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a b s t r a c t

Diffusion Tensor Imaging (DTI) allows the non-invasive study of muscle fiber architecture but musculo-
skeletal DTI suffers from low signal-to-noise ratio. Noise in the computed tensor fields can lead to poorly
reconstructed muscle fiber fields. This paper describes an algorithm for producing denoised muscle fiber
fields from noisy diffusion tensor data as well as its preliminary validation. The algorithm computes a
denoised vector field by finding the components of its Helmholtz–Hodge decomposition that optimally
match the diffusion tensor field. A key feature of the algorithm is that it performs denoising of the vector
field simultaneously with its extraction from the noisy tensor field. This allows the vector field recon-
struction to be constrained by the architectural properties of skeletal muscles. When compared to pri-
mary eigenvector fields extracted from noisy synthetic data, the denoised vector fields show greater
similarity to the ground truth for signal-to-noise ratios ranging from 20 to 5. Similarity greater than
0.9 (in terms of fiber direction) is observed for all signal-to-noise ratios, for smoothing parameter values
greater than or equal to 10 (larger values yield more smoothing). Fiber architectures were computed from
human forearm diffusion tensor data using extracted primary eigenvectors and the denoised data. Qual-
itative comparison of the fiber fields showed that the denoised fields were anatomically more plausible
than the noisy fields. From the results of experiments using both synthetic and real MR datasets we con-
clude that the denoising algorithm produces anatomically plausible fiber architectures from diffusion
tensor images with a wide range of signal-to-noise ratios.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background and motivation

Fiber architecture plays a large role in understanding the func-
tion of muscles (Blemker et al., 2007). In fact, skeletal muscles
made of similar fiber types but with different architectures can
have a 10–20 times difference in contraction speed or force output
(Lieber et al., 1992). Observing and modeling muscle architecture
is important for computational studies of muscle performance
(Blemker and Delp, 2005) and in medical procedures such as ten-
don transfer operations (Brand et al., 1981). Recent work has
shown that Diffusion Tensor Imaging (DTI) can be used to accu-
rately estimate bulk muscle architecture parameters such as pen-
nation angle (Lansdown et al., 2007). However, musculoskeletal
DTI is difficult due to the magnetic resonance (MR) properties of
muscle which lead to lower signal-to-noise ratio (SNR) in the diffu-
sion weighted images. Once DTI data has been acquired, fiber
tracking can be applied in order to construct muscle fiber fields.

These fiber fields can then be used for muscle architecture analysis
(Lansdown et al., 2007).

Most fiber tracking algorithms construct fibers by advecting a
particle or surface through the field of primary eigenvectors of
the measured Diffusion Tensor field (Ding et al., 2001; Basser
et al., 2000; Mori and van Zijl, 2002; Damon et al., 2002). Even
methods such as Tensorlines utilize the primary eigenvector
weighted by the linear anisotropy of the underlying tensor (Wein-
stein et al., 1999). Underlying these methods is the assumption
that the extracted primary eigenvectors are correct; the presence
of noise in the imaging data does not make this necessarily so.
The question we wish to address, within the context of musculo-
skeletal DTI is: How does one choose an appropriate fiber direction
at each voxel given a potentially noisy tensor field?

1.2. Comparison to other work and contribution

The problem of choosing a denoised fiber direction vector field
directly from a diffusion tensor field is not often addressed in liter-
ature. There has been a large focus on creating denoised tensor
fields from noisy tensor or diffusion weighted data (Basu et al.,
2006; Fillard et al., 2007; McGraw et al., 2009; Tschumperlé and
Deriche, 2003; Wang et al., 2004; Westin et al., 2002; Neji et al.,
2007; Tristán-Vega and Aja-Fernández, 2010) and on directly using
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the primary eigenvectors of a tensor field as fiber directions during
tracking (Ding et al., 2001; Basser et al., 2000; Chefd’hotel et al.,
2002; Mori and van Zijl, 2002; Damon et al., 2002; Tschumperlé
and Deriche, 2003; Westin et al., 2002). In this paper we present
a method that generates a globally optimal vector field from a
noisy tensor field using assumptions about the biological structure
of skeletal muscle (that it is divergence free in most areas). This is
in contrast to the standard methodology of performing simple
eigenvector estimation after denoising tensor data. The presented
algorithm performs primary eigenvector extraction simultaneously
with denoising and offers four advantages beyond resistance to
noise in the acquired data. First, it allows constraints to be placed
on the properties of the extracted vector field. The organizational
properties of muscle fiber fields are well understood and are more
easily formulated as constraints on a vector field than as those on a
tensor field. Second, the method resolves sign ambiguities inherent
in per-voxel eigenvector extraction. Third, the method automati-
cally resolves degenerate cases in which several principal direc-
tions have the same principal value. Finally, the method could be
used in conjunction with current state-of-the-art tensor denoising
methods to extract corrected primary eigenvector fields in high
noise situations since denoised tensor fields can be used as input
into the algorithm. The algorithm’s design is motivated by the
Helmholtz–Hodge decomposition of a vector field. Computing this
decomposition has been previously explored in the computer
graphics literature by Tong et al. (2003). In this paper we present
a new method for computing a denoised muscle fiber field from
a densely sampled diffusion tensor imaging volume. This allows
us to reconstruct noise-reduced fiber direction fields.

