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Figure 1: Deformable Christmas tree with adaptive velocity field. (1a): One frame is sufficient in steady state. (1b): When ornaments
are attached, additional frames are activated to allow deformation. (1c): The velocity field can be simplified again when the equilibrium is
reached. Note that our method can simplify locally deformed regions. (1d): Once the branches are released, the velocity field is refined again
to allow the branches to recover their initial shape.

ABSTRACT

A new adaptive model for viscoelastic solids is presented. Unlike
previous approaches, it allows seamless transitions, and simplifi-
cations in deformed states. The deformation field is generated by
a set of physically animated frames. Starting from a fine set of
frames and mechanical energy integration points, the model can be
coarsened by attaching frames to others, and merging integration
points. Since frames can be attached in arbitrary relative positions,
simplifications can occur seamlessly in deformed states, without
returning to the original shape, which can be recovered later after
refinement. We propose a new class of velocity-based simplifica-
tion criterion based on relative velocities. Integration points can be
merged to reduce the computation time even more, and we show
how to maintain constant elastic forces through the levels of de-
tail. This meshless adaptivity allows significant improvements of
computation time.

Index Terms: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

1 INTRODUCTION

The stunning quality of high-resolution physically based anima-
tions of deformable solids requires complex deformable models
with large numbers of independent Degrees Of Freedom (DOF)
which result in large dynamics equation systems and high computa-
tion times. On the other hand, the thrilling user experience provided

by interactive simulations can only be achieved using fast com-
putation times which preclude the use of high-resolution models.
Reconciling these two contradictory goals requires adaptive mod-
els to efficiently manage the number of DOFs, by refining the model
where necessary and coarsening it where possible. Mesh-based de-
formations can be seamlessly refined by subdividing elements and
interpolating new nodes within these. However, seamless coarsen-
ing can be performed only when the fine nodes are back to their
original position with respect to their higher-level elements, which
happens only in the locally undeformed configurations (i.e. with
null strain). Otherwise, a popping artifact (i.e. , an instantaneous
change of shape) occurs. This not only violates the laws of Physics,
but it is also visually disturbing. Simplifying objects in deformed
configurations, as demonstrated in Fig. 1c, has thus not been pos-
sible with previous adaptive approaches, unless the elements are
small or far enough. This may explain why extreme coarsening has
rarely been proposed, and adaptive FEM models typically range
from moderate to high complexity.

We introduce a new approach of adaptivity to mechanically sim-
plify objects in arbitrarily deformed configurations, while exactly
maintaining their current shape and controlling the velocity discon-
tinuity, which we call seamless adaptivity. It extends a frame-based
meshless method and straightforwardly derives from the ability of
attaching frames to others in arbitrary relative positions, as illus-
trated in Fig. 2. In this example, a straight beam is initially ani-
mated using a single moving frame, while another control frame is
attached to it. We then detach the child frame to allow the bending
of the beam. If the deformation of the beam becomes constant, its
velocity can again be modeled using a single moving frame, while
its shape can be frozen in a deformed state by applying an offset
to its reference position with respect to the active frame. Setting
the offset to the current relative position removes mechanical DOFs
without altering the current shape of the object. This deformation is
reversible. If the external loading applied to the object changes, we
can mechanically refine the model again (i.e. activate the passive
frame) to allow the object to recover its initial shape or to undergo
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Figure 2: Seamless coarsening in a deformed state. Left: refer-
ence shape, one active frame in black, and a passive frame in grey
attached using a relative transformation (dotted line). Middle: acti-
vating the frame allows it to move freely and to deform the object.
Right: deactivated frame in a deformed configuration using an off-
set δx.

new deformations. The ability to dynamically adapt the velocity
field independently of the deformation is the specific feature of our
approach which dramatically enhances the opportunities for coars-
ening mechanical models compared with previous methods.

Our specific contributions are (1) a deformation method based on a
generalized frame hierarchy for dynamically tuning the complexity
of deformable solids with seamless transitions; (2) a novel simpli-
fication and refinement criterion based on velocity, which allows
us to simplify the deformation model in deformed configurations,
and (3) a method to dynamically adapt the integration points and
enforce the continuity of forces across changes of resolution.

