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Abstract 
 
We present a methodology for motion tracking and visualization of the hip joint by combining MR images and optical motion 
capture systems. MRI is typically used to capture the subject’s anatomy while optical systems are used to capture and analyse 
the relative movement between adjacent bones of the joint. Reflective markers are attached to the subject’s skin and their 
trajectories are tracked and processed. However, the skin surface deforms while in motion due to muscle contraction leading 
to significant errors in the estimation of trajectories. In order to reduce these errors, we use MR images to capture both the 
anatomy and the trajectories of the bone. Prior to the scanning, we attach skin markers to the subject in order to analyse the 
markers displacements relative to the bone. We reconstruct the anatomical models of the subject and we compute the 
markers trajectories from the images. Using these calculated trajectories, we select the best markers configuration based on 
the criteria of markers displacements. The optimized configuration is used for recording external movements with the optical 
motion capture system. The resulting animation is mapped onto the virtual body of the subject including internal bones and 
the joint motion is visualized. 
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Introduction 
 
We present a methodology to capture internal motions of the hip joint using optical motion capture and MR imaging. Optical 
motion capture systems are widely used in joint motion analysis by the biomechanics community, the movement of the markers 
is used to infer the underlying relative movements between two adjacent bones. The problem with these methods is that the skin 
surface moves over the underlying structures. The ability of MRI scanners to image the articulation dynamically and non-
invasively in vivo opens the way to the efficient and accurate modeling and analysis of patient-specific joints. Therefore MRI is 
used to quantify the markers displacements and select the best markers configuration to be used with the optical system in order 
to reduce the errors of skin artifacts.  
 
In our study, we focus on the hip articulation. The clinical application is to develop a pre-surgical planning tool for hip 
osteoarthritis (degenerative hip disease). Tissue-specific MRI protocols are set up and used to acquire volumes of healthy hips. 
Generic anatomical models of the joint are built interactively, validated by our medical partners and deformed automatically to 
match patient organs geometry.  
 
On the other hand, dynamic MRI protocols are developed in order to capture the subject’s internal motion. Reflective markers 
are attached to the subject’s limb, the internal motion of the bone as well as the skin markers are tracked using a developed 
tracking algorithm. The skin markers trajectories are used to select the “best” markers configuration to be used with the optical 
system. Finally, the individualized models are animated to simulate realistic hip joint motions. The rest of this paper is organized 
as follows: First, we present our methodology for the anatomical modeling of the hip joint using static MRI, then; we introduce 
our algorithm for bone tracking using dynamic MRI, followed by the optimization of the skin markers configuration. The last 
section is dedicated to external motion capture and visualization of the joint.    

 



Anatomical modeling of the hip joint 
 
Image acquisition 
 
Two healthy adult subjects (a female and a male) have undergone the MRI scanning. The acquisition was performed at HUG 
(Hôpitaux Universitaires de Genève) with a 1.5 T Intera station manufactured by Philips Medical systems. Four high-resolution  
MRI scans containing thin axial slices are obtained for each subject. The scanning ranges from the ilium crest to the knee based 
on an axial localizer. The scan is extended up to the knee in order to determine the anatomical axis of the femur to perform 
motions of the hip joint [4][8]. In the following, the acquisition protocol is detailed: 
 

 Coil: Because both hips are involved, the first four series are performed in the body coil with a bone-specific sequence. The 
fifth series has a smaller FOV as it is dedicated to the cartilage. 

  Patient positioning: Supine, the feet are taped together to reduce leg movement. 
 Imaging protocol: Four series of T1-weighted spin echo images and one series of T1-weighted gradient echo images. 

Repetition time varies from 600 to 3000ms and Echo time is 15ms for bone sequences and 18ms for cartilage. 
 Image resolution:  The images have an in-plane resolution of 0.7mm x 0.7mm for the bone sequences and 0.9mm x 0.9mm 

for the cartilage. The in-between plane resolution depends on the anatomical region. The highest resolution is performed in 
the joint region (2 mm for bone and 1mm for cartilage), as this is a crucial region for our study. 
 