2. Methods

2.1. Theoretical background

Muscle fibers, at some level, are parallel and, except at specific
regions (the insertion and origin of the muscle) do not converge or
diverge. The presented algorithm is motivated by the Helmholtz–
Hodge decomposition of the muscle fiber field which is defined as

uðxÞ ¼ hðxÞ þ pðxÞ þ gðxÞ
r � h ¼ 0; r� h ¼ 0
r � p ¼ 0
r� g ¼ 0

ð1Þ

where u is the fiber vector field,r is the gradient operator,r� is the
divergence operator and r� is the curl operator. The Helmholtz–
Hodge decomposition contains two divergence free components h
and p (h is known as the harmonic field) as well as one more curl
free component g. Because g is the only component with non-zero
divergence it will contain the insertions and origins of the muscle
fibers while the other two components describe the gross diver-
gence free structure of the fiber field.

We can further simplify the decomposition by interpreting a
diffusion tensor as a description of the probable direction of the
diffusion gradient. Since diffusion is driven by an underlying con-
centration function we can view the problem of fiber field recon-
struction as finding the concentration function, u, that best fits
the described diffusion gradient. The reconstructed vector field
ru will be necessarily curl free. Because muscle fibers are locally
parallel it is reasonable to assume that the rotational component
of the field is likely to be noise, thus assuming that the recon-
structed vector field is the gradient of a scalar function u should
lead to better denoising performance. It also causes p in Eq. (1)
to be zero because it is the only component of the decomposition
that has non-zero curl. These simplifying assumptions lead us to
estimate a subset of the full Helmholtz–Hodge decomposition (h

and g) and below we describe how to estimate g and h from noisy
tensor data.

Let D(x) be the diffusion tensor at point x, let u(x) be the con-
centration gradient at point x and u(x) be the concentration at
point x. By definition we know that

uðxÞ ¼ ruðxÞ ð2Þ
We define the following cost function for the match between u(x)
and D(x):

cðD;uÞ ¼
Xn

i¼1

uðxiÞT DðxiÞuðxiÞ
uðxiÞT uðxiÞ

ð3Þ

where n is the number of voxels in the imaging volume.
This cost function is a sum of Rayleigh quotients, and each term

in the sum is maximized when u(x) is in the same direction as the
primary eigenvector of D(x). In order to construct a noise free vec-
tor field that is consistent with muscle physiology we must con-
strain this maximization.

Instead of finding the set of vectors, u, that maximize the cost in
Eq. (3) we search for an optimal concentration u (related by Eq.
(2)). The divergence free constraint then becomes a constraint on
the Laplacian of u and the optimization performed is

h ¼ arg max
u

Pn
i¼1

ruðxiÞT DðxiÞruðxiÞ
ruðxiÞTruðxiÞ

s:t: r �ru ¼ 0
ð4Þ

where h =rh is the harmonic field in Eq. (1).
Next we must solve for g which we have chosen to represent as

a linear combination of radial basis functions (RBFs) (Eq. (5)). Our
assumption is that g contains the sources and sinks of the muscle
fiber field. These sources and sinks alter fiber directions locally,
with the effect dissipating with distance. RBFs are an appropriate
set of basis functions because they mimic this behavior. We solve
for the coefficients, ai, by substituting this u into the cost function
(3) and performing an unconstrained optimization in which h is
held constant.

gðxÞ ¼
Xn

i¼1

airgiðxÞ ð5Þ

where gi is a radial basis function (RBF) and ai are coefficients. The
complete vector field can then be represented as

uðxÞ ¼ r hðxÞ þ
Xn

i¼1

aigiðxÞ
 !

: ð6Þ

We solve for the coefficients, ai, by substituting this u into the cost
function (3) and performing an unconstrained optimization in
which h is held constant.

Again, we are assuming that the bulk of the muscle is diver-
gence free. Muscle fibers converge or diverge to or from tendons
at the aponeurosis. The computed g corrects h at these points.

We have found that Gaussian RBFs (Eq. (7)) offer the best deno-
ising in our experiments. Each RBF is positioned at a point y in
space. In the current implementation we center an RBF at each grid
point in the imaging volume. The parameter r can be used to ad-
just the support of the function. In practice a larger r causes the
denoised vector field to be smoother while a smaller r preserves
more of the field’s details.

giðxÞ ¼ exp � 1
r2 ðx� yiÞ

Tðx� yiÞ
� �

ð7Þ

2.2. Numerical implementation

We reconstructed DTI image volumes from diffusion weighted
images (from both synthetic and human subject data) using
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non-linear least squares fitting. The reconstruction implementa-
tion enforces the constraint that each diffusion tensor in the DTI
image must be symmetric positive definite (SPD) (Bergmann
et al., 2005). This is done by expressing each diffusion tensor as a
Cholesky factorization which allows the SPD constraint to be incor-
porated into the cost function minimized by the least squares
procedure.