The remainder of this article is organized as follows. We summarize
the original frame-based simulation method and we define some
notations in Section 3. An overview of our adaptive framework is
presented in Section 4. We discuss our strategy for nodal adaptivity
in Section 5. The adaptivity of the integration points is then intro-
duced in Section 6. We discuss results in Section 7 and future work
in Section 8.

2 RELATED WORK

The simulation of viscoelastic solids is a well-studied problem in
computer graphics, starting with the early work of Terzopoulos
et al. [29]. A survey can be found in [24]. Frame-based mod-
els have been proposed [20, 22, 9, 7], and the impressive effi-
ciency of precomputed reduced models has raised a growing in-
terest [17, 2, 3, 15, 11, 12], but run-time adaptivity remains a chal-
lenge. The remainder of this review focuses on this issue.

Hutchinson et al. [13] and Ganovelli et al. [8] first combined several
resolutions of 2D and 3D solids dynamically deformed by mass-
springs. Cotin et al. [5] combined two mechanical models to sim-
ulate various parts of the same object. Most adaptive methods are
based on meshes at multiple resolutions. Mixing different mesh
sizes can result in T-nodes that are mechanically complex to man-
age in the Finite Element Method (FEM). Wu et al. [32] chose a
decomposition scheme that does not generate such nodes. Debunne
et al. [6] performed the local explicit integration of non-nested
meshes. Grinspun et al. [10] showed that hierarchical shape func-
tions are a generic way to deal with T-nodes. Sifakis et al. [26] con-
strained T-nodes within other independent nodes. Martin et al. [21]
solved multi-resolution junctions with polyhedral elements. Several
authors proposed to generate on the fly a valid mesh with dense and
fine zones. Real-time remeshing is feasible for 1D elements such
as rods and wires [18, 27, 25] or 2D surfaces like cloth [23]. For
3D models, it is an elegant way to deal with cuttings, viscous ef-
fects and very thin features [4, 31, 30]. A mesh-less, octree-based
adaptive extension of shape matching has been proposed [28]. Be-
sides all these methods based on multiple resolutions, Kim and
James [16] take a more algebraic approach, where the displacement
field is decomposed on a small, dynamically updated, basis of or-
thogonal vectors, while a small set of carefully chosen integration

points are used to compute the forces. In constrast to these works,
our method relies on velocity field adaptation and a meshless dis-
cretization.

Numerous error estimators for refinement have been proposed in
conventional FEM analysis. For static analysis, they are gener-
ally based on a precomputed stress field. This is not feasible in
real time dynamics, where the current configuration must be used.
Wu et al. [32] proposed four criteria based on the curvature of the
stress, strain or displacement fields. Debunne et al. [6] considered
the Laplacian of the displacement. Lenoir et al. [18] refined parts
in contact for wire simulation. These approaches refine the objects
where they are the most deformed, and they are not able to save
computation time in equilibrium states. The problems relative to
the criterion thresholds are rarely discussed. The smaller the thresh-
olds, the smaller the popping artifacts, but also the more difficult to
simplify thus the less efficient.

3 FRAME-BASED SIMULATION METHOD

In this section we summarize the method that our contribution ex-
tends, and we introduce notations and basic equations. The method
of [7] performs the physical simulation of viscoelastic solids using
a hyperelastic formulation. The control nodes are moving frames
with 12 degrees of freedom (DOF) which positions, velocities and
forces in world coordinates are stored in state vectors x, v and f.
The world coordinates of frame i are the entries of the 4×4 homo-
geneous matrix Xi, while X j

i denotes its coordinates with respect
to frame j. These nodes control objects using a Skeleton Subspace
Deformation (SSD) method, also called skinning [19]. We use Lin-
ear Blend Skinning (LBS), though other methods would be suitable
(see e.g. [14] for a discussion about SSD techniques). The posi-
tion of a material point i is defined using a weighted sum of affine
displacements:

pi(t) = ∑
j∈N

φ
j

i X j(t)X j(0)−1pi(0) (1)

where N is the set of control nodes, and φ
j

i is the value of the shape
function of node j at material position xi(0), computed at initializa-
tion time using distance ratios as in [7]. Spatially varying shape
functions allow deformations. Similarly with nodes, the state of all
skinned points are stored as vectors: p, ṗ, and fp. By differentia-
tion of Eq. (1), a constant Jacobian matrix Jp can be assembled at
initialization, relating control node and points: p = Jpx, ṗ = Jpv.

