation (the
frame rate is always >1 frames/s, which allows interaction). A
medical student in our group has used this interactive segmenta-
tion to accurately segment 7 high-resolution datasets. It has pro-
vided gold standard datasets for validating our automatic
segmentation method. Typically, about 2000 constraint points
are necessary (about 30 min of manual work). But a little number
of points can prevent from reaching most of the local minima. In
Table 3 (method constraint points), we evaluate the placement of
about 100 points during the fitting process. This Table presents
the average error of our method over the seven different subjects
(3 males and 4 females, different in terms of size and origin). Tests
on two low-resolution MRI show a comparable accuracy than with
high resolution MRI (see Fig. 15). However, results are biased be-
cause gold standard models are less accurate due to a more diffi-
cult manual delineation of muscles (partial volume effects). The
overall computation time for the automatic method is around
8 min on a standard PC, for which 3/4 of the time is spent on exter-
nal forces computation.

Fig. 12. Left: Individualized 3D bone models; Right: Sample slices with superim-
posed models generated by our quasi-automatic segmentation method (Top: low-
resolution protocol, Bottom: high-resolution protocol). Fig. 13. Automatically segmented periarticular tissues.
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3.2.4. Shape analysis
Musculoskeletal shape characterization is important for anthro-

pometric comparison between individuals, and deformation analy-
sis (temporal and longitudinal studies). For this purpose, our
method registers anatomical features through shape and topologi-
cal constraints. High-level descriptors such as the medial axis
convey more information than local descriptors (curvature). Soft-
tissue thickness can be simply analyzed through medial axis radii
comparison, as shown in Fig. 16. Using approximated geodesic dis-
tances to attachments (Dijkstra algorithm), we compute normal-
ized coordinates X and Y along medial surfaces, from which a
thickness profile can be extracted (maximum radius in Y direction).
For some muscles showing thickness steep changes, tendons
lengths (which is an important biomechanical parameter) can be
automatically extracted (see Fig. 16).

Using the same methodology than for inter-patient registration,
we performed intra-patient registration on some kinematic data. In
a first step, we reconstructed models from scans in the neutral pos-
ture (volunteers in supine position). These models were subse-
quently registered in images from another posture. Bones were
rigidly registered using a rigid regularization on external forces,
while additional prior knowledge (volume preservation con-
straints) has been applied for soft-tissues. To compare the two pos-
tures, we have computed the compression/elongation of the organs
based on the medial axis. This is done by calculating, for each med-
ial vertex, the sum of the geodesic distances to the attachments
(lengths Lr and L, respectively for the neutral and non-neutral pos-
ture). The compression/elongation percentage is then given by
100� ðL� LrÞ=Lr . Visualizations of these ratios are shown in
Fig. 17. For a small abduction, gluteal and adductor muscles are
the ones that deform the most (up to 10% in length change) which
is in agreement with functional anatomy knowledge. For a split
posture, posterior muscles and the iliofemoral ligament are de-
formed up to 30%.

3.3. Performance tests

We simulate all muscle models of the hip and the thigh and per-
turb the system by simulating a global movement (20� of flexion).
We check how vertices recover their initial positions under the ac-
tion of medial axis shape forces and collision handling. Medial axis
are driven by shape parameters, so stiffness are turned to 0.9 and
0.1 for shape memory and radial constraints respectively. Model
forces are set to 0.6, 0.3 and 0.1 for radial, smoothness and volume

Fig. 14. Error variation during automatic muscle segmentation and segmentation
results at different steps of the process.

Table 3
Muscle segmentation results.

Prior knowledge Method Error ± std. dev. (in mm) Comp time (in s)

Individual bones + generic muscle models A: Attachment wrapping 24.69 ± 22.59 0
Joint transforms B: Skinning 5.75 ± 5.68 1
Generic shape parameters Internal forces 5.48 ± 5.82 15
Generic inter-object proximities C: MA-MA collision handling 3.79 ± 3.68 20
Generic intensity profiles D: External forces 1.58 ± 1.92 500
User inputs Constraint points 1.37 ± 1.56 500