Identification of anatomical structures  
 
Segmentation is performed using a custom-written discrete snake procedure [5] to extract the hip and femoral contours. On each 
MRI slice, an initial set of points is digitized along each articular curve with a coarse spacing of 1-2cm (Figure 1) .The active 
contour is then used to best fit the actual boundary. This provides an accurate location of the bone contour sufficiently near the 
initialization curve.  
 
Although the snakes have proven to achieve high accuracy while decreasing the time required for manual segmentation, manual 
corrections are necessary on the slices with fuzzy edges. Moreover, the segmentation is validated by the medical experts before 
the reconstruction process to ensure maximum precision in the 3D models.   
 

Figure 1: (a) Manual digitizing of the articular boundary (b) fitting of the active contour (c): Femoral head and femoral 
cartilage 3D surfaces. (d) acetabular cartilage and hip 3D surfaces.  

 

Anatomical structures reconstruction 
 
The Marching Cubes algorithm, originally proposed by W. Lorensen [6], is considered to be a standard approach to the problem 
of extracting iso-surfaces from a volumetric dataset. Many implementations are available both as part of commercial systems or 
as public domain software. We use the Visual Toolkit [15] implementation of the Marching Cubes algorithm to generate iso-
surfaces from the segmented volume. The resultant polygonal surface is simplified with Schroeder decimation algorithm [13]. 
This technique is based on multiple filtering passes that remove vertices passing a minimal distance or curvature angle by 
analyzing the geometry and topology of a triangle mesh locally. This decreases the total number of polygons while preserving 
intricate surface details. 
 
The decimated polygonal surface is smoothed by adjusting the coordinates of the vertices using Laplacian smoothing. The effect 
is to "relax" the mesh, making the cells better shaped and the vertices more evenly distributed.  

(a) (b) (c) (d)



The hip (femur) model is reconstructed with 42,944 vertices and 84,313 triangles, the femur model with 27,608 vertices and 
53,534 triangles. Cartilage models are reconstructed with 5856 vertices and 11454 triangles for the acetabular cartilage and 
10241 vertices and 20 360 triangles for the femoral cartilage (Figure 1. (c), (d)) 
 

Bone models individualization 
 
Due to the large amount of textural information, noise, low contrast and resolution, bone segmentation is often a difficult task. 
Despite many researchers have tried to provide robust and fully automatic segmentation tools, no method has proven to be 
generic and manual corrections are generally required. Two main approaches for the segmentation are presented in the literature 
[1]: the inter-patient registration, aiming at aligning patient images to segmented generic images, and the deformable models-
based approach, aiming at matching a generic model to features in patient images. Inter-patient registration deals with similarity 
between images and, consequently, is sensible to noise and differences between the generic and the patient acquisition protocol. 
We use a method based on discrete deformable models to segment individual bones.  
 
First, the generic model is elastically initialized with a landmark-based approach and Thin-Plate-Splines interpolation [12]. 
Then, the model is deformed automatically by optimization of an energy function which is composed of an external energy term, 
measuring the matching between the model and image edges, and an internal energy term that maintains a smooth and connected 
model. External energy is calculated from the MRI oriented gradient images and model normals. The internal energy derives 
from deformation spheres [7] that constraint model deformation. In order to avoid convergence into local minima, we use a 
multi-resolution approach and deformation spheres with decreasing radius (the model’s deformability increases). 
 
It takes on average one hour for a model with 40,000 vertices to deform (Pentium4, 2GHz). The automatic method has been 
successfully tested and validated on four different pelvis and femurs with the same parameters: deformability (radius from 2cm 
to 1cm), number of iterations (10000), number of landmarks (16) and number of resolutions (3). The difference between manual 
and automatic segmentation is less than 15% of the total number of voxels for bones (Figure 2)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bone motion capture from MRI 
 

