ACTIVITY PRESERVING BIJECTIONS
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ABSTRACT. The main results of the paper are two dual algorithms bijectively mapping the set of
spanning trees with internal activity 1 and external activity 0 of an ordered graph onto the set of
acyclic orientations with adjacent unique source and sink. More generally, these algorithms extend
to an activity-preserving correspondence between spanning trees and orientations. For certain
linear orderings of the edges, they also provide a bijection between spanning trees with external
activity 0 and acyclic orientations with a given unique sink. This construction uses notably an
active decomposition for orientations of a graph which extends the notion of components for acyclic
orientations with unique given sink.

RESUME. Les principaux résultats de ce papier sont deux algorithmes duaux qui définissent une bi-
jection entre I’ensemble des arbres couvrants d’activité interne 1 et d’activité externe 0 d’un graphe
ordonné et ’ensemble de ses orientations acycliques avec un unique puits et une unique source
adjacents. Plus généralement ces algorithmes s’étendent a une correspondance préservant les ac-
tivités entre arbres couvrants et orientations. Pour certains ordres totaux de I’ensemble des arétes,
ils fournissent également une bijection entre arbres couvrants d’activité externe 0 et orientations
acycliques ayant un unique puits donné. Cette construction utilise notamment une décomposition
active des orientations d’un graphe qui étend la notion de composantes d’orientations acycliques
avec unique puits.
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1. INTRODUCTION

The Tutte polynomial ¢(G;z,y) of a graph G is a two variable polynomial equivalent, up to
simple algebraic transformations, to the generating function of cardinality and number of connected
components of subsets of edges of G. Numerous important numerical invariants of G such as the
numbers of spanning trees, of g-colorings, of acyclic orientations of G, etc. are evaluations of
t(G;z,y). We refer the reader to [1] for a comprehensive survey of properties and applications of
Tutte polynomials of graphs, and, more generally, matroids.

Suppose the edge-set of G is linearly ordered. W.T. Tutte has shown

(G z,y) = Zt”wy

where ¢; ; is the number of spanning trees of G such that 7 edges are smallest in their fundamental
cocycle and j edges are smallest in their fundamental cycle [17]. On the other hand, M. Las Vergnas

has shown that
t(G;x,y) ZOW T gyl

where 0; ; is the number of orientations of G such that i edges are smallest in some directed cocycle
and j edges are smallest in some directed cycle [14]. This last formula generalizes a well-known
result of R. Stanley: the number of acyclic orientations of G is equal to t(G;2,0) [16]. Note that
this result is actually a special case of a theorem of R. Winder [19] counting the number of regions
of an hyperplane arrangement.

Comparing these two expressions for ¢(G; z, y) we get 0; ; = 21J¢; ; for all 4, j. A natural question
arises of a bijective proof for this formula [14]. The problem is to define a correspondence between

(*) CNRS, Paris.
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spanning trees and orientations, preserving parameters (i, ), called activities in the literature, and
compatible with the above formula. More precisely, the desired correspondence should associate
with an (i, j)-active spanning tree of G, a set of 2iJ (i, j)-active orientations of G, in such a way
that each orientation of G is the image of a unique spanning tree. The main object of the present
paper is to describe such a correspondence, called here the active tree-orientation correspondence.

Spanning trees and orientations with (1,0) activities - or, dually, (0,1) activities - constitute the
main case of our construction. Several papers of the literature deal with (1, 0)-orientations of graphs,
i.e. acyclic orientations with adjacent unique source and sink. Enumerations of (1, 0)-orientations are
studied by C. Greene and T. Zaslavsky in [12] for graphs, zonotopes and hyperplane arrangements.
In particular, they prove that the number of acyclic orientations of a graph with adjacent unique
source and sink is 26(@), where S(G) = t1,0. Equivalently, we have 01 9 = 2¢1 ¢ (implying that this
number does not depend on the particular source and sink). In [6] bijective proofs are given of a
result of [12] on acyclic orientations with unique sink (see below, and Section 6). Orientations with
(1,0) activities are studied in [5] for their relevance in several graph algorithms. On the other hand,
the external activity of a spanning tree has recently retained some attention in relation with the
chip-firing game and the sandpile model [3] (see also [2] for the particular case of K, and parking
functions).

