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ABSTRACT A comparison of two expressions of the Tutte polynomial of an ordered oriented
matroid, one as a generating function of basis activities, the other as a generating function
of reorientation activities, yields a remarkable numerical relation between the number of
bases and reorientations with given activities. The object of the paper is a natural activity
preserving correspondence with suitable multiplicities between bases and reorientations,
constituting a bijective proof of this relation. The general construction will be published
elsewhere. In the present self-contained paper, we consider into details two particular cases
of special interest: uniform oriented matroids and acyclic oriented matroids of rank 3. In
both cases, the construction is simpler than in the general case, but introduces some of
the main ideas. The correspondence is closely related to oriented matroid programming, a
combinatorial generalization of linear programming. The link is direct in the uniform case:
for unitary activities, the correspondence amounts to applying a program or its opposite
to all bounded regions of a simple arrangement of pseudohyperplanes. In the rank-3 case,
equivalent to pseudoline arrangements, a second step toward the general construction is
made: optimizing two nested faces with respect to two lexicographically ordered programs.
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1. Introduction

The Tutte polynomial of a matroid is a 2-variable polynomial invariant, introduced for graphs
by W.T. Tutte in [16], and generalized to matroids by H.H. Crapo in [4]. Up to simple algebraic
transformations, the Tutte polynomial of a matroid is equivalent to its rank-generating function, i.e.
to the generating function of cardinality and rank of subsets of elements. The Tutte polynomial is a
fundamental tool in the theory of numerical invariants of matroids, and has numerous applications.
We refer the reader Section 2 for relevant definitions, and to [3] for an extensive survey on the
subject.

Let M be a matroid on a linearly ordered set of elements E. By a theorem proved by W.T.
Tutte for graphs [16], and extended to matroids by H.H. Crapo [4], we have

t(M;z,y) = Zb]my

where b; ; is the number of bases of A such that ¢ basis elements are smallest in their fundamental
cocircuit and j non-basis elements smallest in their fundamental circuit.

On the other hand, if M is an oriented matroid, M. Las Vergnas has shown in [13] that

t(M;z,y) = Zo,ﬂ’%y

where o; ; is the number of reorientations of A/ such that ¢ elements are smallest in some positive
cocircuit and j elements smallest in some positive circuit. This last formula contains several
results of the literature on counting acyclic (re)orientations in graphs, matroids, and regions in
arrangements of (pseudo)hyperplanes [2][9][10][11][12][15][17] (see Section 2).

Comparing these two expressions for t(M;z,y), we get the relation
0ij = 2%7b;

for all i,j. A natural question arises of a bijective interpretation of this formula [13]. The problem
is to define a correspondence between bases and reorientations, preserving parameters (i, j), called
activities, and compatible with the above formula. More precisely, the desired correspondence
should associate with a (i, j)-active basis of M, a set of 27+J (i, j)-active reorientations, in such a
way that each reorientation of M is in the image of a unique basis.

We construct in the forthcoming paper [8] (see also [6]) a correspondence with these
properties for general oriented matroids, the canonical active correspondence. In the present paper,
we present into details two special cases, namely when the oriented matroid is uniform (Section
3) and when it is acyclic of rank 3 (Section 4). In these two cases, proofs are significantly simpler
than in the general case, and particular properties occur, justifying a separate treatment. Another
case with specific properties, the graphical case, is presented in [7].

The canonical active correspondence can be constructed in several different ways. A
construction by decomposition of activities reduces the problem to the case of unitary - i.e. (1,0) or
(0,1) - activities. In this case the correspondence can be characterized intrinsically, or constructed
by means of an algorithm. The general characterization simplifies in the uniform and rank-3
cases. We prove in both cases that the canonical active correspondence has the desired properties
(Theorems 3.2 3.8 4.2 4.6). As frequently in the context of Tutte polynomals, a deletion/contraction
construction exists (Proposition 3.10 in the uniform case).

The canonical active correspondence is natural in several respects. In particular, its
geometric interpretation in terms of the topological representation of oriented matroids establishes
a close relationship with oriented matroid programming. Let M be a rank-r uniform oriented
matroid on a linearly ordered set E = {e; < ex < ...}. We consider the topological representation
of M by a simple arrangement of pseudohyperplanes with plane at infinity e;. Let A C E'\ {e1} be
a (1,0)-reorientation of M. Then A being acyclic corresponds to a region R of the arrangement, and
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since its dual-orientation activity is 1 this region R is bounded. Suppose R is on the positive side of
ey. The matroid program on the bounded region R with plane at infinity e; and objective function
e, non degenerate since the arrangement is simple, has a unique solution at a vertex v of R.
Then the canonical active correspondence associates with A the basis B = {ey, ba,...,b,}, where
ba, ..., b, are the r—1 pseudohyperplanes of the simple arrangement containing v. The hyperoctant
with apex v containing R is uniquely determined among the 2”1 hyperoctants defined by b., ..., b,
by the property of having a bounded intersection with es.

In the rank-3 case, the topological representation is an arrangement of pseudolines. The
geometric interpretation in terms of oriented matroid programming is similar, but more involved
for two reasons. First, the program may be degenerate, with an edge solution instead of a vertex
solution. Using a second smallest objective function, we can still define uniquely the apex v of the
region R. A second difficulty arises from the fact that we may have any number of pseudolines
through v, hence the vertex v is not sufficient to determine R. An edge of the border of R containing
v has to be determined, by optimization with respect to the linear ordering. We mention that for
non uniform oriented matroids of rank > 4, not considered here, a further difficulty occurs when v
is a non simple vertex of R.

In view of the relation 01,0 = 2b; 0, to prove bijectivity in the unitary case it suffices to
prove either injectivity or surjectivity. In Section 3 and 4, we prove both, thus providing a
natural bijective proof of this formula. The case of general (i,j) activities is derived from the
(1,0) case by means of decompositions of activities for both matroid bases and oriented matroids.
Decompositions of activities are outlined in the case of graph orientations in [14], appear partly
for matroid bases in [5], and are described in [8] (see also [6]) in full generality. In the special cases
of the present paper, general definitions can be avoided by means of direct constructions.

Finally, we mention that in the two particular cases of the paper the canonical active
correspondence for (1,0) activities is uniquely determined by the bijectivity property and an
incidence preserving property (Propositions 3.10 and 4.7). This property does not hold in general.

2. Notation and terminology

Let M be a matroid on a set of elements F, and B C E be a basis of M. For e € E\ B, we
denote by C(B;e) the fundamental circuit of e with respect to B, i.e. the unique circuit contained
in BU{e}. Dually, for e € B, we denote by C*(B;e) the fundamental cocircuit of e with respect to
B, i.e. the unique cocircuit contained in (E\ B)U{e}. For e € E\ B and ¢’ € B, we have clearly
e’ € C(Bse) if and only if e € C*(B;e'), and then C(B;e) NC*(B;e') = {e,e'}.

We say that a matroid M is ordered if its set of elements E is linearly ordered. The notion
of activities of a basis B in an ordered matroid M is due to W.T. Tutte [16] in the case of graphs,
and to H.H. Crapo [4] in the case of matroids. The internal activity ¢(B) is the number of elements
e € B smallest in their fundamental cocircuit C*(B;e), and the external activity e(B) is the number
of elements e € E'\ B smallest in their fundamental circuit C(B;e). We say that a basis B with
t(B) =i and €(B) = j is an (4, j)-basis. We denote by b; ;(A) the number of (4, j)-bases of M.

Spanning tree activities have been introduced by Tutte to generalize, in a self-dual way,
classical properties of the chromatic polynomial of a graph [16]. The theorem for graphs extends
to matroids [4], we have

t(M;2,y) =Y bija'y’
.