External forces can be applied directly to the nodes, or to the con-
tact surface of the object. One can show using the Principle of Vir-
tual Work that the skin forces fp can be converted to nodal forces
as: f = JT

p fp. A generalized mass matrix for nodes can thus be as-
sembled at initialization based on scalar masses of skinned particles
Mp: M = JT

p MpJp. As shown in [9], differentiating Eq. (1) with
respect to material coordinates allows the mapping of deformation
gradients instead of points. By mapping deformation gradients to
strains (such as Cauchy, Green-Lagrange or corotational), and ap-
plying a constitutive law (such as Hooke or Mooney-Rivlin), we can
compute the elastic potential energy density at any location. After
spatial integration and differentiation with respect to the degrees of
freedom, forces can be computed and propagated back to the nodes.

We use different discretizations for visual surfaces, contact sur-
faces, mass and elasticity (potential energy integration points).
Masses are precomputed using a dense volumetric rasterization,
where voxels are seen as point masses. Deformation gradient sam-
ples (i.e. Gauss points) are distributed so as to minimize the nu-
merical integration error (see Sec. 6)). For each sample, volume
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Figure 3: Kinematic structure of the simulation. Our adaptive
scheme splits the control nodes into active (i.e. independent) nodes
and passive (i.e. mapped) nodes.

moments are precomputed from the fine voxel grid and associated
with local material properties.

The method is agnostic with respect to the way we solve the equa-
tions of motion. We apply an implicit time integration to maintain
stability in case of high stiffness or large time steps [1]. At each
time step, we solve a linear equation system

A∆v = b (2)

where ∆v is the velocity change during the time step, matrix A is
a weighted sum of the mass and stiffness matrices, while the right-
hand term depends on the forces and velocities at the beginning of
the time step. The main part of the computation time to set up the
equation system is proportional to the number integration points,
while the time necessary to solve it is a polynomial function of the
number of nodes (note that A is a sparse, positive-definite symmet-
ric matrix).

4 ADAPTIVE FRAME-BASED SIMULATION

Our first extension to the method presented in Sec. 3) is to attach
some control nodes to others to reduce the number of independent
DOFs and deformation modes. This amounts to adding an extra
block to the kinematic structure of the model, as shown in Fig. 3.
The independent state vectors are restricted to the active nodes. At
each time step, the dynamics equation is solved to update the posi-
tions and velocities of the active nodes, then the changes are prop-
agated to the passive nodes, then to the skin points and the material
integration points. The forces are propagated the other way round.
When a node i is passive, its matrix is computed using LBS as

Xi(t) = ∑
j∈A

φ
j

i X j(t)X j(0)−1Xi(0) (3)

where A is the set of active nodes and φ
j

i is the value of the shape
function of node j at the origin of Xi in the reference, undeformed
configuration. The point positions of Eq. (1) can be written in terms
of active nodes only:

pi(t) = ∑
j∈A

ψ
j

i X j(t)X j(0)−1pi(0) (4)

ψ
j

i = φ
j

i + ∑
k∈P

φ
j

k φ
k
i (5)
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Figure 4: Refinement and simplification. Red and green arrows
denote external and internal forces, respectively. Plain circles rep-
resent active nodes, while empty circles represent passive nodes
attached to their parents, and crosses represent the positions of pas-
sive nodes interpolated from their parents positions. Dashed lines
are used to denote forces divided up among the parent nodes. Rect-
angles denote integration points, where the stresses σ are com-
puted. (a): A bar in reference state undergoes external forces and
starts stretching. (b): In rest state, 3 active nodes. (c): With the
middle node attached with an offset with respect to the interpolated
position. (d): After replacing two integration points with one.

where P is the set of passive nodes. These equations straightfor-
wardly generalize to deformation gradients. This easy composition
of LBS is exploited in our node hierarchy (Sec. 5.2)) and our adap-
tive spatial integration scheme (Sec. 6)). At any time, an active node
i can become passive. Since the coefficients used in Eq. (3) are
computed in the undeformed configuration, the position X̄i com-
puted using this equation is different from the current position Xi,
and moving the frame to this position would generate an artificial
instantaneous displacement. To avoid this, we compute the offset
δXi = X̄−1

i Xi, as illustrated in Fig. 2. The skinning of the frame is
then biased by this offset as long as the frame remains passive, and
its velocity is computed using the corresponding Jacobian matrix:

Xi(t) = ∑
j∈A

ψ
j

i X j(t)X j(0)−1Xi(0)δXi (6)

ui(t) = Jiv(t) (7)

Our adaptivity criterion is based on the comparison of the veloc-
ity of a passive node attached to nodes of A , with the velocity of
the same node moving independently; if the difference is below a
threshold the node should be passive, otherwise it should be active.

