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Abstract. For diagnosis, preoperative planning and postoperative guides,
an accurate estimate of joints kinematics is required. We bring together
MRI developments and new image processing methods in order to auto-
matically extract active bone kinematics from multi-slice real-time dy-
namic MRI. We introduce a tracking algorithm based on 2D /3D registra-
tion and a procedure to validate the technique by using both dynamic
and sequential MRI. We present how we optimize jointly the tracking
method and the acquisition protocol to overcome the trade-off in ac-
quisition time and tracking accuracy. As a case study, we apply this
methodology on the human hip joint.

1 Introduction

Periacetabular osteotomy is an accepted surgical procedure to reorient the ac-
etabulum in patients with hip symptoms of mechanical overload, impingement
or femoral head instability. For both the diagnosis and the surgical planning,
an accurate estimate of hip joint bone motion is required. Orthopedists can use
animated 3D models, prior to joints surgeries, to evaluate their task and gener-
ally to reduce the overall time of the surgical operation. The long-term objective
of our ongoing project is to model, analyze and visualize human joint motion
in-vivo and non-invasively.

In order to deduce kinematical properties of the musculoskeletal system, tech-
niques have been developed to measure internal motion of organs. The use of
bone screws or implantable markers [1] provides a gold standard of bone motion
measurement, although it is a very invasive approach. Optical motion capture
consisting in recording markers trajectories attached to the skin leads to inac-
curacy in the estimation of the position of internal organs because of fat/skin
sliding artifacts [2]. Nowadays, medical imaging technology has reached a level
where it is possible to capture internal motion with different modalities (CT,
MRI, US). Several authors have reported kinematic studies of joints with se-
quential MRI acquisition techniques to evaluate the joint under passive motion,
meaning the joint is stationary during acquisition. Brossmann et al. [3] reported
the importance of acquiring joint motion actively, due to the existence of sta-
tistically significant variations between acquiring actively or passively. However,



the problem of acquiring volumetric image data in real-time with MRI during
active motion remains to be solved due to inherent trade-off in the MR imaging
technique between Signal-to-Noise Ratio (SNR), spatial resolution and temporal
resolution. Quick et al [4] published results on the use of the trueFISP (or b-FFE,
FIESTA) imaging sequence for real-time imaging of active motion of the hand,
ankle, knee and elbow (matrix 135 X 256, 6 frames/s) on a single slice. Bone mo-
tion tracking in 2D dynamic images, which are incomplete from a spatial point
of view, is equivalent to a 2D/3D rigid registration between dynamic images
and the static MRI volume used to reconstruct 3D models. Various registration
methods have been proposed in the literature [5]. 2D /3D multimodal rigid regis-
tration has been investigated for intra-operative navigation using mainly X-rays
and CT data. Tomazevic et al. [6] presented a technique based on bone surface
matching; Zollei et al. [7], a method based on mutual information optimization.

This paper presents the selection of the best dynamic imaging protocol avail-
able to our group and the adaptation of the technique to the joint motion extrac-
tion problem. We introduce a new technique to track bone motion automatically
from real-time dynamic MRI based on the combination of temporal information
of dynamic MRI and spatial information of static MRI by 2D/3D registration.
Bone motion tracking in sequential MRI is used as a gold standard bone posi-
tion measurement. Subsequently, we present how we optimized both the tracking
method and the acquisition protocol to overcome the trade-off in acquisition time
and tracking accuracy.

2 Real-time dynamic images acquisition

2.1 In-vitro study

The acquisition was performed with a 1.5T Intera MRI system (Philips Med-
ical Systems, Best NL). In a first step, the b-FFE (balanced Fast Field Echo,
Philips Medical Systems, Best NL) imaging sequence (aka. trueFISP) was quan-
titatively compared to four other sequences, including Turbo Spin Echo (TSE),
RF-spoiled FFE (T1-FFE) and a Field Echo, Echo Planar Imaging (FE-EPI)
sequence. In order to quantify sequence performance, a phantom consisting of
tubes of GAd-DTPA (Schering AG, Germany) at varying concentrations was used.
Using this phantom, measurements of SNR could be made for a range of physi-
ological T2/T1 values. The b-FFE sequence was found to outperform all other
ultra-fast MR sequences available on the scanner in terms of SNR divided by
the acquisition time, SNRt. The SNR and CNR (between muscle and fat) was
optimal at a flip angle of 90deg for b-FFE sequence. Partial Fourier acquisition
in the read-out direction was possible without significant reduction in image
quality. This enabled the scan time to be reduced by 30%.