This expression readily implies that the coefficients b; ; are independent from the ordering of E.
In recent textbooks, the Tutte polynomial of a matroid is defined by the closed forula

HMiz.y) = Y (2= 170 ) g - q)lalrua
ACE

algebraically equivalent to the rank generating function of the matroid, and the above formula is
proved by deletion/contraction of the greatest element (see [3]).
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For usual definitions on oriented matroids, the reader is referred to [1]. If the matroid M
is oriented for e € E'\ B, we denote by C(B;e) the unique signed circuit C' contained in B U {e}
such that e € C*, and dually for ¢ € B, we denote by C*(B;e) the unique signed cocircuit D
contained in (E \ B) U {e} such that e € D*. We recall that two signed subsets X, Y are said
conformal if their signs agree on their intersection. We will sometimes, when it is not ambiguous,
make the abuse of notation consiting of using the same letter for a signed circuit or cocircuit and
its (unsigned support).

An oriented matroid is acyclic if it contains no positive circuit, or equivalently, if every
element is contained in a positive cocircuit. Dually, an oriented matroid is totally cyclic if it
contains no positive cocircuit, or equivalently, if every element is contained in a positive circuit.
An oriented matroid is acyclic if and only if the dual oriented matroid is totally cyclic.

A basic result in the domain of the present paper, is a theorem of R. Stanley (1973): the
number of acyclic orientations of a graph G is equal to ¢(C(G);2,0), where C(G) is the cycle
matroid of G [15]. This theorem has been generalized independently in 1975 by T. Zaslavsky to
real spaces in terms of arrangements of hyperplanes [17] (see also [2]), and by M. Las Vergnas to
oriented matroids [10] .

The paper [13] introduces a generalization of these results in terms of an orientation
generating function. The (primal) orientation activity of an ordered oriented matroid M, or O-
activity, denoted by o(M), is the number of elements smallest in some positive circuit. The dual
orientation activity of M, or O*-activity, denoted by 0*(M), is the number of elements smallest in
some positive cocircuit. We denote by o0; ;(M) the number of subsets A C E such that o*(—aM) =i
and o(—aM) = j, where —4M denotes the reorientation of M obtained by reversing signs on A
(this notation differs slightly from the notation M used in [1]). If no confusion results, for
brievity, we sometimes say that the set A itself is a reorientation (we point out that different
reorientations A may produce the same reoriented matroid —4M), and that a reorientation A
such that o*(—aM) = ¢ and o(—aM) = j is a (i,j)-reorientation. The definitions of O- and
O*-activities have been introduced in [13] in relation with the formula

t(M;a,y) =0 ;27 aty?
i

This formula implies that o; ; does not depend on the ordering, and that o; ; = 2iti b; j. The proof
in [13] is by deletion/contraction of the greatest element. Note that ), 0; ¢ is the number of acyclic
reorientations of M, hence the above formula generalizes results of [2][10][15][17].

The proofs of Theorems 3.4 and 4.2 below use the equality 01,0 = 2b1 9, which is a particular
case of the above result for the orientation generating function. This special case is originally due
to C. Greene and T. Zaslavsky [9] for acyclic orientations of graphs with adjacent unique source
and sink (see [7]), or bounded regions in real spaces, a result generalized in [11] to oriented matroids

The paper uses extensively the topological representation of oriented matroids. Some
knowledge of oriented matroid programming is also necessary. We refer the reader to [1] chap.
5 and chap. 10 for the needed prerequisites.

3. Uniform oriented matroids

We begin this section by stating the founding property of the general canonical active
correspondence. It simplifies in the cases studied in this paper.

Proposition 3.0 Let M be an oriented matroid on a linearly ordered set E, and B be a (1,0)-active
basis of M. Set B={b; <bs <...<b} and E\B={c1 <c2a<...<cp_p}-

Then there exist a unique pair of opposite reorientations A and E \ A such that, setting
M'=—AM = —p\aM,

(i) the covectors Cry (B;b1), Crp(B;b1)oCh(B;ba), ..., Crp(B;b)oChy(Biba)o...oChp (B by)
are positive, and



(1) the vectors Cpp (B; 1), Car (B e1)oCap (B; ca), ..., Cap (B;¢1)oChyr (Bjez)o...oChp (B cr—y)
have the smallest element by of E as unique negative element.

Furthermore A is a (1,0)-reorientation of M.

The canonical active basis-reorientation correspondence is defined on (1,0)-bases of a general
ordered oriented matroid M by associating with a (1,0)-basis of M the two opposite (1,0)-
reorientations given by Proposition 3.0. The proof of Proposition 3.0 is less than one page long.
Nevertheless, we omit it in the present paper, since Proposition 3.0 is quoted here only as a
motivation (it will appear in [8], see also [6]). Applying Proposition 3.0 to the particular cases of
uniform and acyclic rank-3 oriented matroids, we will derive simplified definitions for the canonical
active correspondence, first from a combinatorial point of view, then in terms of the topological
representation of oriented matroids and of oriented matroid programming, yielding short direct
proofs of bijectivity (the general proof of bijectivity is about 4 page long). Of course, we could
have given these definitions from scratch. We find it interesting to show how they are related, and
proceed from the same general setting.

Two dual algorithms to construct a (1,0)-reorientation A associated with a (1,0)-basis B by
the canonical active correspondence are easy corollaries of Proposition 3.0.

Algorithm 3.0.1
(1) reorient in C;(B;b1) to get all signs positive

(2) for i =2,...,r reorient in C};(B;b;) \U,; .; C3/(B; b)) to get all signs opposite to the reoriented
sign of the minimal element of C7/(B;b;) (this minimal element is necessarily in ,_; C3;(B; b))

Algorithm 3.0.2
(1) reorient in Cpr(B;c1) to get e; negative and all other signs positive

(2) fori =2,...,r reorient in Car(B;¢;) \U;o; Cum(B;cj) to get all signs opposite to the reoriented
sign of the minimal element of Cn/(B;¢;) (this minimal element is necessarily in (J;_; Cm (B ¢;))

A rank-r matroid on n elements is uniform if its bases are all r-subsets of elements, or,
equivalently, if its circuits are all r + 1-subsets of elements, or, equivalently, its cocircuits are all
n — r + l-subsets of elements. The abstract rank-r uniform matroid on n elements is denoted by
Ur,n. Uniform non oriented matroids are very simple objects, whereas uniform oriented matroids
encompass a significant part of the general theory. In the present context, they provide a simple
intuitive approach to the intricacies of the general case, specially from the linear programming
point of view.

Let M be a uniform matroid on a linearly ordered set E = {e; < e3 < ...}, and B be a
(1-0)-active basis. As easily seen, we have ¢«(B) = 1 and ¢(B) =0 if and only if e; € B and e ¢ B.
Then a (1,0)-basis B is determined by the fundamental cocircuit D = C*(B;e;) of e;: we have
B=(E\D)U{e}.

We apply Algorithm 3.0.1 to B. Since M is uniform, as sets we have C*(B; b;) = (E\B)U{b;}
and C(B;¢;) = BU{c;}. In the first step of Algorithm 1, we reorient positively D = C*(B; b1 = e1)
by reversing signs on D~ ; note that e; € D~. In step 7 > 2, we have reverse or not the sign of b; if
and only if b; has the same sign that the reoriented ey in C*(B;b;). If e; € DT then the sign of e
is not changed, hence the sign of b; is reversed if and only if es is positive in the original cocircuit
C;/(B;b;), hence by orthogonality if and only if b; is negative in Cps(B;ez). The condition is
reversed if e; € D™. Summing up, we get

Definition 3.1 Let M be a uniform oriented matroid on a linearly ordered set E = {e; < es < ...}.
We define the canonical active correspondence in the unitary case by associating with a (1,0)-active
basis B the two opposite reorientations A and E '\ A defined by

A=(C"UuD)\{er}
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where D = C*(B;ey) and C = C(B;es) if e2 € DT resp. C = —C(B;es) if ea € D™

Note that in —4M the fundamental cocircuit D is positive and the fundamental (up to
opposite) circuit C' has C~ = {e2}. We now establish that the reorientation is (1,0)-active and
that the correspondence is bijective.

Theorem 3.2 Let M be a uniform ordered oriented matroid. The canonical active correspondence
is a bijection from the set of (1,0)-active bases of M to the set of pairs of opposite (1,0)-
reorientations of M.