One-dimensional Example

A simple one-dimensional example is illustrated in Fig. 4. A bar
is discretized using three control nodes and two integration points,
and stretched horizontally by its weight, which applies the external
forces 1/4, 1/2 and 1/4, from left to right respectively. For sim-
plicity we assume unitary gravity, stiffness and bar section, so that
net forces are computed by simply summing up strain and force
magnitudes. At the beginning of the simulation, Fig. 4a, the bar
is in reference configuration with null stress, and the middle node
is attached to the end nodes, interpolated between the two. The
left node is fixed, the acceleration of the right node is 1, and the
acceleration of the interpolated node is thus 1/2. However, the ac-
celeration of the corresponding active node would be 1, because
with null stress, it is subject to gravity only. Due to this difference,
we activate it and the bar eventually converges to the equilibrium
configuration shown in Fig. 4b, with a non-uniform extension, as
can be visualized using the vertical lines regularly spaced in the
material domain.
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Once the center node is stable with respect to its parents, we can
simplify the model by attaching it to them, with offset δx. External
and internal forces applied to the passive node, which balance each
other, are divided up among its parents, which do not change the
net force applied to the end node. The equilibrium is thus main-
tained. The computation time is faster since there are less unknown
in the dynamics equation. However, computing the right-hand term
remains expensive since the same two integration points are used.

Once the displacement field is simplified, any change of strain due
to the displacements of the two independent nodes is uniform across
the bar. We thus merge the two integration points to save computa-
tion time, as shown in Fig. 4d.

Section 5 details node adaptivity, while the adaptivity of integration
points is presented in Section 6.

5 ADAPTIVE KINEMATICS

5.1 Adaptivity Criterion

At each time step, our method partitions the nodes into two sets: the
active nodes, denoted by A , are the currently independent DOFs
from which the passive nodes, denoted by P , are mapped. We fur-
ther define a subset A C ⊂P to be composed of nodes candidate
for activation. Likewise, the deactivation candidate set is a sub-
set PC ⊂A . To decide whether candidate nodes should become
passive or active, we compare their velocities in the two cases and
change their status when the velocity difference crosses a certain
user-defined threshold η discussed below. At each time step, we
thus compare the velocities in the three following cases:

1. with A \PC active and P ∪PC passive (coarser resolu-
tion)

2. with A active and P passive (current resolution)

3. with A ∪A C active and P \A C passive (finer resolution)

We avoid solving the three implicit integrations, noticing that cases
1 and 3 are only used to compute the adaptivity criterion. Instead of
performing the implicit integration for case 1, we use the solution
given by 2 and we compute the velocities of the frames in PC
as if they were passive, using Eq. (7). For case 3, we simply use
an explicit integration for the additional nodes A C , in linear time
using a lumped mass matrix. In practice, we only noticed small
differences with a fully implicit integration. At worse, overshooting
due to explicit integration temporary activates too many nodes.

Once every velocity difference has been computed and measured
for candidate nodes, we integrate the dynamics forward at cur-
rent resolution (i.e. using system 2), then we update the sets
A ,P,PC ,A C and finally move on to the next time step.

Metrics

For a candidate node i, the difference between its passive and active
velocities is defined as:

di = Ji(v+∆v)− (ui +∆ui) (8)

where Ji is the Jacobian of Eq. (7), and ∆v,∆ui are the velocity up-
dates computed by time integration, respectively in the case where
the candidate node is passive and active. Note that for the activation
criterion computed using explicit integration (case 3), this reduces
to the generalized velocity difference di = Ji∆v− dtM̃−1

i fi where
M̃i is the lumped mass matrix block of node i, fi its net external

force and dt is the time step , which is a difference in acceleration
up to dt. A measure of di is be computed as:

µi = ||di||2Wi
:=

1
2

dT
i Widi (9)

where Wi is a positive-definite symmetric matrix defining the met-
ric (some specific Wi are shown below). The deactivation (respec-
tively activation) of a candidate node i occurs whenever µi ≤ η

(respectively µi > η), where η is a positive user-defined threshold.