Section 3 contains the main results. Two dual algorithms establish a bijection between spanning
trees and orientations with (1,0) activities. In Section 4, we obtain as a corollary, a bijection for
(0,1) activities. In Section 5, these bijections are extended to a correspondence between spanning
trees and orientations consistent with the formula o; ; = 2¢7¢; ;, thus answering the above question.
We point out that this correspondence not only preserves activities but also active elements. The
construction uses reductions from general activities to the (1,0) case. In Section 6, we show that
the correspondence of Section 5 produces a bijection between internal spanning trees and acyclic
orientations with a unique sink at a given vertex.

A bijection between acyclic orientations with a unique fixed sink and internal spanning trees
has recently appeared in [6]. We observe that this bijection is not activity-preserving, whereas the
bijection in Section 6 is activity-preserving. The correspondence of Section 3 answers a question of
[6] (see (a) p.145). Several years ago, one of the present authors defined in an extended abstract
[15] - not quoted in [6] - a different activity-preserving correspondence between spanning trees
and orientations in graphs. This correspondence may probably not be generalized beyond regular
matroids. The present one generalizes in a natural way to any oriented matroid [11]. The main
results have been presented in the Ph. D. Thesis [7]. Some particular cases are studied in [8][9] (see
also [10] for a survey). The graphical case is the object of the present paper (extended from FPSAC02
Proceedings). In this case, interesting specific properties involving vertices can be established (see
Sections 6 and 7). An enumeration of acyclic orientations with a unique sink in a graph, constructed
from a linear ordering of the vertices, and involving the coefficients of the chromatic polynomial,
has been described by B. Lass in [13], linked to constructions by X. Viennot [18], P. Cartier, D.
Foata, and I. Gessel. This construction appears in Section 7 to be a particular case of the present
one: for a linear ordering of the edges compatible with the ordering of the vertices, we obtain the
same partition for acyclic orientations with unique given sink.

Our point of view is matroidal: the correspondence depends on a linear ordering of the edges and
the cycle-cocycle duality allows, for instance, to consider all orientations - not only the acyclic ones.

2. NOTATION AND TERMINOLOGY

The present paper deals exclusively with graphs. We point out that definitions and results of this
section have extensions to matroids and oriented matroids. Throughout the paper, if no confusion
results, we will implicitly assume that graphs under consideration are connected, and that cycles
and cocycles are elementary (i. e. minimal for inclusion). Graphs considered in the paper may have
loops or multiple edges.

Let G be a graph with edge-set E, and T C E be a spanning tree of G. For e € E\ T, we
denote by C(T;e) the fundamental cycle of e with respect to T', i.e. the unique cycle contained in
T U {e}, obtained from the unique path of T' joining the two vertices of e. For e € T, we denote
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by C*(T;e) the fundamental cocycle of e with respect to T, i.e. the unique cocycle contained in
(E\T)U{e}. The cocycle C*(T';e) is the set of edges of G joining the two connected components
of T\ {e}. For e € E\T and f € T, we have clearly f € C(T';e) if and only if e € C*(T; f), and
then C(T;e) N C*(T; f) = {e, f}.

We say that a graph G is ordered if its edge-set E is linearly ordered. The notion of activities of
a spanning tree 7' in an ordered graph G is due to W.T. Tutte [17]. The internal activity +(T) is
the number of edges e € T smallest in their fundamental cocycle C*(T; e), and the ezternal activity
e(T) is the number of edges e € E '\ T smallest in their fundamental cycle C(T;e). We denote by
ti,; (@), or simply ¢; ;, the number of spanning trees of G such that «(T") =i and ¢(T') = j.

