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Abstract. This paper presents a new method for computing elastic and
plastic deformations in the context of discrete deformable model-based
registration. Internal forces are estimated by averaging local transforms
between reference and current particle positions. Our technique can ac-
commodate large non-linear deformations, and is unconditionally stable.
Moreover, it is simple to implement and versatile. We show how to tune
model stiffness and computational cost, which is important for efficient
registration, and demonstrate our technique in the complex problem of
inter-patient musculoskeletal registration.

1 Introduction

Registration is a fundamental problem in image and geometry processing. The
problem of matching two surfaces, two images, or a surface and an image is
often expressed as an energy minimization and is generally difficult to solve due
to the presence of local solutions. To tackle this, researchers are focusing on
finding, in specific contexts, adequate registration features, similarity measures,
parameterizations of the deformation and optimization methods [1,2]. The goal
is to evolve the solution (i.e. transformation) in a spatially coherent way through
the introduction of priors, and along an as-convex-as-possible matching energy.

Musculoskeletal registration is a particularly challenging domain since it in-
volves a large number of interrelated components undergoing large non-linear
deformations with large anatomical variations in the population. In this con-
text, allowable deformations need to be carefully parameterized to avoid falling
into one of the numerous local solutions, and to present sufficient degrees of
freedom. While the animation of articulated bodies has been widely explored
based on skeleton-driven deformations, example-based techniques or physically-
based methods [3], few works have been dedicated to musculoskeletal modeling
and tracking from medical images [4,5]. However, as stressed in the survey of
Blemker et al. [6], studies on (neuro)musculoskeletal disabilities could greatly
benefit from using patient-specific volumetric models obtained from MR data.

The parameterization of elastic deformations from multiple global transforms
has been successfully used in various domains such as shape editing [7], com-
puter animation [8,9], computer vision [10] and image registration [11]. Spatially
coherent (e.g. quasi-rigid) flow can be designed through generalized gradients
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as shown by Charpiat et al. [10] (Eulerian setting) and Eckstein et al. [12] (La-
grangian setting). In [11], Arsigny et al. fuse locally rigid or affine transforms
into a global transform by infinitesimally averaging their logarithms. This en-
sures invertibility and thus removes artifacts such as folding.

Our work extends a computer animation technique called shape matching in-
troduced by Müller et al. [8] to efficiently approximate large soft-tissue elastic
deformations. Non-rigid deformations are simulated by blending rigid transforms
of overlapping mesh regions (clusters). But instead of lattice control points [9],
our clusters directly contain object vertices. We show how to compute and op-
timize clusters, and prioritize particles so that the complexity can be tuned
online. We compare two techniques for estimating rigid transforms and simulate
plasticity through reference positions update. Like generalized gradients [10,12],
this enforces spatially coherent deformations. We use shape matching as a reg-
ularization step that filters out noise from external forces, and thus propose a
modified force-based evolution scheme. Finally we demonstrate and evaluate our
technique in the complex problem of inter-patient musculoskeletal registration.

2 Methods

2.1 Background

Due to the large datasets and displacements involved in musculoskeletal imag-
ing, our registration technique is based on discrete deformable models [13], that
offer both flexibility and efficiency. The model, initially aligned to the segmented
reference dataset is iteratively deformed until it matches the target image. At
each time step, we trilinearly interpolate intensities at sampled locations along
surface normals and perform, on one side, 1D profile registration, and on the
other side, maximal gradient search (see [14,5] for more details). The two re-
sulting goal positions, obtained within a certain search distance d, are averaged
to compute the external image forces: fe(t) = αe(x̄ − x(t)) where αe is the
stiffness, x(t) the current vertex positions and x̄ the average goal position.