Kinetic Energy As the nodes are transitioning between passive and
active states, a velocity discontinuity may occur. In order to prevent
instabilities, a natural approach is to bound the associated kinetic
energy discontinuity. We do so using Wi = M in Eq. (9). The total
kinetic energy difference introduced by changing k candidate node
states is:

µtotal =
∣∣∣∣ k

∑
i

di
∣∣∣∣2

M ≤
k

∑
i
||di||2M =

k

∑
i

µi (10)

Thus, placing a threshold on each individual µi effectively bounds
the total kinetic energy discontinuity. The criterion threshold η can
then be adapted so that the upper bound in Eq. (10) becomes a small
fraction of the current kinetic energy.

Distance to Camera For Computer Graphics applications, one is
usually ready to sacrifice precision for speed as long as the approx-
imation is not visible to the user. To this end, we can measure ve-
locity differences according to the distance to the camera of the as-
sociated visual mesh, so that motion happening far from the camera
will produce lower measures, thus favoring deactivation. More pre-
cisely, if we call Gi the kinematic mapping between node i and the
mesh vertices, and Z a diagonal matrix with positive values decreas-
ing along with the distance between mesh vertices and the camera,
the criterion metric is then given by:

Wi = GT
i ZGi (11)

In practice, we use a decreasing exponential for Z values (1 on the
camera near-plane, 0 on the camera far-plane) in the spirit of the
decreasing precision found in the depth buffer during rendering.
The two metrics can also be combined by retaining the minimum
of their values: simplification is then favored far from the camera,
where the distance metric is always small, while the kinetic energy
metric is used close to the camera, where the distance metric is
always large.

5.2 Adaptive Hierarchy

In principle, we could start with an unstructured fine node dis-
cretization of the objects and at each time step, find the best sim-
plifications by considering all possible deactivation and activation
candidates. To avoid a quadratic number of tests, we pre-compute
a node hierarchy and define candidate nodes to be the ones at the
front between passive and active nodes.

Hierarchy Setup Our hierarchy is computed at initialization time,
as illustrated in Fig. 5. At each level, we perform a Lloyd relaxation
on a fine voxel grid to spread new control nodes as evenly as possi-
ble, taking into account the frames already created at coarser levels.
Before updating the shape functions, we interpolate the weights φ i

j
at the origin of each new node j, relative to the nodes i at coarser
levels. For each non-null weight, an edge is inserted in the de-
pendency graph, resulting in a generalized hierarchy based on a
Directed Acyclic Graph.

Hierarchy Update The candidates for activation are the passive
nodes with all parents active. Conversely, the candidates for deacti-
vation are the active nodes with all children passive, except the root
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Figure 5: Reference node hierarchy. From left to right: the first
three levels, and the dependency graph.
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Figure 6: Mechanical hierarchy. Left: active nodes 0,1,4,5,6 at
a given time. Middle: Reference hierarchy; nodes 2,3,7 are acti-
vation candidates; nodes 4,5,6 are deactivation candidates. Right:
the resulting two-level contracted graph to be used in the mechani-
cal simulation.

of the reference hierarchy. In the example shown in Fig. 6, nodes
4,5,6,1, and 0 shown in the character outline are active. As such,
they do not mechanically depend on their parents in the reference
hierarchy, and the mechanical dependency graph is obtained by re-
moving the corresponding edges from the reference hierarchy. For
edges in this two-levels graph, weights are obtained by contracting
the reference hierarchy using Eq. (4) and similarly for the differ-
ent sets of passive/active nodes discussed in the beginning of this
section

6 ADAPTIVE SPATIAL INTEGRATION

6.1 Discretization

The spatial integration of energy and forces is numerically com-
puted using Gaussian quadrature, a weighted sum of values com-
puted at integration points. Exact quadrature rules are only avail-
able for polyhedral domains with polynomial shape functions (e.g.
tri-linear hexahedra). In meshless simulation, such rules do not ex-
ist in general. However, in linear blend skinning one can easily
show that the deformation gradient is uniform (respectively linear)
in regions where the shape functions are constant (respectively lin-
ear). As studied in [7], uniform shape functions can be only ob-
tained with one node, so linear shape functions between nodes are
the best choice for homogeneous parts of the material, since the in-
terpolation then corresponds to the solution of static equilibrium.
One integration point of a certain degree (i.e. one elaston [20]) is
sufficient to exactly integrate polynomial functions of the deforma-
tion gradient there, such as deformation energy in linear tetrahedra.
We leverage this property to optimize our distribution of integra-
tion points. In a region V e centered on point p̄e, the integral of a
function g is given by:∫