Each DTI image volume contains tensors at the discrete points
indexed by the triple (i,j,k). Finite differences are a straightforward
method with which to estimate the gradient and the Laplacian of u.
However, one-sided finite difference schemes, on a regular grid, do
not incorporate information from the entire surrounding neighbor-
hood of the discrete tensor field Dijk. To remedy this problem we
discretize u and D using a Marker and Cell (MAC) grid (Harlow
and Welch, 1965). In this way we can accurately compute the gra-
dient of u at the exact location of D using centered differences. In
two dimensions the Laplacian operator at a node indexed by
(i � 1/2, j) can be defined as

Li�1=2;j ¼
1

Dy2 ðui�1=2;j�1 � 2ui�1=2;j þ ui�1=2;jþ1Þ

þ 1
Dx2 ðui�3=2;j � 2ui�1=2;j þ uiþ1=2;jÞ ð8Þ

where Dx is the pixel spacing in x and Dy is the pixel spacing in the
y direction (Fig. 1). Similar formulas can be defined for nodes at
ui,j+1/2. Linear interpolation is used to calculate values of u that lie
off of the MAC grid.

We also define the gradient of u, at node (i,j) as

Gi;j ¼
1
Dx
ðuiþ1=2;j � ui�1=2Þ;

1
Dy
ðui;jþ1=2 � ui;j�1=2Þ

� �T

ð9Þ

so that it is centered over each diffusion tensor Dij in the image. Eqs.
(8) and (9) are linear combinations which can be expressed as

lt ¼
Xs

o¼1

Ltouo ð10Þ

and

ur ¼
Xs

o¼1

Grouo ð11Þ

where t indexes the cell walls and r indexes the cell centers of the
grid. L and G are the linear operators for computing the Laplacian

and the gradient and uo is the value of u at each cell wall point o.
Please note that the matrix G has 2n (or 3n) rows because the gra-
dient at each point has two components (or three in three dimen-
sions) (Eq. (9)) and so the indexing must increment by two (or
three). Here we suppress this detail. As a further notational conve-
nience we define Gr which is a matrix consisting of the rows of G
required to compute ur in the following manner:

ur ¼ Gru ð12Þ

where u is now the vector of all the discrete values of u.
Using the above operators we can finally define the discrete

form of Eq. (4), used in the first step of the algorithm, as

h ¼ arg max
u

Pn
i¼1

uT GT
i DiGiu

uT GT
i Giu

s:t: Lu ¼ 0:
ð13Þ

When solving for g we begin by constructing the Jacobian matrix R
which is defined as

R ¼ ½rg1rg2 � � �rgn� ð14Þ

where each column of the matrix,rgj, is the gradient of an RBF (Eq.
(5)) centered at one of the the 1. . .n MAC grid cell centers and eval-
uated at all of the 1. . .n cell centers.

In a similar manner as before we can define Rr such that

ur ¼ hr þ Rra ð15Þ

where a is the vector of coefficients from Eq. (5) and hr is Grh. By
substituting Eq. (15) into Eq. (3) we can define the discrete cost
as a function of the coefficients, a. We can then define the optimiza-
tion used in the second stage of the algorithm as

arg max
a

Xn

i¼1

ðGihþ RiaÞT DiðGihþ RiaÞ
ðGihþ RiaÞTðGihþ RiaÞ

: ð16Þ

Our algorithm proceeds in two phases, the initial h-phase solves the
optimization described by Eq. (13). This can be done using standard
techniques. We use constrained steepest descent to minimize a ne-
gated Eq. (13). We maintain the constraints by projecting onto the
nullspace of L at each step. This projection is defined as

P ¼ I � LTðLLTÞ�1L ð17Þ

where I is the identity matrix. The second phase, g-phase, solves the
optimization described by Eq. (16). We use the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (Byrd et al.,
1999) to minimize a negated Eq. (16). The solution methods used
in both the h-phase and g-phase of the algorithm require the gradi-
ents of Eqs. (13) and (16) which are given by

ruc ¼
Xn

i¼1

�2GT
i
ðuT

i DiuiÞui � ðuT
i uiÞDiui

ðuT
i uiÞ2

ð18Þ

and

rac ¼
Xn

i¼1

�2RT
i
ðuT

i DiuiÞui � ðuT
i uiÞDiui

ðuT
i uiÞ2

ð19Þ

respectively.
It should be noted that if a vector field h is a solution to Eq. (13)

then ah is also a solution for any scalar a. However in terms of opti-
mality (Eq. (3)) h and ah are equal. We normalize h such that the
maximum vector length in the field is 1. As noted above, the new
vector field is still a solution to Eq. (13) and its cost is unchanged
but our starting harmonic for the g-phase of the algorithm be-
comes unambiguous. For real DTI datasets the optimization
scheme was modified. The initial, constrained optimization, Eq.
(13), is difficult to solve for large datasets since the number of con-
straints is on the order of the number of voxels in the imaging