Gold standard 0 ± 0 2000

Fig. 15. Individualized muscle models and segmentation on low-resolution MRI
sample slices.
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conservation forces respectively. Convergence is reached after
about 2500 iterations corresponding to 160 s of computation. The
different resolutions are applied sequentially (computation times
per iteration are respectively 0.25 s, 0.06 s and 0.02 s). The compu-
tational time repartition is 12% for collision handling, 32% for force
computation, 39% for the numerical integration and 17% for the
visualization. The final error (distance to the initial model) is
0:8� 1:0 mm which roughly corresponds to the medial axis
approximation error. We test the performance of our collision
detection scheme by monitoring convergence times (time spent
on collision handling), accuracy (average distances with regards
to the most accurate collision handling scheme) and stability (rem-
nant average vertex displacement) using different resolutions and
collision detection features (standard model-to-model collision
detection, the model-to-medial axis scheme where each model
point is tested towards medial axis and the medial axis-to-medial
axis method). We compare the full detection with the permanent
contact scheme (where initial relative positions are enforced as
presented in Section 2.3.1). The hypothesis of permanent contact
speeds up collision detection by 3. It is valuable to make it for mus-
cle registration as we do not expect large sliding between them
due to fascia. The full detection is useful as an initial step for gen-

eric model reconstruction and when sliding is expected (e.g. bone,
cartilage and ligaments registration). The multi-resolution collision
detection improves convergence speed by a factor of 3–10 without
prohibitive inaccuracies. Medial axis-based collision detection
clearly improved performances: model/axis collision detection
approximately divides computational costs by 2, while axis/axis
detection divides them by 40.

4. Conclusion

Within a discrete deformable model framework, we have pre-
sented scalable methods (mesh topology adaptation, multi-resolu-
tion scheme and medial axis) for controlling shapes and
deformations. Our work represents one the first attempt to partly
model the musculoskeletal system from medical images in a
cost-efficient way. Most existing methods are interactive, do not
perform registration, and/or make use of non-clinical images such
as the visible human dataset. Although more validation and exten-
sions to handle pathologies are required, we believe that our meth-
od has a good potential for clinical use: we have tested our method
with standard clinical images, the accuracy achieved is in the range
of image resolution and the overall segmentation time is less than
an hour. Moreover, our method can be ran in a quasi-automatic
setting, meaning that only a few points are needed for the initial-
ization (	2 min of manual work). If needed, the user can interact
during the segmentation to speed up the registration and/or pre-
vent from convergence to local minima. We have demonstrated
that our methodology allows representing the variety of shapes,
topology and deformations of the hip joint complex. We expect
that it can be generalized to other joints and organs. In most cases,
our segmentation method has proven to be valuable to estimate
organ shapes from images. However, it is not always robust in
presence of false or fuzzy edges, and when anatomical variability
from the generic model is too high. We believe that we could get
a higher accuracy through a deeper study of intensity profile forces
(combination of several metrics, weighting according to profile rel-
evance, etc.). Statistical methods based on shape, deformation and
intensity profile examples could also improve the results signifi-
cantly, but it is currently not clear how to explore the potentially
large example space (variable subjects, postures and actuation lev-
els). We did not individualize attachments since they mostly rely
on bone geometrical features. Visually, it was difficult to identify
attachment locations on images, and we think that an individuali-
zation technique would require a different imaging protocol. Our

Fig. 16. Medial axis-based morphological analysis. Left: muscle thickness comparison between two subjects (Red: smaller; Green: equal; Blue: larger thickness). Middle:
thickness profile analysis along the geodesic direction Y. Right: tendon extraction (in red) from the thickness profile. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 17. Left: muscle medial surfaces during low amplitude abduction. Right:
muscles and ligaments medial surfaces during split. Colors represent the elongation
percentage (clamped at �10% (red) and +10% (blue) except for the top right figure
where the clamping values are ±30%). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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technique has a good potential for studying morphological and
functional pathologies through static, dynamic and longitudinal
studies. However, extensive tests on patient data need to be per-
formed, and pathology models (e.g. lesions, cartilage calcification)
need to be developed to detect them. Another perspective is the
validation and the parameterization of functional biomechanical
muscle models. This would require the addition of physically-
based constraints in our framework (and therefore the incorpora-
tion of fiber geometry), along with actuation measurements.
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