
In Situ Design of Register Operations

Serge Burckel
INRIA-LORIA

Campus Scientifique BP 239
54506 Vandoeuvre-lès-Nancy Cedex France

Email: serge.burckel@loria.fr

Emeric Gioan
CNRS-LIRMM

161 rue Ada
34392 Montpellier Cedex 5 France

Email: emeric.gioan@lirmm.fr

Abstract

We present methods to design programs or electronic
circuits, for performing any operation on k registers of any
sizes in a processor, in such a way that one uses no other
working memory (such as other registers or external mem-
ories). In this way, any operation is performed with at most
4k − 3 assignments of these registers, or 2k − 1 when the
operation is linear or bijective.

1 Introduction

The main motivation of this note is the optimization of
processor performances. We present constructive mathe-
matical results, described precisely in [1][2][3], that enable
any operation on any registers of any sizes to be designed
without using other working memory (like other registers or
external memories).

The applications of such in situ computations (under
patent [1]) concern directly Hardware (e.g. for the design
of chips) and Software (e.g. for compiler optimizations).

In order to perform an operation Φ on k > 1 registers
of 32 bits, since a 32 bits processor is able to make succes-
sive operations on at most 32 bits, one encounters a classical
problem: during the transformation of these registers, their
initial values will be modified and it could be impossible to
complete the whole operation. For example, in order to ex-
change the contents of two registers R1, R2, if one begins
by performing R1 := R2, half of the operation is done, but
since the initial value of R1 is lost, the second step is not
possible anymore. A natural solution is to make a copy of
some registers. For instance, this exchange is computed by
the sequence R3 := R1; R1 := R2; R2 := R3 where R3

is a third register or an external memory. Nevertheless, this
kind of solution can generate some overflows, or use in a
dramatic way the registers of the chip, or slowdown compu-

tations by external memory access. Globally, this solution
by copies decreases the performances.

A’=B

B

A

B’=A

A’=BA

B
B’=A

XOR

XOR
XOR

Figure 1. Exchange two bit values

In this note we present other solutions. For example,
the previous exchange operation can be designed directly on
R1, R2 by the following sequence of operations, performed
on each bit index j = 1, 2 . . .32, where Rj

i is the j-th bit of
register Ri, and where + is addition in Z/2Z (i.e. an XOR
gate):

Rj
1 := Rj

1 + Rj
2; R

j
2 := Rj

1 + Rj
2; R

j
1 := Rj

1 + Rj
2.

One obtains circuits like in Figure 1. Observe that this cir-
cuit is a planar alternative for the crossing of two wires
(hence for any permutation of wires) and can be used for
the design of planar electronic circuits.

Observe also that each 32 bit assignments of a register
can be integrated in a single register assignment. We will
say that the total sequence of bit assignments is integrable in
register assignments. One obtains the sequence of register
assignments:

R1 := R1 ⊕ R2; R2 := R1 ⊕ R2; R1 := R1 ⊕ R2.

where ⊕ stands for a bit to bit + operation. The sequences
of assignments considered in this note will all have this in-
tegrability property. That allows us to state the results in
terms of bits and extend them directly in terms of registers.
See Section 2.

We show that this way of computing an operation on bits
or registers can be obtained for any operation. Moreover
the number of assignments is reasonable. In the case of

a linear operation involving k bits or registers, we obtain
sequences of at most 2k − 1 assignments. We also present
an extension to real values instead of binary ones, which
has applications like in image processing or floating point
operations in arithmetic coprocessors. See Section 3. In the
case of a bijective operation on k bits or registers, we obtain
sequences of at most 2k−1 assignments too. Moreover, the
inverse operation is computed just by reversing the order
of assignments. See Section 4. For a general operation,
we obtain sequences of at most 4k − 3 assignments. See
Section 5.

2 Bit operations on registers

For generalizations, we will assume that registers can
have different sizes. For convenience and in order to state
the definitions and results independently of the sizes of
registers, we code the value of a sequence of k registers
R1, R2, . . . , Rk, of respective bit sizes s(1), ..., s(k), by the
complete sequence of their bits:

(R1
1, . . . , R

s(1)
1 , R1

2, . . . , R
s(2)
2 , , R1

k, . . . , R
s(k)
k).