Fig. 1. A diagram of the nodes used to compute the Laplacian at node ui�1/2,j which
is depicted by the solid black circle. Neighboring nodes are shown as hollow circles.
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volume. In these cases we solve for the divergence free field on a
coarse grid and then use a trilinear prolongation operator to ex-
pand this solution to full resolution such that the second optimiza-

tion can be performed. The Laplacian (Eq. (8)) has a large
magnitude in areas where h, the scalar potential of the harmonic,
has a high spatial frequency. Since we are constraining h to have

Fig. 2. Pseudocode for the Full Resolution, Dense Sampling Algorithm (FRDS).

Fig. 3. Pseudocode for the Coarse Resolution, Stochastic Sampling Algorithm (CRSS).

D.I.W. Levin et al. / Medical Image Analysis 15 (2011) 340–353 343
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a Laplacian equal to zero we are searching for a function with low
spatial frequencies. Such a function can be represented on a lower
resolution spatial grid. In practice we limit the dimensions of the
coarse grid to a maximum of 16 � 16 � 16 voxels. Numerical
experiments also show that all constraints remain satisfied after
applying the prolongation operator. Solving for g is done using a
stochastic method in which we randomly choose m voxel locations
in the DTI data. We then solve for a using Eq. (16) and compute an
updated u using Eq. (15). This procedure is repeated until all voxel
locations in the DTI dataset have been sampled. Because the ini-
tially described method solves for h using a full resolution grid
and uses a dense sampling of the imaging volume to compute g
we term it Full Resolution, Dense Sampling (FRDS) whereas the
second method uses a Coarse Resolution grid and Stochastic Sam-
pling (CRSS). Pseudocode for each algorithm is shown in Algorithm
1 (Fig. 2) and Algorithm 2 (Fig. 3). The initial step in both algo-
rithms is to compute the primary eigenvectors of each tensor Di.
This is done using LAPACK (Anderson et al., 1999) and in the pseu-
do code we denote this operation as e(D). We use MINPACK (Moré
et al., 1980) for all non-linear least squares computations.

2.3. Synthetic data generation

In order to test the effect of noise on the denoising algorithm we
generated four synthetic datasets. The first was a constant vector
field with the vector (0,0,1) at each point. The second was a two
dimensional (2D) bipennate muscle dataset. This dataset was an
8 � 8 � 8 volume of tensors computed from a vector field defined
by

vsðxÞ ¼
ð1;�1;0ÞT if xx < 4

ð�1;�1;0ÞT if xx > 4:

(
ð20Þ

The third was a semi-circular parallel line dataset described by

v ¼ ð�r sinðhÞ; r cosðhÞ;0ÞT ð21Þ

where r = kx � xck, xc is the center of the curves and h is arctan y
x

� �
.

The fourth was a synthetic 3D bipennate dataset described by

vsðxÞ ¼
ð1;�1;1ÞT if xx < 4

ð�1;�1;1ÞT if xx > 4:

(
ð22Þ

Simulated Diffusion Weighted Images were computed from these
vector fields using the algorithm of Bergmann et al. (2005). Rician
noise was added to the artificial DWIs at varying SNR. Noisy tensor
fields were then computed from these DWIs. Both algorithm ver-
sions were tested on SNR values ranging from 20 to 5. The primary
eigenvector field of each noisy tensor field was extracted and com-
pared to the original vector field using the sum of the absolute value
of the dot product as a similarity measure:

s ¼ 1
n

Xn

i¼1

kv1ðxiÞTv2ðxiÞk ð23Þ

where n is the number of voxels in the dataset.
Denoised vector fields were then computed and these were

compared to the original vector field using the same metric.

2.4. MRI data acquisition and segmentation

Imaging for this study was performed on a 3T Philips Achieva
MRI Scanner with dual nova gradients (80 mT/m maximum gradi-
ent strength, 200 T/m/s maximum slewrate) and scanner software
release 2.1.3.

During image acquisition the subject lay prone in the scanner
with the left arm raised straight overhead to be placed as optimally
as possible in the magnet’s center. The subject’s forearm was se-
cured in an 8-element phased array knee coil with 15 cm inner
diameter.

The imaging protocol consisted of a fast gradient echo T1W
localizer for positioning and planning followed by low and high
resolution T2W fast spin-echo (FSE) scans for reconstruction of
bone and muscle/fat surface boundaries. The session was con-
cluded with a high resolution Diffusion Tensor Imaging (DTI) scan
for muscle fiber orientation and segmentation.

Quick low-resolution anatomical FSE-scans were acquired with
an in-plane resolution of 1.5 � 1.5 mm2 and a slice thickness of
4 mm covering the entire lower arm.