The Tutte polynomial t(G;z,y) has been introduced by W.T. Tutte in [17], under the name
dichromate to generalize in a self-dual way the chromatic polynomial of a graph G = (V, E), as

HGiay) = 3 (o = 1))y — 1)V

ACE

where ¢(A) denotes the number of connected components of the graph (V, A) for A C E (counting
each isolated vertex for one component). Then, in order to give a combinatorial interpretation of
the coefficients, Tutte has shown, by deletion/contraction of the greatest element, that

t(G;z,y) Z tijz'yl.
1,j<0

This formula implies that ¢; ; does not depend on the linear ordering.

A cycle resp. cocycle in a directed graph is directed if all its edges are directed consistently. The
(primal) orientation activity of an ordered directed graph G, or O-activity, denoted by o(G), is the
number of edges smallest in some directed cycle. The dual orientation activity of G, or O*-activity,
denoted by 0*(G), is the number of edges smallest in some directed cocycle. We denote by o; ;(G)

the number of orientations G of G such that o (8) =4 and 0(8) = j. The definitions of O- and
O*-activities have been introduced in [14] in view of the formula

t(G;z,y) = ZOHQZ]:Uy

This formula 1mp11es that o; ; does not depend on the ordering, and that o; ; = 2¢+9¢t; ;. The
proof in [14] is by deletion/contraction of the greatest edge.

Internal and external activities of spanning trees, and also the two types of orientation activities,
are dual notions from the point of view of graph duality. If G is a planar graph imbedded in the
plane, and G* is a dual of G, we have eg«(T) = 1g(E\T). If G is directed, a directed dual of G is a
planar dual G* directed such that all directions of corresponding edges in G and G* define rotations
of the same type, clockwise or counterclockwise. Then, we have 0*(G) = o(G*). The graph G is
said to be acyclic if there is no directed cycle, i.e. if o(G) = 0, and, dually, is said to be totally cyclic
(or strongly connected) if o*(G) = 0.

In a directed graph, given an elementary cycle C' and a direction along C, we define CT as the set
of edges of C directed consistently with the direction along C', and C'~ as the set of edges directed in
the opposite direction. An elementary cocycle D is the set of edges joining two subsets partitioning
the vertex-set of G into two connected subgraphs. Given an elementary cocycle D and a direction
between the two subsets of the partition induced by D on V, we define DT as the set of edges of
D directed consistently with this direction between subsets, and D~ as the set of edges directed in
the opposite direction. In a directed graph, the notation C(T’;e) for e € E\ T resp. C*(T;e) for
e € T can be made precise by choosing the cycle direction resp. cocycle direction consistent with
the direction of e, i.e. such that e is in the positive part.

We make a crucial use in the proof of Theorem 4 (Step 9) of the (directed) graphical orthogonality
property |[CT N DT|+|C-ND~|=|C” ND"|+|CT" N D | between a cycle C and a cocycle D.
In all other places, the weaker (directed) orthogonality property C N D # () implies (CT N D) U
(C-ND7) # P and (C-NDT)U (CT N D7) # P suffices for our purpose. A more general proof
for Theorem 4 using only this last orthogonality property is made in [11] (see also [7]). We mention
that the graphical orthogonality property characterizes regular matroids (Minty 1975), whereas the
orthogonality property characterizes oriented matroids (Bland-Las Vergnas 1978). See for instance
[1] for generalization of the Tutte polynomial in matroids.
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3. THE BIJECTION FOR (1,0)-ACTIVITIES
We recall that t; o(G) # 0 if and only if the graph G is 2-connected and has no loop [1].

Proposition 1. Let G be an ordered directed graph, with smallest edge e; = s's" directed from s'
to s". Then o*(G) =1 and o(G) = 0 if and only if G is acyclic, with unique source s' and unique
sink s".

Proof. A directed graph has orientation activity 0 if and only if it is acyclic by definition. In an
acyclic graph, e; belongs to a cocycle, so it is the smallest element of a cocycle. An acyclic graph
has a source (otherwise one could construct easily a directed cycle). The set of edges having this
source as an extremity is then a directed cocycle.