Real-time dynamic images acquisition 
 
The imaging protocol was developed and optimized with reference to the limitations of tracking algorithm. Firstly, the trade-off 
in image quality with FOV and matrix was investigated qualitatively on healthy volunteers in order to achieve the optimum 
resolution, contrast and frame acquisition time. As scan duration was proportional to the phase encode matrix, the phase encode 
matrix was maintained <100 at the shortest repetition time possible (TR 3.5ms). It was found that reducing the FOV and hence 
the phase encode matrix, maintaining an in-plane resolution of 2mm, was not an effective way to reduce frame acquisition time, 
due to the need to use fold-over suppression to avoid aliasing in the phase encode direction. A parallel imaging technique, 
SENSE (Philips Medical Systems, Best NL), was found to reduce the scan time by a factor of 2 without significant reduction in 

Figure 2: Automatic bone segmentation on a sample slice, corresponding 3D models 
and difference between manual and automatic segmentation on a sample slice (15%) 



image quality. A reference scan is acquired prior to the SENSE MR sequence to measure the sensitivity profile of the phased-
array coil. The same reference scan is used for all the images of the dynamic series. 
A positioning device was developed that facilitated reproducible abductive motion in both sequential and dynamic modes. A 
study was run with six healthy volunteers to optimize and evaluate the robustness of the registration-MRI protocol combination 
without the introduction of motion artifacts. Ethics approval was obtained from the local ethics committee for the study protocol. 
In a first session a complete static image data set of the pelvis and femur was acquired with a 2D multi-slice spin echo 
acquisition (TR/TE 578/18ms). In the second scan session the joint was stepped successively in abduction, and at a range of 
positions two scans were run. A 3D sequential acquisition at high spatial resolution (fast gradient echo sequence with radial 
reconstruction: FFE, TR/TE 6.4/3.1ms, Flip angle 15deg, FOV/matrix 500mm/410x512) was run to localize the hip position 
(gold standard) and secondly the optimized 2D dynamic protocol was run (seven imaging planes, gradient echo sequence with 
balanced gradients: bFFE, TR/TE 3.5/1.1ms, Flip angle 80deg, pixel size 2 x 2mm, slice thickness 10mm, partial Fourier 
reduction factor of 0.65 in read direction). The slice positions of the dynamic slices were required to be adjusted to intersect 
appropriate bony landmarks on each volunteer. These planes were set initially and maintained throughout the sequential motion 
protocol. In order to analyse optical markers/ bones relative displacement, markers, filled with contrast agent, were imaged at 
the same time in the scanner. 
 
Bone motion tracking  
 
In order to deduce kinematical properties of the musculoskeletal system, techniques have been developed to measure internal 
motion of organs. The use of bone screws or implantable markers provides a gold standard of bone motion measurement, 
although it is a very invasive approach. Nowadays, medical imaging technology has reached a level where it is possible to 
capture internal motion with different modalities (CT, MRI, US, SPECT). It opens up a way of measuring motion non-
invasively with image-based methods. Depending on the dMRI protocol, between two and six planes can be acquired 
simultaneously, while preserving real-time aspect (>6 frames/sec). We present a new technique to track bones motion 
automatically from dynamic MRI based on the original combination of temporal information of dMRI and spatial information of 
static MRI. 
 
Dynamic MRI is incomplete in terms of volumetric information, although it provides temporal information on single slices. On 
the other hand, static MRI provides prior knowledge on the bone morphology and is successfully segmented using the automatic 
deformable-model based approach presented before. In the static volume, normalized coordinate systems of the femur (Sf) and 
the pelvis (Sp) are oriented using anatomical landmarks and centred on the hip joint center (HJC), which is previously calculated 
with a functional method [4]. The problem of tracking bones in dynamic MRI is equivalent to a rigid registration problem (with 
six parameters) between the set of 2D dynamic images to the 3D static volume. Various registration methods have been 
proposed in the literature [1]. They always correspond to a functional energy minimization problem. The energy, calculated with 
a similarity metric ∆, measures degree of matching. For each bone, we automatically define a mask in the static volume from the 
bone model, where transformations are considered to be rigid (Figure 3). It contains the bone and surrounding tissues at a 
distance (determined empirically) that is less than 5mm. ∆ is calculated only for the points located inside the mask. For the 
minimization process, we choose to use the six parameters describing the relative transformation between Sf and Sp in the 
dynamic acquisition coordinate system. After pelvis and femur tracking, we obtain normalized abduction, flexion and 
internal/external rotation angles and the displacement of the HJC obtained with the predictive method [3] that uses surface 
models only. We have tested different similarity metrics based on a region or a frontier approach: normalized cross-correlation 
(NCC), absolute differences (AD), mutual information (MI), normalized mutual information (NMI) and model matching (MM). 
NNC, AD, MI and NMI are standard metrics [2]. MM aims at aligning the model with image edges in the dynamic slices. NCC, 
AD and MM can be applied to the gradient vector images. It provides a better robustness to rotation tracking. Information in the 
static volume, where positions of the transformed dynamic slices voxels are floating, is trilinearly interpolated. Optical Markers 
are tracked automatically on images using, similarly to bones, a template matching method. In this case, the reference volume is 
located at the first frame where landmarks have been manually initialized. 