Fig. 4. The output of the various algorithm stages. This figure shows the principal eigenvector field of the input tensors (top left) as well as the final output of the algorithm
(top right) and the output of the divergence free reconstruction, estimated curl free component and their sum.
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The high resolution FSE was designed to match the Diffusion
Tensor Imaging (DTI) scan in location, orientation and anatomy
coverage with the following parameters: FSE-factor 12 with asym-
metric profile order to give an effective echo time of TE=50 ms;
field of view (FOV):120 � 120 � 150 mm3 with an in-plane resolu-
tion of 0.65 � 0.65 mm2 and a slice thickness of 2 mm.

The lower resolution T2W-scan was used for segmenting bones
and muscles that passed out of the field of view of the high resolu-
tion scan. Important parameters such as origin/insertion locations
and bone coordinate systems could thus be obtained. Note that
these two scans were run sequentially with the DTI scan and that
the subject was immobilized. Therefore all volumes were closely
aligned.

Diffusion Tensor Imaging (DTI) was performed with a single
shot diffusion sensitized spin-echo Echo Planar Imaging (EPI) se-

quence involving 16 different gradient encoding directions at a
maximum diffusion b-value of 500 s/mm2. We used a reduced
FOV of 120 � 120 � 150 mm3, SENSE-factor of 2.0 and enhanced
gradient performance to shorten the echo train length of the EPI-
readout as much as possible for better compensation of suscepti-
bility induced artifacts. Fat suppression was performed with a
spectral spatial inversion prepared fat suppression technique. Fur-
ther imaging parameters were as follow: TE = 48 ms, TR = 6000 ms,
acquisition matrix 80 � 80 leading to an effective acquisition voxel
size of 1.5 � 1.5 � 2.0 mm3 and a scan time of 5 min. Additional
image processing was done using the FSL software library. An af-
fine registration of anatomical and diffusion scans was performed
using FSL’s linear registration application FLIRT (Jenkinson and
Smith, 2001) and eddy correction of the diffusion images was per-
formed using the utility FDT (FMRIB, 2006).

Fig. 5. Synthetic Z-Axis vector field: The similarity of both the denoised vector field and the noisy primary eigenvector field to the original, zero noise data. The result for each
algorithm is denoted by the algorithm name followed by the value of the parameter r.

Fig. 6. Synthetic curved vector field: The similarity of both the denoised vector field and the noisy primary eigenvector field to the original, zero noise data. The result for each
algorithm is denoted by the algorithm name followed by the value of the parameter r.

D.I.W. Levin et al. / Medical Image Analysis 15 (2011) 340–353 345
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Muscle surfaces were created by segmenting the anatomical
MRI data using the fast shape matching algorithm of Gilles and
Pai (2008). The three muscle surfaces generated were those of
the brachioradialis (BR), extensor carpi radialis longus (ECRL) and
the extensor carpi radialis brevis (ECRB). Volumetric masks were
generated from these muscle surfaces and these were then used
to mask the DTI data in preparation for denoising. Fiber tracking
was performed on each muscle vector field (prior to and after
denoising) using Paraview, an open source visualization toolkit
developed by Kitware Inc. (Squillacote, 2008).

One limitation of our current diffusion acquisition protocol is
that it fails to capture any forearm muscle in its entirety. Muscle
segmentation was still possible due to the use of the aforemen-
tioned low-resolution anatomical scan which encompassed the
entire arm of the subject. However we were unable to extract mus-
cle fibers for a whole muscle. This prevented us from being able to
accurately compute bulk muscle fiber metrics such as average fiber

length or physiological cross sectional area. We hope to address
this issue in a future work and will discuss it further in later sec-
tions of this paper.

3. Results and discussion

Fig. 4 shows the output of each stage of the algorithm for a syn-
thetic fusiform muscle tensor field. The top left sub figure shows
the principal eigenvectors of the input tensor field. Notice that,
as expected, the curl free component contains the sources and
sinks at either ends of the synthetic fusiform muscle dataset. Be-
cause we are only interested in the direction of each vector we nor-
malize the final summed vector field in order to produce a final
output which is shown in the top right of Fig. 4 for comparison
with the input vector field. It is also worth noting that the algo-
rithm corrects the spurious directions present in the input vector

Fig. 7. Synthetic 2D bipennate vector field: The similarity of both the denoised vector field and the noisy primary eigenvector field to the original, zero noise data. The result for
each algorithm is denoted by the algorithm name followed by the value of the parameter r.

Fig. 8. Synthetic 3D bipennate vector field: The similarity of both the denoised vector field and the noisy primary eigenvector field to the original, zero noise data. The result for
each algorithm is denoted by the algorithm name followed by the value of the parameter r.
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field. The consistent vector directions are a result of the initial,
divergence free optimization. The gradient field of h neither
converges nor diverges. This eliminates the flipped vectors in Fig. 4.