Remark 3.2.1

(i) We have —aM = —p\4M. Hence, the active basis-reorientation correspondence defines
a bijection from the set of (1,0)-bases of M onto the set of reorientations M’ of M with (1,0)
orientation activities.

(ii) The oriented matroid —4 M depends only on the reorientation class of M. Applied to a
reorientation M’ of M the definition of Theorem 3.2 produces a set A’ such that — 4 M' = — 4 M.

(iii) The linear ordering on E is effective only by its first two elements e; < e3. A permutation
of {es,eq4,...,e,} does not change the active correspondence on (1, 0)-bases.

As well-known, in an oriented matroid an element is either in a positive circuit, or in a
positive cocircuit, but not in both. This property is sometimes called the Farkds Lemma for
oriented matroids ([1] Corollary 3.4.6).

Lemma 3.2.2 Let M be a uniform oriented matroid on a linearly ordered set with smallest element
e1. The following properties are equivalent

(i) o*(M) = 1

(ii)) M contains a positive cocircuit, and a circuit C' with C— = {e1}

Proof. We show that (i) implies (ii). If 0*(M) > 0 then by definition M contains a positive
cocircuit. The condition 0*(M) = 1 means that all positive cocircuits contain e;. It follows that
M contains no cocircuit D with D~ = {e; }, otherwise, by elimination, we get a positive cocircuit
not containing e;. Hence by the Farkds Lemma for oriented matroids applied to —, M, there is a
circuit C' with C~ = {e1 }.

Conversely, suppose M contains a circuit C' with C~ = {e;}, and let D be a positive
cocircuit. We have CND # () since M is uniform. If e; ¢ D then all elements in C'N D are positive
in C' and in D, contradicting the orthogonality condition. O

Lemma 3.2.3 In a uniform oriented matroid, for any fized e, f € E, there is at most one positive
cocircuit D containing two elements e, f such that the circuit C = (E\ D) U {e, f} has C~ = {e}

Proof. Suppose, by contradiction, there are two different bases B, By containing e and not
containing f such that the circuits C; = By U {f} and Cy = Bx U {f} have C] = C5 = {e}
and the cocircuits D1 = (E \ By) U{e} and Dy = (E \ Bs) U {e} are positive.

Let b€ By \ By = C1 \ Cy = Dy \ D;. Let C be a circuit obtained from C; and —C5 by
eliminating f, such that b € C. We have b € C - (Cl U CQ) \ {f} = B U B>, gn (Bl \BQ) - ct
and C N (By \ By) € C~. Let D be a cocircuit obtained from —D; and D, by eliminating e,
such that b € D. We have b € D C (D; UDy)\{e} = E\ (BiNBy), DN (B; \ B2) C D" and
Dn(B2\B1)CD".

We have b€ CND C (B; \ B2) U (B2 \ B1). The signs of C and D coincide on their non
empty intersection, contradicting the orthogonality property.

The following table, which summarizes the signs in Cy, Cs, C, D1, D+, D, illustrates the proof
of Lemma 3.2.2.



e [ v IB\B2lBA\B| BB \e | ENBIUBY)\ S

Cy - + + + 0 + 0
-C |+ |— |0 0 - - 0
C +/0 10 + +/0 -/0 +/0 0
D |0 +/0 |+ | +/0 -/0 0 +/0
-D; |- |- |0 0 - 0 -
Dy | + + + + 0 0 +

O

Proof of Theorem 8.2 1f es € D~ then set C = —C(B;e3), if e; € DT then set C = C(B;es). And
set D = C*(B;e;). Uing orthogonality, since C N D = {ej, ez}, we have e; € C~ N D™, and the
signs of e5 in C' and D are equal.

By definition, we have A = (C~ U D7)\ {e1}. It follows that (—4C)~ = {e1} and —4D
is positive. Hence by Lemma 3.2.2, we have 0*(—4M) = 1. In a uniform oriented matroid, a
circuit and a cocircuit have always a non empty intersection, then using orthogonality, — 4 M has
no positive circuit. Hence — 4 M is a (1, 0)-reorientation of M.

By Lemma 3.2.3, the mapping B — A = (C~ UD™) \ {e1} is injective on the set of (1,0)-
bases of M. Hence this mapping is a bijection, since the number of (1,0)-bases of M is equal to
the number of subsets A of E such that e; ¢ A and —4M is a (1, 0)-reorientation of M [11].0

We now give a topological interpretation of Theorem 3.2. We recall that, by the Topological
Representation Theorem (see [1] Chap. 5), the elements {ej,ea,...,e,} of a rank-r oriented
matroid M can be represented by an arrangement of tame topological (r — 2)-spheres, or
pseudospheres, imbedded in § = S !, with open halfspheres distinguished as e;“ and e; for
i = 1,2,...,n, in such a way that the set of {0,+, —}-vectors defined by the signs of the
pseudospheres on the vertices of the arrangement is identical to the set of cocircuits of M (see
Example 3.2.1 below).

We denote by ST the closed halfsphere defined by e. We say that e; is the infinity
pseudosphere or plane at infinity of ST, and we restrict the pseudospheres es,...,e, to their
intersections with ST, called pseudohyperplanes. The regions of the arrangement are the connected
components of the complement in S of the union of the pseudospheres {ej,es, ... e,}. A region is
bounded if its closure does not meet ey, or, equivalently, if none of its vertices belongs to e;. The
sign-vector of a region is the {4, —}-vector defined by the signs of the pseudospheres on any point
of this region. The negative components of the sign-vectors define a bijection between the regions
of the arrangement and the subsets A C FE such that —4 M is an acyclic reorientation of M. In
this bijection, the subsets A of E such that e; ¢ A and —4M is a (1,0)-reorientation of M, i.e.
acyclic reorientations such that every positive cocircuit contains ey, are in 1-1 correspondence with
bounded regions contained in ST. The number of bounded regions contained in S+ is by o [9][11].

A (1,0)-basis B of M has the form {b; = e; < by < ... < b}, with es < by. The
pseudohyperplanes bo, ..., b,} meet in a vertex v of the arrangement. The sign-vector of v is given
by the fundamental cocircuit D = C*(B;eq). Its £ signs constitute the sign-vector of the region
containing v in the sub-arrangement constituted by the pseudohyperplanes not containing v. Since
M is uniform, the sub-arrangement constituted by b1 = e, bs,...,b, and es has a unique circuit
{b; = e1,€9,ba,...,b,, hence is homeomorphic to a real arrangement. Thus, we may suppose that b;
i=2,...,7 is homeomorphic to the coordinate hyperplane z; ; = 0 of R"!, e, to the hyperplane
Ty 4+ 29+ ...+ 2,1 = 1, and e; to the plane at infinity. Using this homeomorphism, clearly,
ba,...,b, divide ST into 2"~ hyperoctants with apex v, and exactly one of these hyperoctants,
called the active hyperoctant, contains the unique bounded region determined by es and bs, ..., b,.

The fundamental cocircuit of b; € B with respect to B correspond geometrically to the
vertex intersection of B\ b;. Set C = £C(B;e2) such that the sign of es in C' is the same than
its sign in D. Namely, we have C = C(B;ey) if v is in e and C = —C(Bj;ey) if v € e5. For
b; € B, using orthogonality, the sign of b; in the fundamental circuit of es is the opposite of the
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sign of ey in the fundamental cocircuit of b;. Hence the sign-vector of the active hyperoctant in
the sub-arrangement constituted by the pseudohyperplanes containing v, is given by the signs in
C\ {e1,e2}. Note that e; € C~ N D*. Summing up, the sign-vector of the unique region incident
to v and contained in the active hyperoctant is given by the signs in C'\ {e1} and D.