Hence, any operation Φ on these k registers is represented
by a mapping E : {0, 1}n → {0, 1}n where n = s(1) +
s(2) + . . . + s(k) is the total number of bits. Let us call E
the bit-expansion of the operation Φ. We naturally call bit
assignment a mapping {0, 1}n → {0, 1} . We are going to
design an (in situ) integrable circuit (or program) of E, that
performs the transformation X 7→ E(X) for every X ∈
{0, 1}n, by a sequence of bit assignments, in such a way
that we operate on successive bits in one way, then in the
other way, and so on. This technique enables to obtain an
optimal integration in register assignments, as illustrated in
Figure 2.

Bit Operations in RegistersIntegrability

R3
R2

R1

R1
R2

Rk

R3

Figure 2. Bit and Register Assignments

For example, the integration of a sequence of bit assign-
ments on 7 bit variables a, b, c, d, e, f, g into assignments
on 3 registers R1 = (a, b), R2 = (c, d), R3 = (e, f, g), is
obtained in the following way:

αa, αb
︸ ︷︷ ︸

α̃1

, αc, αd
︸ ︷︷ ︸

α̃2

, αe, αf , αg , α
′

f , α′

e
︸ ︷︷ ︸

α̃3

, α′

d, α
′

c
︸ ︷︷ ︸

α̃′

2

α′

b, α
′

a, α′′

b
︸ ︷︷ ︸

α̃′

1

, ...

where the index on an assignment corresponds to the modi-
fied bit or register.

Hence, the main results in the sequel can be equally de-
signed in terms of bit or register operations (with any sizes
of registers, a bit being a register of size one). Given a se-
quence S of bit assignments, we denote R(S) the sequence
of register assignments obtained by this integration process.

A sequence of register assignments S is called reversible
when the assignments are of type Ri := A(Ri)+F and the
following transformation of the assignments makes sense:

[Ri := A(Ri) + F] 7→ [Ri := A−1(Ri − F)].
Then, the reversed sequence S−1 performs these assign-
ments in the other way (from the last one to the first one),
together with this transformation. In the particular case of
bit assignments, the sequence is reversible when the assign-
ments are of type a := a + f(b, c, d, . . .). Then, the trans-
formation does not change the assignments (A = A−1 and
F = −F). For instance, on four bits (a, b, c, d):

S S−1

a := a + bc + 1 d := d + abc
b := b + a + d c := c + 1
c := c + 1 b := b + a + d
d := d + abc a := a + bc + 1

3 Linear operations

Back to the example of the introduction, the exchange
of registers is a very particular bit-linear operation: the fi-
nal value of each bit by this operation is defined by a linear
function on Z/2Z. In other words, the bit-expansion of a
bit-linear operation is a linear mapping on {0, 1}n. Such
bit-linear operations are useful, for instance in image pro-
cessing.

A linear bit assignment is naturally a linear mapping
from {0, 1}n to {0, 1}. An assignment of a bit (resp. regis-
ter) X is said elementary if it can be omitted like X := X
or consists in an addition like X := X + Y where Y is
another bit (resp. register).

Theorem 1. Every bit-linear operation Φ on k registers is
designed by a sequence T = R(S) of at most 2k−1 register
assignments, where all the assignments of S are linear (and
even elementary for the half of them). Moreover, when Φ
is invertible, the sequence S is reversible and the operation
Φ−1 is designed by the sequence R(S−1).

That is to say, such a bit-linear operation Φ is designed
in at most 2k − 1 assignments of the registers where each
assignment of a register Ri consists in linear assignments of
its bits, like R3

1 := R4
1 + R5

3 + R8
3 + R2

5.

Notice that bit-linear operations and linear operations on
registers are in general distinct notions. For example, the
operation on a two bits register R1 : (R1

1, R
2
1) 7→ (R1

1, R
1
1+

R2
1) is bit-linear. It maps (0, 0) 7→ (0, 0), (0, 1) 7→ (0, 1),

(1, 0) 7→ (1, 1), (1, 1) 7→ (1, 0). That corresponds to the
operation on the values of R1 : 0 7→ 0, 1 7→ 1, 2 7→ 3,
3 7→ 2, which is not linear in Z/4Z.