Because of noise, local solutions and aperture problems, the registration pro-
cess need to be constrained through internal forces. The idea of shape match-
ing deformation techniques is to compute the least squares rigid transform T
between x(t) and the reference positions xr [8]. Applying the internal forces
f i(t) = αi(x̃−x(t)) = αi(Txr −x(t)), we introduce shape memory constraints
that are rotation and translation invariant, which is a desired property (as in
continuum mechanics, internal forces should be independent from object pose).
Using initial positions as a reference (xr = x(0)) [8,9], shape matching forces act
as elastic forces, proportional to the strain. When updating reference positions
at each time step (xr = x(t− dt)), the effect, similarly to a plastic deformation,
is to enforce spatially coherent deformations like generalized gradients [10,12].
We will show how to combine the two approaches in Section 3. To give some
flexibility to the model, we do not apply this technique to the entire model but
instead localize it to sets of vertices (clusters) around each vertex [9].
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2.2 Preprocessing

Clustering. Because external forces are evaluated at model vertex positions, we
use the model itself to compute deformations instead of an underlying regular
lattice [9]. We define each cluster ζi associated with a vertex i, as: ζi = {j :
d(xi, xj) ≤ s} where s is the cluster size (or radius). Increasing cluster sizes
makes the model more rigid. Here, we use Euclidean distances because objects
are volumetric. However, in a different context, another measure could be used
such as the geodesic distance.

Cluster Optimization. When we deal with large sizes s, index lists are very
redundant across neighboring vertices. We exploit this redundancy to reduce
computation and memory costs. Following [9], we only store the boolean differ-
ence in the index list between a vertex i and one of its neighbors k so that we
have ζ+

i = {j : j ∈ ζi − (ζk ∩ ζi)} and ζ−i = {j : j ∈ ζk − (ζk ∩ ζi)}. Then,
summation of some field data v, within the cluster i can be quickly performed
through: Σi(v) =

∑
j∈ζi

vj = Σk(v)+
∑

j∈ζ+
i

vj−
∑

j∈ζ−
i

vj . Unlike [9], our clus-
ters contain irregularly sampled vertices, making list optimization unsystematic.
Instead, we need an ordered list L for updating sums so that Σk(v) is available
for computing Σi(v) (the vertex k is a parent of i). Our approach is to use the
smallest non-empty clusters that are defined by ξi = {j : d(xi, xj) ≤ smin} with
smin = maxi(minjd(xi, xj)). These one-ring clusters contain vertices sharing
highly correlated clusters. The list is initialized with the vertex having the high-
est number of one-ring neighbors: L0 = argmaxi|ξi|. Then, all indexes in ξL0 are
added to the list, with L0 as a parent. The propagation continues by pushing
back indexes of ξLj : 1 ≤ j ≤ |ξL0 | (with Lj as a parent), and so on. In some
cases (e.g. separate models), new seeds need to be added, so that all indexes can
finally be inserted into the list.

Complexity Tuning. To save computational time, we discard some vertices by
removing them from the ζi. We expect a limited loss of accuracy when clusters
keep a sufficient number of vertices for estimating transformations. We propose
to create a list S containing indexes ordered from the less-significant to the high
priority ones. A constraint is to always keep cluster cardinality over 3 (|ζi| ≥ 3)
to be able to estimate a rigid transform. To fill S, our criterion is hence the
minimum cardinality in each cluster: mi = minj∈ζi |ζj | (so, i can be discarded if
mi > 3). Starting with the ones of largest mi, we successively insert vertices in
S, until mi = 3, ∀i.

2.3 Registration

Shape Matching Using Polar Decomposition. For each cluster ζi, the least
square estimation of the rigid transform between particles weighted by their mass
mj is: Ti = [Ri, ti] = argmin

∑
j∈ζi

mj‖Txr
j − xj‖2. Several methods provide

a closed-form computation of rigid transformations [15]. The most popular ones
are based on quaternions, SVD decomposition and polar decomposition. For dy-
namic simulation, many of such computations are required at each time step, and
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the polar decomposition has been preferred for its efficiency [8,9]. The solution
of the polar decomposition approach is given by [8]:

Ri = Ai(AT
i Ai)−1/2 = Ai(Viλ

−1/2
i V T

i ) and ti = ci − Ric
r
i

Ai = Σi(mxxrT ) − Micic
r
i

T = Σi(mxxrT ) − Σi(mx)cr
i

T

Here, ci and cr
i denote cluster centers of mass in the current (resp. refer-

ence) configuration. This method is efficient since it involves the diagonaliza-
tion AT

i Ai = ViλiV
T

i that can be done using only a small number of cyclic
Jacobi iterations. Following [9], the number of iterations is even more reduced
by preconditioning the diagonalization with the previous rotations Vi(t − dt).