By Theorem 3.2, the active basis-reorientation correspondence associates with B the region
R defined by the reorientation A = (C~ U D7) \ {e1}. Hence, we have proved

Proposition 3.3 The region R of ST associated with a (1,0)-basis B of a uniform ordered oriented
matroid by the active basis-reorientation correspondence is the unique region contained in the active
hyperoctant defined by B and incident to its apex. O

If the + sides are defined by a fundamental region, positive in all pseudohyperplanes, then
A= (C UD7)\{e1} is the set of pseudohyperplanes which have to be crossed to reach the region
R from the fundamental region. More precisely, D~ permits to reach a region R’ incident to v,
and C~ \ {e1} \ D~ permits to go from R' to R. It follows from properties of oriented matroids
[1], that these crossings can be rearranged in a path from the fundamental region to R’, then to R
(see below Example 3.3.1).

Figure 1

Example 3.3.1 The pseudoline arrangement of Figure 1 is Ringel arrangement, a simple arrange-
ment of 9 pseudolines derived from a non Pappus configuration. We recall that Ringel arrangement
is a non stretchable arrangement (i.e. not combinatorially equivalent to an arrangement of lines)
with the smallest possible number of pseudolines. The corresponding oriented matroid is uniform
of rank 3 on 9 elements.

Signs are defined by a fundamental region of the arrangement (colored in lightgray, bottom
of Figure 1). We recall that the sign of an element = in a cocircuit D = E \ {e, f} is + if
the fundamental region and the intersection of the pseudolines e and f are not separated by the
pseudoline z, and — if they are separated.

Let B = 169. The region R image of B by the active correspondence is colored in dark gray.

We read on Figure 1 that D = C*(169;1) = 1234578.

Signs of the circuit C(169;2) are defined by orthogonality, from the cocircuits meeting it
in 1 and another element. We have already 1234578 with intersection 12. We read on Figure 1
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the cocircuits 1345678 for 16 and 1345789 for 19. Therefore C'(169;2) = 1269. It follows that
C = —C(169;2) = 1269, since 2 € D~
By Theorem 3.2 we have A = (C~UD~)\ 1 = 234678

As easily seen on Figure 1, the path 238476 goes from the fundamental region to R’ = 149,
then to R = 169 (there are other possible paths). In accordance with Proposition 3.3, the region
R is the unique region contained in the active quadrant determined by the pseudolines 6 and 9,
colored in mid gray in Figure 1, and incident to their intersection.

Remark 3.3.2 Another way to define geometrically the region R associated with the given basis B
is as follows. In Theorem 3.2, the reorientation A defining R is chosen so that in — 4 M the cocircuit
C*(B;ey) is positive, and e; is the only negative element in C = £C(B;e2). By orthogonality, es
and b; have opposite signs in C*(B;b;) for i = 2,3,...,r. Geometrically, this means, first, that
the vertex v defined by C*(B;e;) is incident to R. Then, the pseudo-simplex P determined by
the pseudohyperplanes in B and contained in the positive side of es is identical to the hyperoctant
opposite to the active hyperoctant relatively to v. The region R being the region incident to v and
opposite to P is the region incident to v contained in the active hyperoctant.

For an ordered uniform oriented matroid M on E = {e; < ey < ...}, the active basis-
reorientation correspondence can be interpreted as a solution of an oriented matroid program
(M,e1,es) (see [1] chap.10 for oriented matroid programming) on each bounded region of the
topological representation of M.

Proposition 3.4 With above notation, the vertex v is the unique solution of the following oriented
matroid program: mazimize the objective function defined by es if R is on the positive side of es,
or minimize if R is on the negative side of es, on the bounded region R with respect to the infinity
€.

The definition in Theorem 3.2 is in disguise the ’simplex criterion’ of [1] Corollary 10.2.8.
It follows that Proposition 3.4 is a reformulation of results of oriented matroid programming. For
completeness, we give a direct proof in the present context.

The ’main theorem of oriented matroid programming’ [1] Th. 10.1.13 states that the graph
of the program on a bounded region has at least one sink, unique in the non degenerate case. We
recall that given a plane at infinity e; and an objective function ey the graph of the program on
a bounded region R is the partially directed graph defined by the vertices and edges of R such
that an edge joining two adjacent vertices is directed in the increasing direction of the objective
function ([1] Def. 10.1.16).

We introduce a closely related graph, more convenient for our purpose.

Definition 3.5 The active cocircuit graph G of an ordered oriented matroid M is a directed graph
whose vertex-set is the set of (signed) cocircuits of M. Two vertices Dy Dy are adjacent in G if
?l;d only if E\ Dy and E \ D, are comodular in M 1) and D; and D5 are conformal signed sets
2

The simplest definition of edge directions in G is in terms of the topological representation
of M. Let Dy D5 be two cocircuits adjacent in G. Since E \ Dy and E \ D» are comodular in M,
then L = E'\ (D; U D,) is a coline of M, i.e. a corank 2 flat. By properties of the pseudosphere
arrangement representing M, the intersection of the pseudospheres in L is a pseudocircle A ~ S*,

(1) Two subsets of elements X; X5 are comodular (short for constitute a modular pair) in a
matroid M if and only if 7a7(X1) + 7 (X2) = 7 (X1 N X2) 474 (X1 UXs). The complement E\ D
of a cocircuit D is an hyperplane, i.e. a flat of rank » — 1, of M, and conversely. Two different
hyperplanes H; and Hs are comodular in M if and only if the rank of Hy N Hy is r — 2, i.e. if and
only if H; N Hs is a coline.

(2) Two signed sets are conformal if and only if their signs coincide on their intersection.
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such that the intersections of A with the pseudospheres in E\ L = D;UD, constitute an arrangement
of O-spheres, i.e. pairs of points, representing the rank 2 oriented matroid M /L. Let {e < €'} be
the lexicographically minimal basis of M /L. The two O-spheres representing e and e’ in A divide A
into 4 topological segments, each with one extremity belonging to the O-sphere e and the other to
the 0-sphere e’. We direct these 4 segments from e’ towards e. The conformal cocircuits D; and
D, are combinatorially consecutive points of A, i.e. each belongs to a 0-sphere, and the interior of
one of the two topological segments they define, say §, meets no other 0-sphere of the arrangement.
Therefore, § is contained in exactly one of the four segments defined by e and €', say 0. We direct
the edge D1 — D5 in the direction of ¢ consistent with the direction of o.

Figure 2

Example 3.3.1 (continued).

Definition 3.5 is illustrated in rank 3 by Figure 2. In this rank-3 example, since 3 —2 =1,
the pseudolines (and circle e ) are both the pseudospheres representing the elements of the matroid
and the pseudocircles of Definition 3.5. The edges of G are realized as topological segments of the
pseudolines or pseudocircle.

For edges Dy — Dy of G with D; Dy not both in e; or both in es, we have e = e; and €' = e3
in Definition 3.5. For edges D1 — D- supported by e;, we have e = ey and €' = e3. For edges
D, — D supported by es, we have e = e; and €’ = e3.

From Definition 3.5, we easily get a combinatorial definition, to be used in the proof of

Proposition 3.4, of directions of edges of bounded regions in the particular case of a uniform
oriented matroid. In this case, we have e = e; and e’ = e,.

Definition 3.5.2 Let Dy — Dy be an edge of the active cocircuit graph such that e; € Dy N Ds.

10



Since M is uniform, we have |D; \ D2| = |D3 \ D1| =1, say D1 \ Dy = {x1} and D, \ D; = {z2}.
Then, we direct the edge from D1 to Ds if

-ey & D1 and es € Do,
- or, e3 € D1 N Dy, and we have D(x1) = D1(x1) ®), or, equivalently, D(xz9) = —Da(x2), where
D is the unique cocircuit obtained from Dy Do by eliminating ey, such that D(es) = Di(es) =
_D2 (62).
In terms of Definition 3.5, the cocircuit D is the extremity of the segment ¢ which belongs
to the O-sphere e.