2.2 In-vivo study

The imaging protocol was developed and optimized with reference to the lim-
itations of the tracking algorithm. First, the trade off in image quality with



FOV and matrix was investigated qualitatively on healthy volunteers in order
to achieve the optimum resolution, contrast and frame acquisition time. As scan
duration was proportional to the phase encode matrix, the phase encode matrix
was maintained <100 at the shortest repetition time possible (TR 3.5ms). It was
found that reducing the FOV and hence the phase encode matrix, maintaining
an in-plane resolution of 2mm, was not an effective way to reduce frame acqui-
sition time, due to the need to use fold-over suppression to avoid aliasing in the
phase encode direction. A parallel imaging technique, SENSE (Philips Medical
Systems, Best NL), was found to reduce the scan time by a factor of 2 without
significant reduction in image quality. A reference scan is acquired prior to the
SENSE MR sequence to measure the sensitivity profile of the phased-array coil.
The same reference scan is used for all the images of the dynamic series.

A positioning device was developed that facilitated reproducible abductive
motion in both sequential and dynamic modes. A study was run with six healthy
volunteers to optimize and evaluate the robustness of the registration-MRI pro-
tocol combination without the introduction of motion artifacts. Ethics approval
was obtained from the local ethics committee for the study protocol. In a first
session a complete static image data set of the pelvis and femur was acquired
with a 2D multi-slice spin echo acquisition (TR/TE 578/18ms). In the second
scan session the joint was stepped successively in abduction, and at a range of
positions two scans were run. A 3D sequential acquisition at high spatial res-
olution (fast gradient echo sequence with radial reconstruction: FFE, TR/TE
6.4/3.1ms, Flip angle 15deg, FOV/matrix 500mm/410x512) was run to local-
ize the hip position (gold standard) and secondly the optimized 2D dynamic
protocol was run (seven imaging planes, gradient echo sequence with balanced
gradients: bFFE, TR/TE 3.5/1.1ms, Flip angle 80deg, pixel size 2 x 2mm, slice
thickness 10mm, partial Fourier reduction factor of 0.65 in read direction). The
slice positions of the dynamic slices were required to be adjusted to intersect
appropriate bony landmarks on each volunteer. These planes were set initially
and maintained throughout the sequential motion protocol.

3 Bone motion tracking

3.1 Mathematical definitions

Prior to tracking, the femur and the pelvis are automatically segmented and
reconstructed from the static image data (three volumes rigidly registered in the
static coordinate system W) using a deformable model-based method presented
in [8] (see Fig. 1). We use a 3D simulation method based on bone-to-bone collision
detection (see [9] for more details) to determine a fixed hip joint center of rotation
C. Standard orthogonal coordinate systems of the femur (S¢) and the pelvis (S})
are centered on C' and oriented using anatomical landmarks [10] (see Fig.1). Let
M = Mg, _w,) (resp. M}, = Mg _w,)) be the corresponding homogeneous
transformation matrices.

The bone tracking problem is equivalent to rigidly registering at each instant
t the 3D static volume where bony regions have been segmented and the 2D



Fig. 1. Results of the automatic femur segmentation on a sample slice, reconstructed
3D models and standard coordinate system of the pelvis.

dynamic planes. A registration problem can often be stated as a functional energy
minimization. The energy, calculated with a similarity metric [11], measures how
good the matching is. Let 6! (resp. 67) be the six registration parameters for
translations and rotations of the femur (resp. the pelvis). Dynamic plane relative
positions are defined from the acquisition parameters as a set of N (number of
planes) coordinate systems P; (i € [0.., N]) in the dynamic acquisition system
W corresponding to the homogeneous matrices O; = M p, _w,). We define a
transformation ¢f : RZXR — R3 (resp. ¢P : RZXN — R3) that maps a point of
the plane z=0 in P; to a point in Ws for the femur (resp. the pelvis) such as
(method A):

¢££(aj, y,i) = M;.QF.O;.[x,y,0,1]T and ¢g§ (z,y,1) = M,.QP.0;.[z,y,0,1]T
| (1)