3.1. Synthetic data results

Figs. 5–8 summarize the results of applying the FRDS and the
CRSS denoising algorithms to all four synthetic datasets. In all cases
the following patterns can be observed. Firstly, for each combina-
tion of SNR and r both denoising implementations produce vector
fields that are more similar (Eq. (23)) to the ground truth than the
primary eigenvector fields. Secondly, the larger two values of r, 20,
and 100, produce noticeably better results for low SNR. Both deno-
ising implementations follow comparable patterns of decreasing
similarity as SNR is reduced and r is increased. However it is inter-
esting that the CRSS algorithm produces more similar results than
the FRDS implementation in the 3D bipennate case for r = 5. The
second stage of the FRDS algorithm attempts to fit RBFs at each
voxel location simultaneously whereas the CRSS algorithm itera-

tively fits randomly selected RBF subsets. A sparse set of RBFs
may provide a better approximation considering the small number
of insertions and origins (i.e. sources and sinks) found in muscle
whereas the dense sampling of the FRDS algorithm could be over-
fitting the data.

Figs. 9–12 show the noisy tensor fields, the noisy eigenvectors
fields and the denoised vector fields at zero noise (infinite SNR)
and SNR values of 20, 10, and 5 for all synthetic datasets. Both
denoising algorithms introduce some smoothing in the synthetic
bipennate datasets. This is to be expected because we are attempt-
ing to fit a smooth field to the underlying tensor data. This smooth-
ing is also a consequence of the RBF fitting stage of the algorithm
which uses neighborhood information to estimate the underlying
function u. Despite this, both algorithms always produce vector
fields which are more similar to the original, synthetic field than
the primary eigenvector fields (Figs. 5–8). As the SNR is decreased
both the FRDS and the CRSS algorithms impart more smoothing
but still produce results that capture the underlying structure of
the synthetic datasets. These observations are supported quantita-

Fig. 9. A comparison of denoised results to noisy synthetic Z-Axis tensor and eigenvector fields for SNR values of 20 to 5. Each row shows images from a specific SNR with 0
noise indicated by Inf. The middle slice of each 3D dataset is shown. Displayed in order from left to right are the tensor volume, the primary eigenvectors of the tensor volume,
the FRDS denoising result and the CRSS denoising result. Red, green and blue values of each vector are colored according to their magnitude in the coordinate directions. The
red component is equal to the vector magnitude in x, green corresponds to the y magnitude and blue to the z magnitude. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tively by Figs. 5–8 which show that even at low SNR values the
denoised vector fields maintain a high (>0.9 for r P 10) similarity
with the synthetic vector fields.

Fig. 13 shows the effect that noise can have on fiber tracking
algorithms. Streamlines were computed by integrating each syn-
thetic dataset using Paraview (Squillacote, 2008). The paths were
computed using a Runge–Kutta 4 integration scheme. Streamlines
on the original, noise free fields follow the structure of the vector
fields illustrated in Figs. 9–12. When the same procedure is re-
peated on the noisy (5 SNR) eigenvector fields, the results deviate
greatly from the correct fiber architecture represented by the origi-
nal vector field. Finally, the streamlines computed from the deno-
ised vector field (FRDS) more closely represent the proper fiber
architecture. This illustrates the dramatic effect that noise can have
on fiber tracking.

Both the FRDS and CRSS algorithms were also compared with
the recently published Joint Rician Linear Minimum Mean Squared
Error (JRLMMSE) method of Tristán-Vega and Aja-Fernández
(2010). JRLMMSE acts on Diffusion Weighted Images prior to ten-
sor calculation in order to reduce the Rician noise. JRLMMSE was
applied to the previously defined synthetic datasets (Eqs. 20, 22,
21) using the implementation of Tristán-Vega et al. available in

the 3D Slicer software platform (Pieper et al., 2006). The denoised
DWIs were used to create a tensor field from which the eigenvector
field was extracted. Since we are primarily interested in the perfor-
mance of the presented algorithms under low SNR conditions we
performed the comparison using an SNR of 5, the results of which
are shown in Table 1. Parameters for JRLMMSE were manually
tuned to achieve the best quantitative results. A r value of 10
was used for the FRDS and CRSS algorithms. For this value of r
the results for the FRDS and CRSS are nearly identical (Figs. 5–8)
thus we present similarity values for the FRDS only. Both algo-
rithms produced denoised vectors that were more similar to the
ground truth than those estimated by naive eigenvector computa-
tion. The results also show that the FRDS algorithm produced pri-
mary eigenvector fields that were quantitatively closer to the
ground truth for three of the four datasets (Table 1). For the Z-Axis
dataset JRLMMSE produces slightly better quantitative results,
however for both the 2D and 3D Bipennate datasets the FRDS algo-
rithm produces vector fields with considerably higher similarity
(Table 1). These results illustrate that the FRDS and CRSS algo-
rithms provide equivalent or better denoising performance than
JRLMMSE in low SNR scenarios acting on skeletal muscle-like
datasets.