p̄∈V e
g≈ gT

∫
p̄∈V e

(p̄− p̄e)
(n) = gT ḡe (12)

where g is a vector containing g and its spatial derivatives up to
degree n evaluated at p̄e, while p(n) denotes a vector of polynomials
of degree n in the coordinates of p, and ḡe is a vector of polynomials

p

Φ(p)

(a) Original shape functions,
three nodes

Φ(p)

p

(b) Integration domains and
Gauss points

p
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Φ(p)


1

0


1

2

p
f p

(c) Shape functions after
deactivating the middle node

Φ(p)

pp
n

(d) Merged integration domains

Figure 7: Adaptive integration points in 1D. Disks denote control
nodes while rectangles denote integration points.

integrated across V e which can be computed at initialization time
by looping over the voxels of an arbitrarily fine rasterization. The
approximation of Eq. (12) is exact if n is the polynomial degree
of g. Due to a possibly large number of polynomial factors, we
limit our approximation to quartic functions with respect to material
coordinates, corresponding to strain energies and forces when shape
functions are linear and the strain measure quadratic (i.e. Green-
Lagrangian strain).

Since the integration error is related to the linearity of shape func-
tions, we decompose the objects into regions of as linear as possi-
ble shape functions at initial time, as shown in Fig. 7a and Fig. 7b.
We compute the regions influenced by the same set of independent
nodes, and we recursively split these regions until a given linearity
threshold is reached, based on the error of a least squares linear fit
of the shape functions. Let φi(p̄) be the shape function of node i as
defined in Eq. (1), and ce

i
T p̄(1) its first order polynomial approxi-

mation in V e. The linearity error is given by:

ε(c) =
∫
V e

(φi(p̄)− cT p̄(1))2 (13)

= cT Aec−2cT Be
i +Ce

i (14)

with: Ae =
∫
V e

p̄(1)p̄(1)T
(15)

Be
i =

∫
V e

φi(p̄)p̄(1) (16)

Ce
i =

∫
V e

φi(p̄)2 (17)

We solve for the best least squares coefficients ce
i minimizing ε:

ce
i = (Ae)−1Be

i . The region with largest error is split in two until
the target number of integration points or an upper bound on the
error is reached.

6.2 Merging Integration Points

At run-time, the shape functions of the passive nodes can be ex-
pressed as linear combinations of the shape functions of the active
nodes using Eq. (5). This allows us to merge integration points shar-
ing the same set of active nodes (in A ∪A C ), as shown in Fig. 7c.
One can show that the linearity error in the union of regions e and
f is given by:

ε = ∑
i
(Ce

i +C f
i )−∑

i
(Be

i +B f
i )

T (Ae +A f )−1
∑

i
(Be

i +B f
i )
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If this error is below a certain threshold, we can merge the integra-
tion points. The new values of the shape function (at origin) and its
derivatives are: cn

i = (Ae +A f )−1(Be
i +B f

i ). For numerical preci-
sion, the integration of Eq. (12) is centered on p̄e. When merging e
and f , we displace the precomputed integrals ḡe and ḡ f to a central
position p̄n = (p̄e+ p̄ f )/2 using simple closed form polynomial ex-
pansions. Merging is fast because the volume integrals of the new
integration points are directly computed based on those of the old
ones, without integration across the voxels of the object volume.
Splitting occurs when the children are not influenced by the same
set of independent nodes, due to a release of passive nodes. To
speed up the adaptivity process, we store the merging history in a
graph, and dynamically update the graph (instead of restarting from
the finest resolution). Only the leaves of the graph are considered
in the dynamics equation.