If the graph has dual activity 1 then this source must be an extremity of e; (because e; is the only
possible minimal element of a cocycle). The same properties holding for the opposite orientation,
the graph has a sink and any sink must be an extremity of e;. This proves that the graph has
unique source s’ and unique sink s".

Conversely, suppose G has a unique source s’ and a unique sink s”’. The two connected subgraphs
induced by the partition of V' defined by a cocycle are also acyclic. Hence, they must have a source
and a sink. If the cocycle is directed, there exist a source of G in one component and a sink of G in
the other. Necessarily these two vertices are s’ and s”, and so e; belongs to the directed cocycle. O

Proposition 2. Let G be a loopless ordered graph with edge-set E and e; = Min (E), and let T be
a spanning tree of G. Set T ={b; <by < ...<b.} and E\T ={a1 < a2 < ... < Gp_r}.

(i) e(T) =0 if and only if bj = Min (E\ U, <;; C*(T;bi)) for j=1,2,...,r.

(it) «(T) =1 1f and only if aj = Min ((E'\ {e1}) \ U, <;<; C(T;ai)) for j=1,2,...,n—r.

Proof. (i) Let e = Min (E \ U, <;<; C*(T’5b;)), and suppose e < b;. We have e ¢ T, since e ¢
{b1,...,bj_1} by definition. Set C = C(T;e). If b; € C, we have e € C*(T;b;), therefore C'N
{b1,...,bj_1} = 0. It follows that CNT C {b;,...,b,}, then e = Min C, hence ¢(T") > 0.

Conversely, suppose b; = Min (E '\ U1§i<j C*(T;b;)) for j = 1,2,...,r. Let e € E\T. Set
C = C(Tse), and let bj = Min CNT. We have e € |J,;; C*(T;b;)), otherwise b; € C' for some
¢ < j. Hence b; < e, and e is not externally active.

(i) Let e = Min ((E\ {e1}) \ U;<;<; C(Ta;)), and suppose e < a;. We have e € T, since
e & {a1,...,aj_1} by definition. Set D = C*(T;e). If a; € D, we have e € C(T';q;), therefore
D n{ai,...,aj—1} = 0. It follows that DN (E\T) C {aj,...,an—r}, then e = Min D, hence
o(T) > 1.

Conversely, suppose a; = Min ((E\{e1})\U,<;<; C(T;a;)) for j =1,2,...,n—r. Let e € T'\{e1}.
Set D = C*(T';e), and let a; = Min D\T. We have e ¢ |J, <, ; C(T; a;), otherwise a; € D for some
¢ < j. Hence a; < e, and e is not internally active. O

The following proposition defines the active correspondence for (1,0)- activities.

Proposition 3. Let G be an ordered graph, with edge-set E = {e; = s's" < ey <...<en}, and T
be a spanning tree of G with internal activity 1 and external activity 0. The following two algorithms
produce the same acyclic orientation of G, with unique source s' and unique sink s".
Step 0 (in both algorithms): direct the smallest edge e1 from s' to s".

(i) Algorithm 1

Let E\T={a1=e3 < a2 <...< an_r}.
Step i =1,2,...,n —r: direct the undirected edges of C(T';a;) in the cycle direction opposite to the
direction of its smallest edge.

(i) Algorithm 2.

Let T={by=e1 < by <...<b}.
Step 1: direct all edges # ey of C*(T';by) in the cocycle direction defined by eq
Step i = 2,...,r: direct the undirected edges of C*(T';b;) in the cocycle direction opposite to the
direction of its smallest edge.