Fig. 10. A comparison of denoised results to noisy synthetic curved tensor and eigenvector fields for SNR values of 20 to 5. Each row shows images from a specific SNR with 0
noise indicated by Inf. The middle slice of each 3D dataset is shown. Displayed in order from left to right are the tensor volume, the primary eigenvectors of the tensor volume,
the FRDS denoising result and the CRSS denoising result. Red, green and blue values of each vector are colored according to their magnitude in the coordinate directions. The
red component is equal to the vector magnitude in x, green corresponds to the y magnitude and blue to the z magnitude. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3.2. Human subject data results

Fig. 14 shows the orientation of the DWI scan as well as three
segmented muscle surfaces relative to the arm and hand of the
subject. The three muscle surfaces shown are the brachioradialis
(red), the extensor carpi radialis longus (green) and the extensor
carpi radialis brevis (blue). Three slices of DWI data are also shown,
the first and last slices illustrate the extent of the DWI acquisition.

The CRSS denoising algorithm was applied to DTI data com-
puted from the forearm of a human subject. Specifically, we have
produced denoised vector fields for portions of three muscles in
the forearm, the ECRL, ECRB and BR. We only show subsets of each
muscle due to the aforementioned limitations in the MRI acquisi-
tion protocol. Results of applying fiber tracking to both the noisy
and denoised vector fields for each muscle are shown. Fiber track-
ing terminated at the tendon section of each muscle mesh because
of the narrow structure of the geometry. The figure is oriented in
the same manner as Fig. 14 such that its left edge is distal and
the right edge is proximal. Most of the ECRL muscle body fell out-

side of our DWI field of view. However we do observe that the
small fibers extracted from the denoised data do not exhibit the
curled trajectories of those in the noisy data. The general behavior
of the fibers is similar, moving from the proximal to distal side of
the muscle where the ECRL inserts into the tendon that connects
to the second metacarpal (Tortora and Grabowski, 2000). The re-
moval of curl from the vector field is to be expected given the pre-
viously discussed formulation of the denoising algorithm. The
ECRB data shows the effect of our algorithm more clearly, where
the chaotic nature of the noisy streamlines is greatly smoothed
out. Furthermore, the streamlines of the denoised ECRB can be ob-
served converging at the distal end of the muscle, where the ten-
don that connects the muscle to the third metacarpal should
arise (Tortora and Grabowski, 2000). In the noisy data this conver-
gence is far less obvious. The bifurcated nature of the muscle fibers
towards the distal end is similar to the fiber architecture observed
by Ravichandiran et al. (2009). The denoised fibers extracted from
the BR all curve towards a common insertion point at the distal end
of the muscle (Tortora and Grabowski, 2000) whereas the noisy

Fig. 11. A comparison of denoised results to noisy synthetic 2D bipennate tensor and eigenvector fields for SNR values of 20 to 5. Each row shows images from a specific SNR
with 0 noise indicated by Inf. The middle slice of each 3D dataset is shown. Displayed in order from left to right are the tensor volume, the primary eigenvectors of the tensor
volume, the FRDS denoising result and the CRSS denoising result. Red, green and blue values of each vector are colored according to their magnitude in the coordinate
directions. The red component is equal to the vector magnitude in x, green corresponds to the y magnitude and blue to the z magnitude. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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data exhibits fibers that appear to diverge (particularly at the prox-
imal edge of the image). Note that the denoised fibers are corrected
so that they follow a path towards the distal end of the muscle.
This fiber configuration is in agreement with the anatomical
description of the BR in that the muscle inserts into the brachiorad-
ialis tendon at its distal end (Tortora and Grabowski, 2000).

Extraction of a physiologically plausible, noise-reduced vector
field from noisy tensor data is not often explored. Both Basu
et al. (2006) and Fillard et al. (2007) use probabilistic estimators
to remove noise from the tensor image. They assume that the
noise has a Rician distribution. This method has the advantage
of not requiring an anatomical segmentation to produce good re-
sults. It also works well on DWI images from any anatomical re-
gion whereas the presented algorithm is designed specifically for
musculoskeletal DTI. However, our method uses physical intui-
tion to produce denoised results and thus should work well even
when image noise is not Rician. Furthermore Basu et al. (2006)
demonstrate results down to an SNR of 12.5 but only present ten-
sor metrics such as fractional anisotropy as results, making direct

comparison impossible. They do provide images of the algorithm
applied to synthetic images with an SNR of 15. We provide results
for synthetic data with SNR as low as 5 and show the algorithm
computes reasonable results. Finally the presented algorithm pro-
duced quantitatively better results on three of four synthetic
datasets than the state-of-the-art JRLMMSE algorithm of Tristá-
n-Vega and Aja-Fernández (2010) (Table 1). The similarity differ-
ence for the fourth dataset was 0.03. These results indicate the
presented method competes well with tensor denoising algo-
rithms in terms of being resilient to noise. However, it is impor-
tant to note that the presented method does not replace existing
tensor denoising algorithms in the imaging pipeline. The denoised
vector fields offer both resistance to noise and, due to the diver-
gence free constraint, are optimally ‘‘muscle like’’. This algorithm
could be applied to previously denoised tensors to yield a vector
field that is more accurate than what could be achieved with
either algorithm separately. This vector field could then be used
for fiber tracking and tractography in conjunction with the deno-
ised tensor field.