However, the previous result can be generalized to linear
operations on registers:

Theorem 2. For every field K, every linear operation Φ on
k registers, taking values in K, is designed by a sequence
T of at most 2k − 1 linear assignments. Moreover, the last
k − 1 assignments are elementary. If Φ is invertible, the
sequence T is reversible and Φ−1 is designed by T−1.

For instance, that property holds for registers taking val-
ues in R (or in floats). This case has been recently applied
with success for a company. We improved their program-
ming codes of GPUs (Graphics Processing Units) by per-
forming operations with an optimal number of registers.

We mention that the previous result can be adapted
to rings K = Z/NZ. For example, the linear opera-
tion in Z/4Z on three registers (R1, R2, R3) 7→ (2.R2 +
3.R3, R1 +R2 +R3, 3.R1 +2.R2 +R3) is designed by the
five assignments:

R1 := R1 + 2.R3

R2 := R1 + R2 + 3.R3

R3 := R1 + 2.R2 + R3

R2 := R2

R1 := R1 + R3

The fourth elementary assignment R2 := R2 can be
omitted. Moreover, this sequence is reversible and one ob-
tains a design for the inverse operation:

R1 := R1 − R3

R2 := R2

R3 := R3 − R1 − 2.R2

R2 := R2 − R1 − 3.R3

R1 := R1 − 2.R3

If these registers take their values in R, one obtains:

R1 := −3.R1 + 2.R3

R2 := −R1/3 + R2 + 5.R3/3
R3 := −R1/3 + 2.R2 − R3/3
R2 := R2

R1 := R1 + R3

and the inverse operation is designed by:

R1 := R1 − R3

R2 := R2

R3 := −3.R3 + 6.R2 − R1

R2 := R2 + R1/3− 5.R3/3 + R1/3
R1 := −R1/3 + 2.R3/3

Observe also that the case of affine mappings (adding
some constants) can be reduced to the linear case by intro-
ducing a virtual register R0 (just for the construction). For
example, the design of the affine operation on three regis-
ters on R: (R1, R2, R3) 7→ (5+2.R2+3.R3, 2+R1+R2+
R3, 9 + 3.R1 + 2.R2 + R3) is obtained from the design of
the linear operation on four registers (R0, R1, R2, R3) 7→
(R0, 5.R0 + 2.R2 + 3.R3, 2.R0 + R1 + R2 + R3, 9.R0 +
3.R1 + 2.R2 + R3) by fixing the value of register R0 to 1,
that is:

R0 := R0

R1 := 2.R3 − 3.R1 − 4.R0

R2 := (5/3).R3 − (1/3).R1 + R2 + (2/3).R0

R3 := 2.R2 − (1/3).R3 − (1/3).R1 + (11/3).R0

R2 := R2

R1 := R1 + R3

R0 := R0

4 Bijective operations

The example of register exchange is also a particular bit-
bijective operation in the sense that its bit-expansion is a
bijection on {0, 1}n. Unlike the case of linear operations,
this notion is equivalent to bijections on registers. Observe
that we are not only considering the particular n! possible
permutations of bits. We consider more general bijections:
one-to-one mappings on {0, 1}n. Hence there are 2n! such
bijective operations, and the permutations are very particu-
lar cases.

Theorem 3. Every bijective operation Φ on k registers is
designed by a sequence R(S) of at most 2k−1 assignments.
The sequence S is reversible and the sequence R(S−1)
computes the inverse operation Φ−1.

The proof is done by induction on the number n of bits
and uses some graph coloring for the inductive process.