Qf = Miw,—s;) (resp. QF = Mw,—s,)) is defined by 6! (resp. 7) using unit
quaternions formulation for rotations [12]. It represents the position of the femur
(pelvis) in W4. ¢ can be expressed in different ways. For instance, we can use
the relative position between the femur and the pelvis such as Q' = QP (Q!)~!
(method B). In this case, 6*°' (defining Q') are the registration parameters. The
conversion of Q! into standard hip joint angles gives normalized flexion, adduc-
tion and internal rotation angles which are medically relevant angles. Another
way to represent ¢ is to use the variation of the relative transformations between
the femur and the pelvis from one frame to the next one: Q& = (Qre!,)~1Qre!
(method C).

The similarity metric aims at measuring the degree of alignment between
the reference dataset (static MRI volume) and the transformed dataset (dy-
namic MRI images). In case of MR images, no similarity metric has proven to
be superior especially when using different acquisition protocols with different
tissues/intensity transfer functions. Roche et al. showed the importance of choos-
ing an appropriate metric [13]. We have implemented three standard similarity
metrics [11]: normalized cross-correlation (NCC), absolute differences (AD) and
mutual information (MI). In addition, we use a metric we call ”model matching”
(MM) that measures, independent of the static volume, the alignment of the re-



constructed model and the edges of the dynamic images. Also, NCC, AD and
MM are applied to the gradient vector images and are denoted by GNCC, GAD
and GMM. Grey-scale values in the static volume are trilinearly interpolation at
floating positions defined by the transformed dynamic images. The similarity is
performed in the bone neighborhood where the motion is purely rigid. In other
words, soft tissues that deform significantly are ignored. Considering a bone
model reconstructed from the static MRI volume, we define a mask (subset of
the static volume) where locations are inside the model or at a distance, deter-
mined empirically, of 5bmm from its surface. The mask is automatically generated
using the ICP (Iterative Closest Point) algorithm.

3.2 Registration procedure

The hip bone tracking problem to be resolved is to find, at each instant ¢ and for
each bone, the solution parameters 67 that minimize the similarity measurement
between the static volume and the transformed dynamic images. We can use ei-
ther method A, B or C to define the rigid transformation. Given an optimization
method ¥ and a solution search space ©, we have:

07 = argmin,cow)A(¢o, (Dr,t), Sr) (2)

A coarse initialization is done manually. We use the amoeba optimizer, which
is an implementation of the Nelder-Mead method [14] derived from simplex
algorithm, as it is parameterizable (the number of iterations and the scale used
when a parameter is modified can be set) and relatively robust in presence of
local solutions. The three transformation parameters for rotations are the angle
of the unit quaternion ¢ defining Q¢ and two orthogonal components used to
modify the vectorial part of g.

Tracking bones in a real-time sequences, yields to the question of the ini-
tialization: how to provide an accurate initialization for a particular frame ¢,
knowing bones position in the preceding ones? The pelvis remains nearly immo-
bile during movement implying that the user initialization for the first frame is
suitable for the others. As a first step, we use method A to track the pelvis as it
is independent to the position of the femur. To initialize the femur, we make the
assumption that the movement is uniform. We tested two different initializations
that led to comparable results: the spherical quaternion interpolation (so-called
Slerp [12]) for Q! using frames ¢t — 1 and t — 2 with an interpolation parame-
ter equals to 2, and the use of the variation of relative transformation such as
QI = QI The tracking is done using method C as it is more convenient
for the optimization. More precisely, if the motion of the femur with regards to
the pelvis is planar, which is roughly correct, only one optimization parameter
(quaternion angle £2) defining Q¥ is modified. Obviously, for frames 0 and 1,
where we cannot use method C formulation as it depends on t — 2 frame, we use
method B.