The active cocircuit graph coincide with the graph of a program on bounded regions located
on the positive side of es, and has opposite edge directions on bounded regions located on the
negative side of e5. In the active cocircuit graph, no distinction is made between a minimum (a
source in the program graph) and a maximum (a sink in the program graph). This slight change
has an important consequence in our context. In the general case, several simultaneous linear
programs have to be handled, with a mixture of minimizing and maximizing [8] (see also [6]).
For instance, in rank 3 (see Section 4), we have to consider two matroid linear programs in the
degenerate cases (with respect to es and e,,). The main point is that vertices produced by the
active basis-reorientation correspondence are always associated with sinks of the active cocircuit
graph, whereas this would not be the case for program graphs, or their natural extensions to the
whole set of cocircuits. We point out that the active cocircuit graph depends on the ordering, but
is invariant under reorientation.

Proof of Proposition 3.4 Let R be a bounded region. Since the active cocircuit graph G is invariant
under reorientation, without loss of generality we may suppose that R is the fundamental region
of the arrangement. Let vy be a vertex of R, unique by Lemma 3.2.2, such that the corresponding
cocircuit Dy is positive, and the circuit Co = (E \ Do) U {e1,e2} has C; = {e2}. With theorem
3.2, we know that there exist such a vertex : it corresponds to the cocircuit D for the (1,0)-basis
asociated with R.

Suppose there is an edge Dy — D, in the graph G such that D, is a vertex of R, i.e. is
a positive cocircuit. Set Dg \ D2 = {zo} and Dy \ Dy = {z2}. Let D be the unique cocircuit
contained in E \ Do U D5 such that e; € D and es € D*. By Definition 3.5.2, we have zo € D™.
It follows that Cp and D have opposite signs on their intersection Co N.D = {es, 22}, contradicting
the orthogonality property.

I I P ‘Do\{elaemﬂﬁo} ‘E\(DOUD2)

Dy + + + 0 + 0
Dy |+ |+ |0 |+ |+ 0
D 0 + + - +/0 0
c |+ 1= To I+ o |+

Let D1 be a positive cocircuit different from Dy. We show that in G the vertex D; has at
least one outgoing edge. We have e; € D; since R is bounded. If e € Dy, then for any positive
cocircuit Dy with es € Dy comodular with Dy, we have D; — D, by the first case of Definition
3.5.2. Suppose es € D;. Let Cy be the cicrcuit supported by (E \ D) U {e1,es} such that
ey € C’fr. We have Cy U Dy = {e1,e2}, hence e; € C; . By Lemma 3.3.2, there is z € C4 \ {e1,ex}
such that © € C[. Let D be the cocircuit supported by Dy \ {e1} U {z} such that z € D*. Since
x € C1ND C {es,z}, by orthogonality we have C;1 N D = {es, x}, hence es € DT. The composition
Dy o D is a positive covector. Hence, by conformal composition (), there is a positive cocircuit

() Let X be a signed set, and e € X. Then X (e) denotes the sign of e in X. We have X (e) = 1
if and only if e € X, X(e) = —1 if and only ife € X .

() The composition X oY of two signed sets X, Y is defined by (X oY)t = Xtu(Y+\ X) and
(XoY) =X U \X). In an oriented matroid, any composition of circuits resp. cocircuits,
is a conformal composition of circuits resp. cocircuits [1] Prop. 3.7.2.
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D, such that z € Dy. We have e; € Dj since R is bounded. Since {e;,z} C C] N D;’} and
C1N Dy} C {e1,es, 7}, by orthogonality, we have e; € Dy = D5 . Therefore, by the second case of
Definition 3.5.2, we D — D».

e e |2 [Di\fer,es | B\ DI\ {2}
a |- |+ |- o | +/0
Dy + + 0 + 0
D 0 |+ |+ [=£/0 0
D, \+ \+ \+ \+/0 ‘0

O

We point out that Theorem 3.3 and Proposition 3.4 provide as corollary an alternate proof
of the main theorem of oriented matroid programming in the non-degenerate case. Conversely
Proposition 3.4 and the main theorem of oriented matroid programming show that the active
correspondence is surjective.

We mention that the duality between circuits and cocircuits in Theorem 3.2 is related to
duality in linear and oriented matroid programming (see [1] Prop. 10.1.4).

We now extend the active correspondence from the (1,0) case to the general case. The
main tool is a partition of set of elements of the oriented matroid, called active partition, either
with respect to a basis in an ordered matroid or with respect to the orientation in an ordered
oriented matroid. Active partitions permit to reduce general (i, j) activities to (1,0) (or, dually,
(0,1)) activities, by means of associated minors, and to extend consistently the canonical active
correspondence from (1,0)-active bases to all bases [8] (see also [6]). In the uniform case, active
partitions and the corresponding construction can be described directly very easily.

Proposition 3.6 Let E = {e1 < ez < ... < ey} be a linearly ordered set, and M ~ U, , be a
rank-r uniform matroid on E.

(i) A basis B is either internal - if ey € B, or external - if e; ¢ B.

(ii) If ey € B, and r < n, let i be the smallest integer such that ;11 ¢ B, then «(B) =i, and
the internally active elements of B are ey, es,...,¢e;, there is no externally active elements. The
basis B\ {e1,...ei—1} of M/{e1,...e;_1} is (1,0)-active.

m|

The proof is easy and left to the reader. In the case of (ii), we call active partition with
respect to B the partition E = {e1} + {e2} + ...+ {ei—1} + (E \ {e1,ea,...,€i—1}).

It follows that for 0 < r < n, we have b, o(Uy,) = Zzzﬂ (”;:1) bo,j(Urm) =
o (n_7_%), and b; j(Uy,n) = 0 for i, j > 0.
Hence, for 0 < r < n,

= (n—i-1\,; =" (n-j-1\ .
tUTn;: - . ¢ . J
Oz =3 ("7 ) 2 (207,

i=1 j=1
Special cases: t(Up n;z,y) = 2" and t(Ug n;x,y) = y™.
Proposition 3.7 Let M be an ordered uniform oriented matroid on a linearly ordered set
E={e1<ex<...<ep}.

(i) M is either acyclic or totally cyclic

(i) Suppose M acyclic with o*(M) = i. Then the O*-active elements of M are e1,ea,...,¢€;,
and M/{e1,ea,...,e;} is (1,0)-active.
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The orientation active partition of M is E ={e1} +{ea} +...+{ei_1} + {ei,€it1,...,n}.

Proof. (i) This elementary property is well-known. We give a proof for completeness. Suppose
M contains a positive cocircuit D, and let V' be any positive covector containing D. Suppose
E\V # 0, and let e € E\ V. The matroid M being uniform, there is a cocircuit D’ such that
D'\ V = {e} with e € D'". Then V' =V o D’ is a positive vector with [V'| = |V| + 1. It follows
inductively that E is a positive covector of M, i.e. M is acyclic.

(ii) It suffices to show that if e; is O*-active in M then e;_; is also O*-active. Suppose
there is a positive cocircuit D with smallest element e;. The matroid M being uniform,
D" = D\ {e;} U{ej_1} is also a cocircuit. Replacing if necessary D' by —D’, we may suppose
e € D'*. Then Do D' is a positive vector of M, hence by conformal composition a union of positive
cocircuits of M. It follows that e;_1 € D o D' is in a positive cocircuit contained in D U D', hence
necessarily the smallest element of this cocircuit, and therefore is O*-active. O

In view of Theorem 3.2, Proposition 3.6, and Proposition 3.7, the following theorem follows.

Theorem 3.8 Let M be a uniform oriented matorid on linearly ordered set E = {e; < ex < ... <
en}, and B be a basis of M.

If (B) =i > 1 (hence ¢(B) = 0), then the canonical active correspondence associates with
B the 2t (i,0)-active reorientations A C E of the form A = XU A" and A = X U (E \ 4"),
such that X C {e1,ea,...,e;_1} and A’ is associated with the (1,0)-basis B \ {e1,ea,...,€;_1} in
M/{e1,ea,...,e,_1} by the canonical active correspondence.

If e(B) =i >1 (hence «(B) = 0), then the canonical active correspondence associates with
B the 2! (0,i)-active reorientations A C E associated with the (i,0)-active basis E \ B in M*.

Then, each of the 2™ reorientations of M is associated with exactly one basis of M.