 

 

 

 
 
 
 
 
After the coarse manual initialization, the amoeba optimizer [10] is used to minimize the similarity measure automatically.  

Figure 3: A dynamic sample slice with its corresponding interpolated image in the static volume, masked images and 3D 
position in the static volume. 



We validated the technique by comparing, on 6 different postures and 6 healthy volunteers, relative positions between femur and 
pelvis, assuming the volunteer remained in exactly the same position for both high-resolution sequential MRI, providing a gold 
standard bones position measurement, and the dynamic MRI acquisition. The error is the modulus of the translation and rotation 
transformation vectors between the two positions. We compared similarity metrics in terms of tracking error and robustness 
around the final solution in order to optimize bone motion estimation. Subsequently, we compared results for various plane 
numbers, positions and resolutions in order to optimize the acquisition in terms of speed. Normalized cross-correlation based on 
gradient images gave the most accurate tracking and was the more robust metric. We optimized the number of acquisition planes 
to three along with the definition of their optimal position and orientation. We found that decreasing resolution down to 4x4mm 
could improve acquisition speed preserving an acceptable tracking error. The final error was 3.3° (dev=1.5°) in terms of relative 
position between the femur and the pelvis and the final frame rate for the dynamic protocol was 6.7 frames/sec. 

 

Optimizing the optical markers configuration 
 
In order to optimize the markers configuration, we use the bone motion tracking technique described above and we proceed as 
follows: Nine reflective markers are injected with a contrast agent and placed at specific anatomical locations on the right limb 
of the volunteer. The volunteer undergoes the MRI scanner; his/her right limb is constrained by a device and imaged by the 
scanner during each frame. The MR series are processed and the trajectories of the visible markers are calculated using the 
automatic tracking method detailed in the previous section. Therefore, each marker mi is associated with an error ri 
corresponding to the sum of its displacements from frame to frame as in the following: 
 
For each marker mi 

For each frame fi 
Calculate the marker’s sum of displacements ∑di 

Assign to mi the error ri = ∑di 

 
For each triplet of marker (mi, mj, mk) 

If (Check_colinearity(mi,mj,mk)) 
Calculate the distance dijk=d(mi,mj)+d(mj,mk)+d(mk,mi) 
Calculate the error rijk= ri+rj+rk 

 
Check_colinearity (mi,mj,mk): returns yes if the three markers mi mj and mk are non-collinear and no otherwise. 
 

(a) (b) © 
 
 
 

Figure 4: (a)(b) markers displacements: Yellow= real markers positions, Blue=calculated positions (c): Best markers 
selection (in red). 



The best three markers mi, mj, mk are the most distant ones (maximum value of the sum of the markers inter-distances dijk) with 
the less relative motion (minimum value of the sum of the markers displacements rijk). Thus, each triplet of markers is assigned 
two weights: rijk and dijk. To determine the best three markers, we need to minimize the quantity rijk and maximize the quantity 
dijk. [16]. In other words, we seek for the triplet that maximizes the fraction dijk/rijk. An exhaustive search is used and the best 
triplet is selected (Figure 4). 
The procedure is applied to three motion patterns recommended by our medical partner as being the clinical movements used to 
determine the range of motion of the patient: (hip abduction, flexion and rotation). 