When curvature creates different local orientations at the integra-
tion points, or when material laws are nonlinear, there may be a
small difference between the net forces computed using the fine or
the coarse integration points. Also, since Eq. (4) only applies when
rest states are considered, position offsets δX on passive nodes
create forces that are not taken into account by coarse integration
points. To maintain the force consistency between the different lev-
els of details, we compute the difference between the net forces
applied by the coarse integration points and the ones before adapta-
tion. This force offset is associated with the integration point and it
is added to the elastic force it applies to the nodes. Since net inter-
nal forces over the whole object are necessarily null, so is the differ-
ence of the net forces computed using different integration points,
thus this force offset influences the shape of the object but not its
global trajectory. In three dimension, to maintain the force offset
consistent with object rotations, we project it from the basis of the
deformation gradient at the integration point to world coordinates.

7 RESULTS

7.1 Validation

To measure the accuracy of our method, we performed some stan-
dard tests on homogeneous Hookean beams under extension and
flexion (see Fig. 8). We obtain the same static equilibrium solu-
tions using standard tetrahedral finite elements and frame-based
models (with/without kinematics/integration point adaptation). In
extension, when inertial forces are negligible (low masses or static
solving or high damping), our adaptive model is not refined as ex-
pected from the analytic solution (one frame and one integration
point are sufficient). In bending, adaptivity is necessary to model
non-linear variations of the deformation gradient. At equilibrium,
our model is simplified as expected. Fig. 9 shows the variation of

Tetrahedral FEM

Frame-based

Frame adaptivity

Frame & integration 
point adaptivity

Figure 8: Four cantilever beams at equilibrium with the same prop-
erties and loading (fixed on one side and subject to gravity).

the kinetic energy (red curves). As expected, energy discontinu-
ities remain lower than the criterion threshold when adapting nodes
and integration points (green and blue curves), allowing the user to

control maximum jumps in velocity. Because there is also no posi-
tion discontinuities (no popping) as guaranteed by construction, the
adaptive simulation in visually very close to the non-adaptive one.
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Figure 9: Kinetic Energy (red) Analysis with varying number of
frames (green) and integration points (blue) over time (cantilever
beam under flexion).

7.2 Complex Scenes

We demonstrate the genericity of our method through the following
example scenes:

Christmas Tree A Christmas tree (Fig. 1) with a stiff trunk and
more flexible branches, with rigid ornaments is subject to gravity.
Initially, only one node is used to represent the tree. As the or-
nament falls, the branches bend and nodes are automatically active
until the static equilibrium is reached and the nodes become passive
again. The final, bent configuration is again represented using only
one control node.

Elephant Seal A simple animation skeleton is converted to con-
trol nodes to animate an elephant seal (Fig. 10) using key-frames.
Adaptive, secondary motions are automatically handled by our
method as more nodes are added into the hierarchy.

Figure 10: 40 adaptive, elastic frames (green=active, red=passive)
adding secondary motion on a (on purpose short) kinematic skele-
ton corresponding to 12 (blue) frames.

Bouncing Ball A ball is bouncing on the floor with unilateral con-
tacts (Fig. 11). As the ball falls, only one node is needed to animate
it. On impact, contact constraint forces produce deformations and
the nodes are active accordingly. On its way up, the ball recovers
its rest state and the nodes are passive again. This shows that our
method allows simplifications in non-equilibrium states.

Elastic Mushroom Field In Fig. 12a, simplification allows all the
mushrooms to be attached to one single control frame until a shoe
crushes some of them. Local nodes are then activated to respond to
shoe contacts or to secondary contacts. They are deactivated when
the shoe goes away.

Deformable Ball Stack Eight deformable balls (Fig. 13) are
dropped into a glass. From left to right: (a) A unique node is nec-
essary to simulate all balls falling under gravity, at the same speed.
(b) While colliding, nodes are activated to simulate deformations.
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Scene Timing #Steps (dt) #Frames #Integration Points Speedup
including collisions total min max mean total min max mean including collisions

Christmas Tree (Fig. 1) 5-270 ms/frame 380 (0.04s) 36 1 31 9 124 124 124 124 ×1.5
Cantilever Beam (Fig. 8) <1-110 ms/frame 370 (0.5s) 15 1 15 1.8 164 3 164 20 ×2

Mushroom Field (Fig. 12a) 75-200 ms/frame 200 (0.1s) 156 1 11 5.4 251 78 88 84 ×2.1
Armadillo Salad (Fig. 12b) 650-1,200 ms/frame 1,556 (0.01s) 1,800 18 1,784 365 27,162 108 27,086 5,011 ×3

Ball Stack (Fig. 13) 100-250 ms/frame 20 (0.1s) 50 1 38 11.5 407 70 360 178 ×1.7

Table 1: Adaptivity performances and timings.