Remarks 3.8.1

(i) We point out that the canonical active correspondence not only preserves activities,
which was our initial requirement, but also preserves active elements, and in fact preserves active
partitions.

(ii) In an oriented matroid M with o*(M) = i and o(M) = j, we define an activity class
of reorientations as the set of 2t/ reorientations obtained by reversing signs on arbitrary unions
of parts of the orientation active partition of M. The activity classes of reorientations obviously
partition the set of 2" reorientations of M. In the previous definition, as in the general case, the
reorientations associated with a basis constitute an activity class of reorientations. The canonical
active correspondence can be seen as an activity preserving bijection between bases and activity
classes of reorientations.

(iii)) As in Theorem 3.2, the ordering is effective only for the first elements. Changing the
ordering of elements e; with ¢ > Max(r,n — r) does not modify the correspondence.

(iv) Proposition 3.4 and Proposition 3.7 provide the reverse correspondence.

Example 3.3.1 (continued) In Figure 2, the basis associated with a region is indicated within the
region. A dashed angle indicates the vertex, solution of the linear program on a bounded region.
In a bounded region associated with a basis {ej, ba, b3}, the two pseudolines supporting the angle
of the region are b, and b3.

We conclude this section by two properties of the active basis-reorientation correspondence.
The first one provides an inductive construction of this correspondence. The second one exhibits
natural properties determining uniquely the active basis-reorientation correspondence for realizable
uniform oriented matroids.
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We have shown that constructing the active basis-reorientation correspondence on bounded
regions i.e. (1,0) acyclic oriented matroid M, is equivalent to constructing the sink of the active
cocircuit graph on each bounded region, or, equivalently, the fundamental cocircuit of e; with
respect to the basis associated with M. For short, we denote this fundamental cocircuit by Opt(M)

Proposition 3.9 Let M be a (1,0) orientation active ordered uniform oriented matroid on
E ={e; <ey <...}. Let R be a bounded region representing M in a topological representation by
a pseudosphere arrangement, let e € E \ {e1,e2}, and —.R denote the region obtained by crossing
the pseudosphere e from R if —. M is acyclic.

The application Opt is uniquely determined by the following induction:
(i) if |E| = 2, then R is reduced to the optimal vertez, then Opt(M) = {e1,e2}.
(i) if —eM is not acyclic, then Opt(M) := Opt(M \ e) U {e}.
(i11) if —¢R is an unbounded region, then Opt(M) := Opt(M/e).
(iv) if —cR is a bounded region, there are two cases:
- the optimal vertez of the region containing R in the arrangement obtained by deleting e is
incident to R, then Opt(M) := Opt(M \ e) U {e}
- the optimal vertex of R is on the pseudosphere e, then Opt(M) := Opt(M/e).

Proof

The proof is by induction on |E)|.

(i) The proposition is obvious when |E| = 2. Suppose |E| > 3.

Since the fundamental cocircuits of B\ {e} in M/e if e € B, resp. circuits of M \ eif e ¢ B,
are the fundamental cocircuits, resp. circuits, of B in M with e removed, it follows immediately
from the definition that if e € Opt(M) then Opt(M) = Opt(M/e), and if e ¢ Opt(M) then
Opt(M) = Opt(M \ e) U {e}.

(i) If —¢ M is not acyclic then e belongs to every positive cocircuit of M.

By the definition of the active cocircuit graph, if D and D’ are comodular positive cocircuits
of M and e is both in D and D’ then the edge D — D’ is directed from D to D’ if and only if it is
directed from D \ {e} to D'\ {e} in M \ e. So the active cocircuit graph M restricted to positve
cocircuits of M is the same as in M \ e.

Then by Proposition 3.4 and Definition 3.5 Opt(M) = Opt(M \ e) U {e}.

(iv) Since there is a unique optimal vertex Opt(M) for any (1,0)-uniform oriented ma-
troid, it follows from our preliminary observation and the induction hypothesis, that we have
{Opt(M), Opt(—c M)} = {Opt(M/e), Opt(M \ e) U {e}}.

Hence, if Opt(M \ e) U {e} is a positive cocircuit of M and we have Opt(M), otherwise
Opt(—.M) is a positive cocircuit and we have Opt(M) = Opt(M/e).

(iii) A bounded region in M \ e either is a bounded region in M case (ii), or contains a
bounded region in M and its opposite region with respect to e case (iv).

Hence by the induction hypothesis the by (M \ e) cocircuits of M containing e, es and
e have been associated with regions in cases (ii) and (iv). So the remaining cocircuits, which
are optimal for a region R such that —.R is unbounded, must contain e, that is must satisfy
Opt(M) = Opt(M]e). O

The algorithm of Proposition 3.9 is a set-theoretical extension of the numerical dele-
tion/contraction relation ¢(M;1,0) = t(M \ e;1,0) +¢(M/e; 1,0). Its proof is based on well-known
geometrical observations from linear programming: the supression of a variable e corresponds to
the contraction of an element e, and the suppression of a constraint e corresponds to the deletion
of an element e. Here this linear programming technique is applied simultaneously to all bounded
regions.

This deletion/contraction procedure can be generalized to any oriented matroid [8] (see

14



also [6]). It provides an alternate construction of the canonical active basis-reorientation corre-
spondence, based on comparisons of activities and adjacency properties in place of optimization
properties and active partitions.

We say that a mapping from the vertices, or, equivalently, signed cocircuits, of an oriented
matroid to the regions of its topological pseudosphere representation is incidence preserving if
a vertex is always incident to its image region. Let V be the set of vertices of an ordered
oriented matroid M not contained in the pseudospheres e; or e;. If M is uniform, the active
basis-reorientation correspondence induces an incidence preserving bijection from the set V' onto
the set of bounded regions: a cocircuit D such that e;,es € D with e; € DT is mapped to the
bounded region in e] associated with the (1,0)-basis B = D U {e; }.

Proposition 3.10 Let M be an ordered uniform oriented matroid on E = {e; < ex < ...}. If
the active cocircuit graph contains no directed cycle in the set V' of cocircuits containing both eq
and ez, then there exists a unique incidence preserving bijection from V onto the set of bounded
regions. Otherwise, there are at least two such bijections.

Proof Let f be an incidence preserving bijection from V onto the set of bounded regions.

Suppose the active cocircuit graph is acyclic on V. Then, it induces an ordering on V. The
bijection f induces a mapping g from V into itself: we map v € V' to the unique sink g(v) of the
bounded region f(v). The matroid M being uniform, a vertex is a sink in at most one bounded
region. Hence ¢ is a bijection from V onto itself. Since f preserves incidences, by properties of
oriented matroid programming [1] Chap. 10, the bijection g is augmenting: we have v < g(v) for
all v € V. Plainly, there is unique augmenting bijection in a finite ordered set, namely the identity.
It follows that g is the identity, hence f is unique.

Suppose now that there is a directed cycle vg — v1 — ... = vy, = vg of the active cocircuit
graph with vg,v1,...,u; € V. Let R; be the unique bounded region with (unique) sink v; for
i=1,2,...,f. Then, since M is uniform, the vertex v; 1 is also incident to R; for i = 1,2,..., /.
Hence the mapping f’ defined by f for v € V'\ {vo,v1,...,v} and f'(v;i—1) = R; fori =1,2,....¢
is a second incidence preserving bijection from V' onto the set of bounded regions.

The active cocircuit graph is in particular acyclic when the uniform oriented matroid is
realizable, i.e. arises from a configuration of points in real space. In general uniform oriented
matroids the active cocircuit graph may contain directed cycles. In fact, one important difficulty
in oriented matroid programming, as compared to real linear programming, is that the graph of
a program may contain directed cycles. The smallest example is the oriented matroid EF M (8),
uniform of rank 4 on 8 elements ([1] Ex. 10.4.1). An oriented matroid program (M, e;,e2) on an
acyclic oriented matroid M with infinity plane e; and objective function es is said Euclidean if the
graph of the program contains no directed cycle ([1] Th. 10.5.5), and non Euclidean otherwise.