Shape Matching Using Rigid Body Kinematics. In the context of small
rotational displacements (< 20o), the least square estimation can be linearized
by ω∗

i � Ri − I where ω∗
i is the cross-product matrix of the angular velocity.

The solution is well known from rigid body mechanics: ωi = Ir
i

−1Li where
Ir

i is the inertia tensor and Li the angular momentum. Note that here, the
displacements (xi − xr

i ) act as instantaneous velocities. To reduce distortions
due to non-orthonormal rotation matrices, we convert angular velocities into
rotation matrices via the Rodrigues formula: Ri = r(ωi). All quantities can be
quickly evaluated through summation within individual clusters:

Ri = r(ωi) = r(Ir
i

−1Li) and ti = ci − Ric
r
i

Li = Σi(mxr × x) − Mic
r
i × ci = Σi(mxr × x) − cr

i × Σi(mx)

Ir
i = tr(Cr

i ).I − Cr
i and Cr

i = Σi(mxrxrT ) − Mic
r
i cr

i
T

Evolution. Vertices receive different goal positions from the different clusters
they belong to. So, we average these positions to produce smooth deformations
(as in [9]) through the fast summation technique: x̃i = Σi(T )xr

i /|ζi|. The effect
of internal and external forces can now be combined to compute the new model
state. Other forces could be added at this point as done in [5] to enforce, for
instance, volume preservation, smoothing, damping, or non-penetration between
models (e.g. when simulating sliding objects owning separate clusters). When
summing all forces (f = f i + fe), the noise, which corrupts external forces,
has a direct impact on model deformation. In this case, the condition αe 	
αi is needed to maintain model regularity. Instead, we prefer to apply shape
matching as a post regularization step: f = f i = (Σi(T )xr

i /|ζi| − x) where
transforms are estimated between the reference positions xr and the current
positions augmented by the external forces (x + fe). So instead of adding forces
that penalize undesired particle configurations, we project external forces onto
the shape matching deformation space to filter out the noise. In practice, this
has a stabilizing effect and removes constraints related to force stiffness. When
a dynamic aspect is desired, the computation of the new positions from f can
be performed using classical integration schemes (such as the implicit Euler
scheme as in [5]). In this paper, as we want to demonstrate the effect of shape
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matching forces, we do not use velocities to extrapolate results. We rather apply
the simplest relaxation scheme (gradient descent with unitary time step): x(t +
dt) = f + x(t). To summarize, an iteration of our registration process involves:

– Compute external forces fe (including any other custom forces)
– Compute shape matching forces f i:

• for each cluster ζi, compute Ti = argmin
∑

j∈ζi
‖Txr

j − xj − fe
j ‖2

• average goal positions x̃i = Σi(T )xr
i /|ζi| for each vertex i

– Evolve particle positions: x = x̃
– (Optionally, update reference positions to simulate plasticity: xr = x)

3 Results

Implementation. The implementation has been done in C, using parallel tech-
niques when possible. Despite its sequential nature, the fast summation method
could be mostly parallelized (the part involving ζ+ and ζ−). All timings have
been measured on a 2.66Ghz QuadCore machine, and exclude visualization time.

Performance Evaluation. Our first experiments deal with computational
speed measurement. Our test model is made of 24 surfaces (3 bones, 21 muscles)
consisting of 23488 clusters/ vertices in total (see Fig. 2). For a cluster size of
s = 3cm (smin = 0.7cm, smax = 63cm), its preprocessing lasts about 3min for
which most of the time is spent on scalability list computation (2min). Cluster
optimization reduces the number of indexes to store by more than four times
(from 390 to 90 in average). In Fig. 2, we evaluate our complexity tuning method
and compare the two shape matching techniques. The rigid body method is about
30% faster than the preconditioned polar decomposition. It was expected since
the later involves multiple Jacobi iterations in addition to the computation of
Ai (equivalent complexity than Li). The computational time decreases linearly
with the augmentation of ignored vertices but does not go down to 0, since a
minimal amount of time is spent on handling ignored vertices for which sums
still need to be computed. However, time for evaluating other forces is strictly
proportional to the number of active vertices. Because external forces are the
main burden, discarding vertices significantly improves computational speed. In
this example, intensity profiles are made of 30 values sampled every 0.5mm and
forces are evaluated in the range d = 1cm (20 samples).