4 Results

4.1 Tracking in sequential MRI

3D sequential acquisition gives a gold standard of bone positioning as it provides
high spatial resolution. Because of acquisition time constraints, the sequential
acquisition protocol (fast) is different to the initial static acquisition protocol.
Bones tracking is done in two steps. First, bones positions are initialized for
the first frame ¢ = 0 assuming that there is no translation of the hip joint
center (HJC) and using GMM metric which is computationally fast. At ¢ = 0,
the subject is in a neutral position (near zero position) and we have a good
confidence that the HJIC (estimated with method [9]) is correct as zero position
is the reference for this calculation. It is corroborated by visual inspection of the
alignment between bones contours in sequential MRI and 3D models. Second, the
sequential volume at t = 0 is used as the reference (static) volume to track bones
in the other frames, with AD metric. AD metric is accurate in this case because
contrasts are the same. Translation parameters of the relative position between
the pelvis and the femur represent the translation of the estimated HJC. Over 46
different positions (36 abductions, 5 flexions and 5 internal/external rotations)
and 6 different subjects, the average translation is 0.53mm (standard deviation
= 0.4mm, maximum = 2.4mm). It shows that the error in estimating the HJC
(cumulated with possible translation of the real HJC) is minor.

4.2 Optimization and validation of the method

To measure the goodness of the tracking in dynamic MRI and hence to vali-
date it, we compared, for a fixed subject position, pelvis/femur relative posi-
tions tracked in dynamic MRI with the ones tracked in sequential acquisition.
The difference provides, similarly to [13], errors in rotation and translation. By
minimizing these errors, we optimized tracking parameters. We determined em-
pirically the parameters of the amoeba optimization procedure: scale of 1mm for
translations, scales of 0.05mm and 0.05rad for rotations (defined with quater-
nions) and 200 iterations. We compared the seven different similarity metrics
that we have implemented, keeping the same initial conditions (seven imaging
planes, same initialization and same optimization parameters). For the mutual
information metric, we estimated probability densities by using the joint his-
togram with 1000 random samples and 32 intensity bins in the range of 0-255.
We found that normalized cross-correlation based on gradient vector images per-
forms the best tracking in terms of accuracy: mean error in translation = 1.8mm
(standard deviation = 1lmm), mean error in rotation = 1.3deg (standard devia-
tion = 0.7deg). Also it was found to be the most robust metric (the variation of
the similarity around the solution was the sharpest).

In order to speed up the dynamic acquisition time, it is important to select
the smallest number of planes and the smallest resolution that still preserve a
acceptable accuracy (3deg of error in rotation). We measured the accuracy of the
tracking (with the same tracking parameters) for all combinations of three planes



from the initial configuration of seven imaging planes. For the tested abductive
motion, optimal planes pass near the HJC and are approximately orthogonal as
shown in Fig. 2. The mean error in translation is 2.4mm (standard deviation =
1lmm) and the mean error in rotation is 2.1deg (standard deviation = 1.1deg).
With this configuration, we simulated different resolutions by gaussian filtering
and subsampling dynamic grey-scale images. A resolution of 4x4mm was found to
be the limit: mean error in translation = 3.3mm (standard deviation = 1.7mm),
mean error in rotation = 3.3deg (standard deviation = 1.5deg).

4.3 Application on real-time dynamic MRI

We applied our method on real-time dynamic sequences (with motion artifacts)
and obtained visually satisfactory results. The dynamic protocol was a fast gra-
dient echo sequence with balanced gradients (bFFE, TR/TE 3.5/1.1ms, Flip
angle 80deg, pixel size 4.7 x 2.6mm, partial Fourier reduction factor of 0.65 in
read direction, SENSE acceleration factor of 2, frame rate = 6.7 frames/s). This
protocol provides sufficient morphological data for bone tracking to be carried
out. For the optimization we used the parameters: GNCC metric, 200 iterations,
1 mm for the translation scale, 0.05 mm and 0.05 rad for rotation scales. In
case of a free abductive motion, with no positioning device, it was difficult to
constrain the femur to remain in the coronal plane. Hence we used four planes
by adding another coronal plane parallel to the previous one (Fig. 2).

Fig. 2. 3D representation of the bones and the 4 dynamic acquisition planes, and
corresponding MR images with tracked bones (in white)

5 Conclusion and future work

We present an automatic and optimized method to track bone motion from
multi-slice dynamic MRI which was not previously available. This offers an ac-
curate and non-invasive technique for the active kinematical analysis of human
joints. We plan to improve the technique in terms of computational speed by
using the multi-resolution approach in the optimization procedure and test the
method on various movements like flexion/extension or internal/external rota-
tion. Also, the study of the relative motion between skin markers and bones,
with regards to joint angles, is under investigation. A possible application is the
reduction of skin/fat sliding artifacts in optical motion capture.
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