4. Acyclic oriented matroids of rank 3

By the Topological Representation Theorem for oriented matroids, the acyclic reorientations
of a rank-3 oriented matroid are represented by the regions of an arrangement of pseudolines in
the plane. Our purpose in this section is to describe geometrically the canonical active basis-
reorientation correspondence for acyclic ordered oriented matroids of rank 3 in terms of pseudoline
arrangements. For (1,0)-bases we derive from the combinatorial constructions given by Proposition
3.0 and its corollaries a geometric construction of the corresponding region. Then we give a simple
direct proof of the bijectivity property. For general internal bases, the correspondence is obtained
from certain minors. Up to parallel elements, these matroids are uniform of rank < 2, hence it
suffices to apply results of Section 3 in very simple cases.

The constructions of this section constitute a first approach of the degenerate cases, and of
the flag programming introduced in the general case [8] (see also [6]). In terms of optimization,
in the rank-3 acyclic case, the basis associated with a bounded region is optimal for an extended
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linear program with respect to the total order. A second objective function is introduced to define
the optimal vertex when the first one insufficient in certain degenerate cases. The optimal basis
{e1 < ep < e4} a basis defines two nested faces e, N e; and e, which have to be optimized.
Intuitively, the canonical active correspondence can be thought of as a phenomenon of attraction
with respect to the total order related to activities (see Figure 7). We point out, however, that
certain intricacies of the general case do not occur in rank 3. In an arrangement of pseudolines
a region is a polygon, hence, as in the uniform case, all its vertices are simple, i.e. incident to a
number of facets equal to the dimension.

Figure 3

Example 4.1.1. Let D;3 be the configuration of 13 points in the projective plane shown in Figure
3. The configuration D;3 is obtained by adding 3 points BC'D to a Desargue configuration on
123456789 A. Its automorphism group is of order 24, acting symmetrically on 1457, with 3 orbits,
namely 1457 236894 BCD.

The pseudoline arrangement D;3 contains all cases of Definition 4.1 below.

The Tutte polynomial of Dq3 is

t(D13;m,y) = y'0 + 3y° + 6y8 + 10y” + 1595 + 2195 + 28y* + 23 + 9zy? + 36y> + 102° +
+222y + 36y° + 24z + 24y

The matroid D13 has t(D13;1,1) = 246 bases, and we have by g = 24 by g = 10 b3 o = 1. The
pseudoline arrangement of Figure 3 has 24 + 2.10 + 4.1 = 48 regions, with 24 bounded regions.

Definition 4.1. Let M be an ordered oriented matroid on a set E = {e; < es < ...}. Without
loss of generality, we may suppose that M has no 1- or 2-circuits (since a matroid with a loop has
no (1,0)-basis, and two parallel elements appear together and have the same sign in all cocircuits
of an acyclic matroid). Let B = {e1 < e, < ¢;} be a (1,0)-base of M.

We have e, > ez, and e, is the smallest pseudoline of A/ containing the intersection v of the
pseudolines e, and e, (otherwise this smallest element e would be smallest in the circuit {e, ep, €4},
hence externally active with respect to B). In particular, e does not contain v.

As in Section 3 we obtain the definition of the desired correspondence by applying Algorithm
3.0.1. There are four cases. We will give details for the first one, and leave the other three to the
reader. In each case we define an active quadrant ), intersection of 2 half-planes defined by e, e,.
Then the region R associated with B by the active basis-reorientation correspondence is the region
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of the arrangement contained in (), incident to the vertex v = e, N ey, and having one of its two
edges incident to v supported by e,.
For short, we say that ey, e, are parallel if {e,,er,e;} is a circuit of M. We denote by e,,

the smallest element e,,, > es which is not parallel to e;. Then, {e;,es, e,,} is the lexicographically
smallest basis.

(1) B=157 (22) 138

Figure 4

(1) both e, and e, are not parallel to ex (Fig. 4, bases 147 148 149 14A 14C 157 158 159 168
16B of Fig. 6)

By the hypothesis e, e, not parallel to e;, we have ex € Dy = C*(B;e,) and ex € D3 =
C*(Bj;eq). At the first step of the algorithm, we reorient D; = C*(B;e;) positively. The region R
is one of the regions incident to the vertex v = v; = e, Ne, corresponding to D;. Second step: we
reorient on D, \ Dy so that after reorientation Do = C*(B;ep) is positive on D, \ Dy and has e
negative. The vertex vs € e; Ne, corresponding to Ds is on the side of es opposite to the side of R,
therefore the edge w of the arrangement corresponding to the positive covector D; o Do, which is
the edge of e, incident to v = v; directed toward vs, is the edge of e, incident to v directed toward
ez Ney. The region R is one of the 2 regions incident to the edge w. Third step : we reorient on
D3 \ (D1 U D») so that after reorientation D3 = C*(B;e,) is positive on D3 \ (D; U D») and has
ez negative. The vertex vz € e; N e, corresponding to D3 is on the side of e, opposite to the side
of R. The region R corresponding to the positive covector Dy o Dy o D3, contained in the side of
eq containing vs, is now completely determined.

The active quadrant () is the intersection of the closed halfplane defined by e, and containing
the intersection of e and e,, and the closed halfplane defined by e, and containing the intersection
of e; and e,. The intersection of @ with es is a bounded (pseudo)segment.

Example - Figure 4 (1)

Let the fundamental region Ry be the triangle with sides 1 2 4, and consider B = 157. We
apply Algorithm 3.0.1. We have D; = 123468ABC, D, = 2345689CD and D; = 234789ABD.
First reorientation: D] = 2368B. We get Dy = 2345689C'D. Second reorientation: Dy \ D; = 59.
We get D3 = 234789ABD. Third reorientation: D5 \ (D; U D) is empty. The reorientation
associated with B is 235689B. It can easily be checked on Figure 4 (1) that the path 236B859 goes
from the fundamental region to the shaded region associated with B = 157 by the above definition.

There is a degeneracy if at least one of e, or e, is parallel to e, - then, exactly one, since
{e2, ep, €4} is a basis. In this case, the definition of @) uses the pseudoline e,,. There may be two
subcases, depending on whether v is contained in e,, or not.

(2a) e, parallel to es, v not contained in ey, (Fig. 4, bases 136 137 138 139 13A 13C of Fig. 6)
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Then e, is not parallel to es, and we have e; # e, since v & e,,.

The active quadrant () is the intersection of the closed halfplane defined by e, containing
the intersection of es and e;, and the closed halfplane defined by e, containing the intersection of
ep and ep,.

(2b) 16D (3) 138

Figure 5

e, parallel to ea, v not contained in e,, (Fig. 5, bases of Fig.
2b) e, llel ined 1 Fig. 5, b 15D 16D of Fig. 6
Then e, is not parallel to ey, and we have e, # e,, since v € e,,.

The active quadrant () is the intersection of the closed halfplane defined by e, containing
the intersection of e» and e,, and the closed halfplane defined by e, containing the intersection of
e, and ep,.

(3) ep or eq parallel to es, v contained in e, (Fig. 5, bases 135 13B of Fig. 6)

If v € e, and e, parallel to e, then e, is non parallel to ey, hence m = p since p is the
smallest pseudoline containing v, but then e, would be internally active. Hence e, is parallel to es
and e, is not parallel to es, implying e, > e, otherwise e, would be internally active.

The active quadrant () is the intersection of the closed halfplane defined by e, containing
the intersection of e; and e,, and the closed halfplane defined by e, containing the intersection of
es and e,,.

We point out that in Definition 4.1 two oriented matroid programs are used (see Section 3).
In both the line at infinity is e;. The first one has objective function e;. When the set of solutions
is 1-dimensional - the so-called degenerate case - a second program with objective function e, is
used to obtain a unique vertex.

Theorem 4.2. The active basis-reorientation correspondence maps bijectively the set of (1,0)-bases
onto the set of bounded regions of the pseudoline arrangement.