An example for Algorithms 1 and 2 applied to the 4-wheel Wy is given by Figure 1.
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Proof. Since G has a spanning tree T' with (1,0) activities, it has no isthmus or loop.
(1) Algorithm 1 directs all edges of G, and (1') Algorithm 2 directs all edges of G
We show inductively that all edges in |J,;<; C(T;a;) are directed by Algorithm 1 for i =
1,2,...,n —r. We have to check that before Step i the edge b = Min C(T; a;) is directed. This
is clear for i = 1 since then b = ey, so suppose i > 2. We have b € T, otherwise b = a; would be
externally active. If b = ey, then a; is directed at Step 7 of Algorithm 1. If b # e, then b is not
the smallest element of its fundamental cocycle since ¢«(T') = 1. Set a; = Min C*(T';b). We have
a; < b < a;, hence a; is directed before Step ¢ by induction. Since b € C'(T'; a;), the edge b has been
directed by Algorithm 1 at a Step < j < 1, hence a; is directed at Step 7. On the other hand, since
G has no isthmus, we have |J, C(T;a;) = E, hence all edges of G are directed by Algorithm 1.
The proof of (1') is dual.

3
4 1
6 2

7 8 5

T=1457
3 3 3
4 1 4 1 4 1

6 N 6 N2 6 N2
7 g 5 7 g 5 7 g b
(1.2) (1.2) (1.3)
3 3 3
4 1 4 1 4 1
6 N2 O N2 6 N2
7 g b 7 g 5 7 g b
(21) (22 (2.3)
3
4 1
& \2
7 8 5
(1.4) = (2.4)

Figure 1
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(2) Algorithm 1 and Algorithm 2 produce the same orientation of G

The proof is by induction on the rank in the ordering. Let a € E'\ T, and set b = Min C(T'; a),
a’ = Min C*(T;b). We have b € T, otherwise b = a is externally active, contradicting ¢(T") = 0
The first case is ' € T. Then the edge b = a' is internally active, hence b = e; since +(T) = 1
In this case a and e; have opposite directions in C(T’;a) for Algorithm 1. We have a € C*(T;e1).
Orthogonality implies a must have the same direction in C*(T’;e;1) as e;. This is the direction it is
given in Step 1 of Algorithm 2. The second case is a’ € E\T, and thus b # e;. We have a € C*(T'; b)
and @’ < b < a. By Algorithm 1, the edges b and a have opposite directions in C(T;a). We have
C(T;a)NC*(T;b) = {a, b}, hence by orthogonality a and b have the same direction in C*(T';b). As
b is the smallest edge in T such that a € C*(T';b), it follows that a is undirected when b is directed
by Algorithm 2. Therefore a and b have the same direction in C*(T';b) for Algorithm 2, opposite
to the direction of a’. Since by induction, the directions of b agree in Algorithms 1 and 2, the same
conclusion holds for a.

The proof for b € T is similar and left to the reader.

Let 8 be the orientation of G constructed by Algorithms 1 and 2.
(3) 0"(G) =1 and (3') o(G) =0

Suppose there is a directed cocycle D in G with Min D # ey, contradicting (3). Since G has no
isthmus, we have | J, C(T;a;) = E. Let i be the smallest integer such that D N C(T;a;) # 0. Let
be DNC(T;a;) \ {a;}. Since b € C(T;a;) \ {a;}, we have b € T. By the choice of i, the edge b
is directed at step i of Algorithm 1. Set e = Min C(T';a;). We have e # a; otherwise a; would be
externally active, contradicting e(T) = 0. If i = 1, we have a; = e; and e = e;, so e # b according
to our assumption. If ¢ > 2 then, by (1), the edge e is directed before Step i of Algorithm 1 and
since b is not we have e # b. Hence, for any 4, by definition of Algorithm 1, both b and a; are
directed in the same direction of C(T'; a;), opposite to the direction of e. It follows that all edges in
D N C(T;a;) have the same direction in both D and C(T;a;), contradicting orthogonality.