 
Motion capture using the optical system 
 
Subject-fair visualization model creation 
 
The reconstructed bone surfaces are simplified in lower polygon count to allow real-time display. They are inserted in a virtual 
human skin surface generated from adaptation of a generic model according to manual measurements of the subject’s segments 
[14]. Additionally the high-resolution reconstructed bones are used for evaluating the hip joint centre position in a dedicated 
application [3]. This hip joint centre (HJC) is then set on the subject’s technical skeleton model. 
This step ensures that the model’s HJC matches the precisely evaluated HJC therefore providing realistic animation 
visualization. As a result we obtain a visualization model composed of fairly accurate hip joints with bones within an 
approximated subject’s body deformable envelope (Figure5) 
One key interest of our approach lies in the fact that the visualization model corresponds to the subject’s real anatomy in the 
focus area (e.g. hip joint). The visualization of the motion that is as well recorded from the subject herself/himself is therefore 
closer to the real situation. That way, we removed the mapping on a subject-unrelated model bottleneck that gives little 
confidence in the visualization process given the variability in anatomy among different subjects. 
 

  
Figure 5: Male subject model (volunteer) with hip                      Figure 6: Markers and model in stand-up calibration posture  
                reconstructed bones and body-sized skin                                      after fine-tuning registration                 

 

Subject-fair external motion capture 
 
For recording of subject movements, we use an optical motion capture system composed of 8 video cameras. The reflective skin 
markers are placed on anatomical landmarks of the subject according to the optimized configuration. The recorded markers 
trajectories are then converted into the joint space parameters of the subject’s model.  
The converter technique [9]takes into account the geometry of the skeleton model, motivating further the accurately matched 
subject to model process. A record of the subject in stand-up calibration posture is used as a subject/model posture mapping 



reference. The model posture can be fine tuned with respects to the subject’s recorded posture before converting the trajectories 
into animation. This is done in practice by visualization of the markers position in the stand-up posture and adjusting the model 
posture, thus creating an offset posture (Figure 6). This offset posture is then used in place of the model’s default posture in the 
process. 
Unlike MRI scanner, the optical system allows the recording of large range motions (Figure 7) that are typically used for 
detection of impingements. We record hip abduction/adduction (Figure 8), rotation, flexion, and conical motion. The positions 
of optical markers are visualized at the same time as the model during its animation; this serves as reference to assess the 
reliability of the animation mapping. 
Although we are concerned primarily by the study of the hip joints, we believe that providing a more complete, yet less accurate, 
animated visualization of the rest of the body is desirable as it confers a panel of views from general to detail. Similarly while 
the skinning of the model is purely geometrical, it is less abstract than pure optical markers and bones display. 
 

  (a)  (b)  (c) 

Figure 7:  (a) Woman subject motion capture.    (b):Markers labeling                                              (c) Model motion mapping 

   

Figure 8: Large hip range of motion visualization example: abduction/adduction 

 
The real-time visualization application we have developed is based on the VHD++ middleware framework [11]. For the purpose 
of this work, we integrated the management of optical markers animation and enhanced the virtual human production pipeline to 
satisfy the constraints of anatomical accuracy. 

 
Conclusion 
 
We have presented a methodology for patients’ hip bones modelling and motion visualization using non invasive approaches. 
This technique improves the estimation of bones position in motion capture by using an optimized markers configuration to 
reduce artefacts due to skin and fat deformation. The markers configuration optimization is carried out using multi-slice 
dynamic MRI where bones and markers positions are tracked with an automatic and optimized tracking algorithm.  
Visual comparisons with classical animation based on common markers positions and standard animation skeleton showed an 
improvement in the animation realism. 
In the future, we plan to investigate methods to validate our technique. Existing techniques are invasive and therefore, of limited 
use. Single-plane video-fluoroscopy offers the best compromise between invasiveness and image quality and seems to be the 
best alternative.  
In addition, soft-tissue modeling is under investigation inside the framework of our project. They will be integrated into the 
motion visualization framework in order to express relevant information for clinical diagnosis (i.e. cartilage stress and strain). 
This methodology will be applied to the knee and ankle in order to obtain individualized and animated models of the full leg. 
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