Proof.. We prove that the mapping is injective. Suppose there are two bases B = {e; < e, < €,4}
and B' = {e1 < ey < ey} mapped to a same region R by the active basis-reorientation
correspondence given by Definition 4.1.

In the case of a pseudoline arrangement, as already observed in Section 3, the cocircuit
graph can be identified with the graph defined by the pseudolines. To obtain the active cocircuit
graph, we direct the edges by means of Definition 3.6. Figure 6 shows the graph for D,3 with all
edge directions. To prove Theorem 4.2, it suffices to direct the finite edges, i.e. with no vertex on
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ep: from ey towards e; for edges supported by pseudolines not parallel to e, from e, towards e;
for edges supported by pseudolines parallel to es.

In a bounded region R associated with a (1, 0)-basis by the correspondence of Definition 4.1,
the two edges incident to v are directed towards v. It follows easily from topological properties of
pseudolines (the Jordan curve theorem) that all vertices of R different from v have outgoing edges.

Hence, a region R, image of at least one basis determines the vertex v. It follows that e, resp.
e, is the smallest pseudoline containing v (otherwise this smallest pseudoline would be externally

active with respect to B resp. B'). In particular, e, = €.

Figure 6

Suppose e, # e, . Then the 2 edges of R incident to v are supported by e, and e, . If both
e, and ey are not parallel to es then B and B’ are both in one of the cases (1) (2a) or (3) of
Definition 4.1. In case (1) cannot be of the same side than es Ne, for both e, and e, . In case (2a)
cannot be of the same side than e,, N e, for both e, and e, . In case (3) cannot be of the same
side than e,, N e for both e, and e, . If one of e, e; is parallel to es, say e;, then B is in case
(2b) and B’ in case (1), and we have also an impossibility.

As in the proof of Theorem 3.3, injectivity implies bijectivity since o1 o = 2by o [11]. O

Figure 6 illustrates the proof of Theorem 4.2. It shows edge directions in the active cocircuit
graph. The shade of gray indicates the relevant case of Definition 4.1. The basis given by the active
correspondence is written within each bounded region.

We complete Theorem 4.2 by proving directly the surjectivity of the correspondence. We
need this proof to reverse locally the correspondence, i.e. to be able to write the basis associated
with a bounded region of a pseudoline arrangement without computing the whole correspondence.

Lemma 4.2.1. FEwvery restriction of the active cocircuit graph to a region of the pseudoline
arrangement has a unique sink.

Proof. As already observed in Section 3, the bijectivity of the active correspondence on bounded
regions implies the 'main theorem of oriented matroid programming’, i.e. the existence of a sink
in all bounded regions in the non degenerate case or of a ’sink edge’ parallel to the pseudoline e
in the degenerate case.

Conversely, Lemma 4.2.1 can be obtained from oriented matroid programming. But a direct
proof is an easy exercise on pseudoline arrangements. O
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Proof of surjectivity. Let R be a bounded region of the pseudoline arrangement contained in ei".

We have do define a (1,0)-basis B = {e1 < e, < ez} such that the R is the image of B by the
active basis-reorientation correspondence of Definition 4.1.

Let v be the sink of the restriction to R of the active cocircuit graph given by Lemma 4.2.1,

e < ¢ be the two edges of R incident to v. Necessarily the two pseudolines e, and e, contain v,
the pseudoline e, is smallest among the pseudolines containing v, and we have e, = e or e; = ¢€'.

If e = e,, then necessarily e’ = e,. Suppose e, < e. We distinguish several cases.
(a) ep is not parallel to es
(al) If both e and ¢’ are not parallel to ez, let @ resp. Q' be the active quadrant defined by
the pseudolines e, and e resp. €' as in case (1) one Definition 4.1. Exactly one of @ or Q' contains
R: weset e, =eif RC Qresp. eg=¢€"if RC Q'.
(a2) If e resp. €' is parallel to ey, setting e, = e resp. e, = €', we have case (2b) of Definition
4.1.
(b) ep is parallel to ey
Then e and e’ are not parallel to es. Let e, be the smallest pseudoline not parallel to es.

(b1) if v is not in ey, then e, is defined as in (al), with active quadrants defined by case
(2a) of Definition 4.1.

(b2) if v is on ey, then e, is defined as in (al), with active quadrants defined by case (3) of
Definition 4.1. ]

We complete the description of the canonical active basis-reorientation correspondence by
considering internal bases of activities 2 and 3. As in Section 3 for the general uniform case, the
construction is done by means of active partitions defined directly in each case. Up to parallel
elements, the relevant minors, of rank < 2, are uniform, and results of Section 3 apply in very
simple cases. We omit proofs. In each case, we indicate the relevant bases of D13 in Figure 7. As
in Definition 4.1, we denote by e,, the smallest pseudoline such that {ej,es, e, } is not a circuit.

Definition 4.5
(1) B={e1 < ea < eq} (activity 2)
Let L be the set of pseudolines containing the intersection {v,v'} of the pseudolines e; and
eq of B.
(1a) e, is the smallest element of L\ {e1} (bases 125 127 128 129 of Fig. 7)
We have to consider M’ obtained from M/e; by deleting all non smallest elements in each

parallel class (the active partition is E = {e;} + {ea,es,...}). This oriented matroid is uniform
with rank 2.

In this case e, does not contain v (otherwise m = ¢q and e, is internally active). One region
R is incident to v, bounded by a pseudosegment not meeting e; N e, with one extremity in e; Ne,
and the other in e; N ey,,. The other region is —p\ g, R.

(1b) the smallest element of L\ {e1} is e,, and we have e, # e, (bases 126 12A 12B 12C of
Fig. 7)

We have to consider M’ = M(L). The active partition is £ = L + E \ L. This oriented
matroid is uniform with rank 2. One region R is incident to v, bounded by e,, and is contained in
the side of e; containing e,. The other region is —p\ 1 R.

(2) B = {e1, em,eq} (activity 2) (bases 134 14D of Fig. 7)

As in case (1b), the active partition is E = L + (E \ L. One region R is incident to v,

bounded by e,, and contained in the side of e, containing e». The other region is —pg\ 1 R.
(3) B ={e1,e2,em} (activity 3) (base 124 of Fig. 7)

Let L be the set of pseudolines containing the intersection of the pseudolines e; and e;. The
active partition is £ = {e;} 4+ (L \ {e1}) + (E\ L). The 4 regions associated with B in e] are those
incident to e; N es and bounded by e;.
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Figure 7 shows the canonical active basis-reorientation correspondence for internal bases
and acyclic regions. The gray sector inside a bounded region indicates the vertex v of Definition
4.1 and the pseudoline e, (which supports it, whereas the other edge of the region incident to v
does not).

Theorem 4.6 The canonical active basis-reorientation correspondence between the internal bases of
an ordered oriented matroid of rank 8 and its acyclic reorientations has the required multiplicities.

We omit the proof. We end this section by the counterpart of Proposition 3.9 for rank-3
matroids. Either by an easy direct proof, or by using the fact that a rank-3 oriented matroid
is Euclidean [1] Chap. 10., it can be shown that the active cocircuit graph of a rank-3 oriented
matroid has no directed cycles.

Proposition 4.7 Let M be a rank-3 ordered oriented matroid on E = {e; < ex < ...}. The active
basis-reorientation correspondence for (1,0) activities is uniquely determined by the following two
properties.

(i) The correspondence induces a bijection between (1,0) bases and bounded regions of the
pseudoline arrangement representing M.

(i) Let B = {e1 < ep < eq} with e, > ex be a (1,0)-basis, and R be the bounded region image of
B. Then, the intersection of the pseudolines e, and e, is a vertez incident to R, and the pseudoline
eq supports an edge of R. O

The proof of Proposition 4.7 is similar to the proof of Proposition 3.9.

In terms of programming, in the rank-3 acyclic case, the basis associated with a bounded
region is the optimal basis for an extended linear program with respect to the total order. The
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element e,, is used to define the optimal vertex when e; does not suffice. Moreover a basis defines
two nested faces e, and e, Ne, which have to be optimized, yielding a first example of flag matroid
programming.
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