Geometric Registration. We now demonstrate our method in the context
of surface registration through a representative example (two patient-specific
femurs). Here, external forces are computed by projecting source vertices onto
the target surface. The goal is to evaluate the required flexibility for covering
anatomical variability while being robust against local solutions. As expected,
model variations are limited by internal forces, making the alignment uncomplete
(see Fig. 1.c). A higher rigidity produces a faster matching, due to a smaller num-
ber of local minima and to a steeper energy, but larger errors after convergence
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(the deformation space is too small). To release some constraints, one could
progressively decrease the rigidity (coarse to fine approach). But, using many
rigidity levels is unpractical for large models (due to memory and preprocessing
time charges). Our approach is to simulate plasticity by updating reference po-
sitions, when convergence has been reached (i.e. deformations < 50μm). Here,
we use the rigid body method which is theoretically not rotational invariant. But
since reference positions are updated from time to time (i.e. due to plasticity)
with small rotational changes, strict invariance is not mandatory. We did not
notice significant differences from using the polar decomposition.

Fig. 1. Left: example of geometric registration with s = 5cm, changes between (c) and
(d) illustrate plastic deformations. Right: Hausdorff distance in function of time for
different cluster sizes/ rigidities, with and without plasticity.

Iconic Registration. We perform medical image registration using the rigid
body method. Our data consists of four MRI volumes of the right hip and thigh
(Axial T1-weighted spin echo sequence, matrix: 512×512×150, in plane resolu-
tion: 0.8×0.8mm, slice thickness: 2mm to 1cm) where the 24 surfaces have been
interactively segmented [5]. Models from one subject are automatically aligned
to the other datasets and segmentation error is estimated by measuring the av-
erage distance with the interactively segmented surfaces. A coarse initialization
is performed using 15 landmarks and thin-plate-spline interpolation. External
forces (stiffness αe = 0.8) are based on intensity profile registration (normal-
ized cross correlation similarity measure, 30 samples, decreasing search distance
from 1cm to 0) and gradient magnitude maximization (search distance from
0.5cm to 0). The number of active vertices is progressively increased to 100%,
and cluster sizes maintained at s = 3cm . For the three registrations, the aver-
age segmentation error was 2.0mm (0.5mm more than [5], but the difference was
not noticeable visually) and the computational time 2min (compared to 15min).
Our method was found to be relatively robust against parameter changes (for
stiffnesses < 1, search distances < 2cm, and nb. of of active vertices > 20%). We
evaluated our method against large initialization defects (random perturbations



828 B. Gilles and D.K. Pai

Fig. 2. Top: Complexity tuning and segmentation error evolution; Bottom: Registered
3D model and segmentation results on different slices (Columns: Noisy initialization/
Automatic segmentation/ Interactive segmentation)

in landmark locations between ±2cm) and noticed almost no differences in the
results (see Fig. 2). There was also no large fall into local solutions (except for
the “floating” distal tendons that should have been driven by the tibia).

4 Discussion and Future Work

We have shown that registration processes could be valuably constrained through
fast deformation methods commonly used in computer graphics, especially when
large displacements and models are involved. Our method does not make any
assumption about the input geometry and mesh connectivity, so models from
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various sources could be directly used (e.g. CAD, computer animation, finite-
element models). Simulating plasticity is relevant for updating the reference
model, but unrealistic deviations can be accumulated in presence of unreliable
image forces. In future, we believe that allowable deformations could be limited
by selecting reference clusters from different subjects in the population.
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