For a short example, consider a bijective operation Φ on
two registers of size 2, R1 = (a, b) and R2 = (c, d), having
bit-expansion E(a, b, c, d) = (A, B, C, D) where :

A = 1 + acd + abc + ab + bc + cd + ad + ac + b + c
B = 1 + abd + cd + bd + ad + ac + b
C = bcd + abd + abc + bc + cd + b + d
D = bcd + ab + bc + cd + bd + a + b + d

This operation Φ is designed by the 7 bit assignments:

a := a + c + cd
b := b + cd + acd + ad
c := c + bd + ad
d := d + c + b + ab + a
c := c + a + d + abd
b := b + c + d + ad + ac + 1
a := a + cd + bd + 1

Observe that this computation of E is simpler than the
definition of E: 22 additions (XOR gates) versus 28, and
14 products (AND gates) versus 29. This observation
brings to mind Strassen-like algorithms for fast matrices
multiplications. The operation Φ−1 is designed by the re-
versed sequence:

a := a + cd + bd + 1
b := b + c + d + ad + ac + 1
c := c + a + d + abd
d := d + c + b + ab + a
c := c + bd + ad
b := b + cd + acd + ad
a := a + c + cd

Both sequences are integrable in 3 register assignments.

5 General operations

For a general operation Φ, we introduce a decomposition
of its bit-expansion E = F ◦ I ◦G where G (for Grouping)
and F (for Finalize) are two bijective mappings, and I (for
Identify) is a particular mapping that can be designed in at
most one operation on each register. First, we obtain by
this way at most 5k − 4 register assignments. Second, a
technical refinement of this preliminary construction, based
upon arithmetical arguments for defining G, allows F ◦I to
be computed in 2k−1 assignments. We obtain the following
general result:

Theorem 4. Every operation on k registers is designed by
a sequence of at most 4k − 3 assignments.

As an example, consider the operation Φ on two reg-
isters R1 = (a, b) and R2 = (c), having bit-expansion
E(a, b, c) = (A, B, C) where :

A = 1 + c + ab + ac
B = c + ac + bc
C = 1 + a + abc + ac + bc

We obtain a sequence of assignments represented in the
following tables (assignments α′

a and α′′

a can be condensed
into one assignment on a):

G
︷ ︸︸ ︷

αa, αb, αc,

→

α′

b, α
′

a,

→

F◦I
︷ ︸︸ ︷

α′′

a , α′′

b , α′′

c ,

→

α′′′

b , α′′′

a

→
c b a
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

αcαbαa

0 0 0

0 0 1

0 1 0

1 1 1

1 0 0

0 1 1

1 1 0

1 0 1

αcα
′

bα
′

a

0 0 1

0 0 0

0 1 0

1 0 0

1 1 0

0 1 1

1 0 1

1 1 1

α′′

c α′′

b α′′

a

1 0 1

0 0 0

1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

1 1 0

α′′

c α′′′

b α′′′

a

1 0 1

0 0 1

1 0 1

0 0 0

1 1 0

1 0 1

0 0 0

1 1 0

The above result gives an upper bound for the number
of required assignments. Also, for instance, we are able to
obtain an in situ computation made of 4 bit assignments for
the previous mapping:

c := a + b + c
a:= 1 + b + c + ac
c := c + a + ab
b := c + ac

Observe again that this computation of E is simpler than
the definition of E: 8 additions (XOR gates) versus 9, and
3 products (AND gates) versus 8.

6 Conclusion

The results presented in this note provide an optimization
of register operations in a processor, a chip design or a pro-
gram, in the sense that a suitable sequence of assignments
on registers will perform the operation without using any
external memory access. Further optimization concerns the
complexity of these assignments, which is closely related
to the technical complexity for the design of a chip in terms
of logical gates and elementary circuits. Many experimenta-
tions (like the ones presented here), as well as technological
and mathematical considerations, are strongly encouraging.
This is the subject of further work...

References

[1] S. Burckel and E. Gioan. Procédé d’optimisation des
ressources mémoires, implémentation de calculs pour pro-
cesseurs. Reunion Island University - Patent: BREVET INPI
FR0705152 (17 juillet 2007).

[2] S. Burckel and E. Gioan. In situ computation of mappings. In
preparation.

[3] S. Burckel and M. Morillon. Sequential computation of linear
boolean mappings. Theoretical Computer Science serie A,
314:287–292, 2004.