Figure 11: A falling deformable ball with unilateral contacts.

(a) Crushing elastic mushrooms (b) 18 Armadillos falling in a bowl

Figure 12: Selected pictures of complex scenes where only a subset
of the available frames and integration points are active.

(c) Once stabilized, the deformed balls are simplified to one node.
(d) Removing the glass, some nodes are re-activated to allow the
balls to fall apart. (e) Once the balls are separated they are freely
falling with air damping, and one node is sufficient to simulate all
of them.

Figure 13: Eight deformable balls stacking up in a glass, which is
eventually removed.

Armadillo Salad A set of Armadillos (Fig. 12b) is dropped into a
bowl, demonstrating the scalability and robustness of our method
in a difficult (self-)contacting situation.

7.3 Performance

In the various scenarios described above, our technique allows
a significant reduction of both kinematic DOFs and integration
points, as presented in Table 1. Speedups are substantial, even when
collision handling is time consuming. It is worth noting that, for a

fair comparison with the non-adaptive case, our examples exhibit
large, global and dynamical deformations.

In order to evaluate the gain of adaptivity regarding the scene com-
plexity, we throw armadillos in a bowl, at various resolutions. The
speedups presented in Table 2 show that scenes resulting in larger
systems give better speedups since the complexity of solving the
system increases along with the number of DOFs. The algorith-
mic complexity of solving deformable object dynamics generally
depends on three factors: the number of DOFs, the computation
of elastic forces and, in the case of iterative solvers, the condition-
ing of the system. By using fewer integration points, our method
is able to compute elastic forces in a much faster way. In the case
of badly conditioned systems, as for instance tightly mechanically
coupled system (e.g. stacks), iterative methods need a large number
of iterations and thus the number of DOFs becomes critical. The de-
pendency on the number of DOFs is even larger when using direct
solvers. Thus, our method is particularly interesting in such cases
and allow for significant speedups compared to the non-adaptive
case. For instance: 6.25 when the balls are stacked into the glass
(see Fig. 13c).

We noticed that the overhead due to adaptivity is moderate com-
pared to the overall computational time (typically between 5% and
10%), since adaptivity is incremental for both nodes and integra-
tion points between two consecutive time steps. The dense voxel
grid is visited only once at initialization to compute shape func-
tions, masses, and integration data. Note that the cost of our adap-
tivity scheme is independent from the method to compute shape
functions (they could be based on harmonic coordinates, natural
neighbor interpolants, etc.).

Nb Max Nodes / Integration Points
Armadillos per Armadillo

10 / 49 100 / 1509 250 / 3953
1 ×1.75 ×3.3 ×12

18 ×1.5 ×3 ×3.1

Table 2: Speedups for a salad of one and 18 armadillos at various
maximal resolutions (including collision timing)

8 CONCLUSION AND PERSPECTIVES

We introduced a novel method for the run-time adaptivity of elas-
tic models. Our method requires few pre-processing (few seconds)
contrary to existing model reduction techniques based on modal
analysis and system training. Nodes are simplified as soon as their
velocities can be described by nodes at coarser levels of details, oth-
erwise they are made independent. Linear interpolation is particu-
larly suited for linear materials and affine deformations as it pro-
vides the static solution; therefore no refinement occurs except if
inertia produces large velocity gradients. In non-linear deformation
such as bending and twisting, new nodes are active to approximate
the solution in terms of velocity. Using frames as kinematic primi-
tives allows simplifications in deformed configurations based on lo-
cal coordinates, which is not possible in traditional Finite Element
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or particle-based techniques. Various distance metrics can be eas-
ily implemented to tune the adaptivity criterion depending on the
simulation context (e.g. physical, visual precision). Reducing the
number of independent DOFs speeds up the simulation, although
the factor depends on the choice of the solver (e.g. iterative/direct
solver, collision response method), and on the simulation scenario
(e.g. presence of steady states, local/global, linear/non-linear defor-
mations, mass distributions). In addition to kinematical adaptivity,
we presented a method to merge integration points to speed up the
computations even more of elastic internal forces. Force offsets are
used to remove discontinuities between the levels of detail.

In future work, we will address the question of stiffness discontinu-
ities and the design of scenario-dependent frame hierarchies.
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