Fig. 12. A comparison of denoised results to noisy synthetic 3D bipennate tensor and eigenvector fields for SNR values of 20 to 5. Each row shows images from a specific SNR
with 0 noise indicated by Inf. The middle slice of each 3D dataset is shown. Displayed in order from left to right are the tensor volume, the primary eigenvectors of the tensor
volume, the FRDS denoising result and the CRSS denoising result. Red, green and blue values of each vector are colored according to their magnitude in the coordinate
directions. The red component is equal to the vector magnitude in x, green corresponds to the y magnitude and blue to the z magnitude. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Limitations and future work

The presented algorithms have two main limitations. The first is
that the underlying theory assumes that a significant part of the

vector field to be reconstructed is smooth. While we have shown
good results on synthetic data with a discontinuity (Figs. 11 and
12) there is no way to entirely prevent smoothing. In practice this
is less of a problem since we segment and process muscles sepa-
rately and thus avoid the discontinuities caused by boundaries be-
tween muscles. The second limitation stems from the fact that we
are reconstructing conservative vector fields. Conservative vector
fields represent all irrotational flows within a simply connected
domain, a domain without holes. The anatomical structure of most
skeletal muscles observes this property however there are some
exceptions such as sphincters, the ciliary muscle in the eye and
the heart. A productive direction of future work would be to relax
this restriction. The reliance on an anatomical segmentation is also
a limitation. This algorithm’s primary use is to provide more accu-

Fig. 13. The effect of vector field noise on fiber tracking. Each row of this image shows the result of applying fiber tracking to a synthetic dataset. Fiber tracking results are
shown for clean data, noisy data with an SNR of 5 and finally for data denoised using the FRDS algorithm.

Table 1
A comparison of denoised vector fields produced by the Full Resolution, Dense
Sampling algorithm and the Joint Rician Linear Minimum Mean Squared Error
algorithm (Tristán-Vega and Aja-Fernández, 2010). Results are shown for four
synthetic datasets with signal-to-noise ratio equal to 5.

Z-Axis 2D BiPenn. Curves 3D BiPenn.

FRDS 0.978 0.981 0.999 0.970
JRLMMSE 0.981 0.955 0.843 0.772

Fig. 14. The relative position of the acquired DWI scan as well as the muscle surfaces used for denoising and fiber tracking. The first, last and an arbitrarily chosen middle slice
of the dataset are shown. The displayed muscles are the brachioradialis (red), extensor carpi radialis longus (green) and extensor carpi radialis brevis (blue). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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rate vector fields for fiber tracking. It is fair to assume that such a
segmentation will be available because fiber tracking algorithms
often require a segmented surface as a constraint.

While the results produced by the algorithm are promising
there are several areas of future work we intend to explore. Firstly,
the parameter r is currently user defined. It would be advanta-
geous to incorporate this into the optimization scheme using a
prior model. Secondly, we would like to modify our MRI acquisi-
tion protocol in order to capture entire forearm muscles in the dif-
fusion scan. This would allow the extraction of denoised fiber fields
from entire muscles, facilitating the computation of physiological
parameters and enabling further validation of the denoised fiber
field results against the existing literature (Lieber et al., 1992;
Ravichandiran et al., 2009). The effect of vector field noise on these
physiological parameters could then be examined. Thirdly, the
algorithm requires an SPD tensor field as input. Extending the algo-
rithm to operate directly on diffusion weighted images could sim-
plify vector field extraction further as well as lead to increased
resistance to noise. Finally, we also intend to perform computa-
tional simulations of muscle behavior and examine how extracted
fiber architectures affect the function of muscle.

Despite these limitations, the results for both synthetic and ana-
tomical data experiments are promising. When run on synthetic
data both the deterministic algorithm and its large scale variant
show good similarity (>0.9 Figs. 5–8) for smoothing parameter val-
ues of 10 or greater. These results were visually verified as well
(Figs. 9–12). Furthermore, fibers extracted from denoised vector
fields computed from human forearm DTI data show greater
smoothness than those extracted from the noisy data. The results
for the ECRB and the BR are especially interesting because the
denoised fields appear to either correct errors in the noisy vector
fields (BR) or highlight salient features of the fiber architecture
such as in the ECRB case (Fig. 15).

4. Conclusion

We have designed and implemented algorithms for construct-
ing denoised skeletal muscle fiber vector fields from noisy diffu-
sion tensor images. Using synthetic data we have shown that the
denoised vector fields provide a much better approximation (>0.9
similarity with r P 10) to ground truth noiseless data for SNR val-
ues greater than or equal to 5. Furthermore we have shown that
the algorithms offer denoising performance exceeding that of a
state-of-the-art DWI image filter at low SNR for muscle-like data-
sets. Finally, we show that the algorithms produce plausible results
when applied to DTI data of a human forearm.
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