Suppose there is a directed cycle C' in 8, contradicting (3'). Since G has no loop, we have
U; C*(T;b;) = E. Let i be the smallest integer such that CNC*(T;b;) # 0. Let a € CNC*(T;b;) \
{b;}. By the choice of i, the edge a is directed at step i of Algorithm 2. If i = 1, i.e. b = ey,
then a and b; have the same direction in C*(T'; b;) by definition of Step 1 of Algorithm 2. Suppose
i > 2. Set e = Min C*(T;b;). By (1'), the edge e is directed after Step i — 1 of Algorithm 2 and
since a is not, we have ¢ # a. On the other hand, e # b; otherwise b; would be internally active,
implying ¢ = 1 since ¢(T") = 1. Hence, by definition of Step i > 2 in Algorithm 2, both a and b; are
directed in the same direction of C*(T'; b;), opposite to the direction of e. It follows that all edges
in C N C*(T;b;) have the same direction in both C' and C*(T';b;), contradicting orthogonality. O

Theorem 4. Let G be an ordered graph. The mapping defined by Algorithms 1 and 2 is a bijection
from the set of spanning trees of G with (1,0) activities onto the set of orientations of G with (1,0)
activities such that the direction of the first edge is fized.

Proof. Since 2t1 g = 01, by [12], it suffices to show that the mapping is injective. Suppose there
exist two different spanning trees T' = {b1 < b2 < ... < b} and T" = {b] < ... < b} with (1,0)
activities such that Algorithms 1 and 2 produce the same directed graph.
(1) Let k be the smallest integer such that C*(T'; by,) # C*(1";b},). By Proposition 2, we have b; = b}
for all i < k. Set b= by, = b}, D =C*(T;b) and D' = C*(T";b). We have b€ D+ N D'".
2)TND C{b=bg,...,b}, and (2') T'ND C{b=0,...,b0.}

If i < k, by (1) we have b; = b} & C*(T";b},) = D'.
3)TND' CD'*,and (3)T'ND C DT

Let b, € TN D'. By (2), we have i > k. If i = k, then b; = b, = b}, =b € D'*. Suppose i > k.
Since b; € D' = C*(T";b},), the edge b; is directed at a step j < k of Algorithm 2 applied to T". If
j <k, we have b, = b; € T, hence b; ¢ C*(T';b;) = C*(T";b}), so that b; cannot be directed at Step
j.

Therefore j = k. If k > 1, the edges b = b}, and b; are directed by Algorithm 2 in the same

cocycle direction of D' (opposite to the direction of the smallest edge of D'), hence b; € D'*. If
k = 1, then, by definition of Step 1 in Algorithm 2, we have D’ = D'*.
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4)ITND'|>2and (4") |T'"ND| >2

Since T is a spanning tree and D' a cocycle, we have [T'N D'| > 1. If [T N D'| = 1, then D’
is a fundamental cocycle of T, and necessarily, since b = b, € T, we have D' = C*(T;b) = D,
contradicting the definition of k. Therefore [T'N D’| > 2.
(5) Let a be the smallest element of the set

C*(T;e)u | C(T'e)
ee(TND")\{b} ee(T'ND)\{b}

which is not empty by (4). By symmetry, we may suppose that a = Min C*(T;e) for some e €
(T'n D)\ {b}. We have e = b for some £ > k by (2). In particular £ > 1.
6) agT

If a € T, then a = e and a = Min C*(T;a) is internally active. Hence a = e; = by, contradicting
£>1(5).

Set C = C(T;a).

(7)) a gT'

Suppose a € T'. We have a > b by (6). If a € D, we have a € (T' N D) \ {b}, hence a <
Min C*(T";a) by (5). Therefore a is internally active, hence a = e;, contradicting (6). So a & D.
Since a > b, we have also a & D'.

Let z € CND'. We have x # b since a € D, and x # a since a € D'. Therefore, z €
((C\{a})nD")\ {b} C (T'NnD")\ {b}. Hence a < Min (C*(T;z)), and in fact a = Min (C*(T; z))
since z € C = C(T';a) implies a € C*(T;x). By Algorithm 2 applied to T', the edge z is directed
in the cocycle direction opposite to a in the cocycle C*(T'; x), hence by orthogonality a and z have
the same cycle direction on C, i.e. € CT. On the other hand, we have x € D' = C*(T";b)
and z ¢ C*(T";b}) = C*(T';b;) for i < k, since  in T. Hence, the edge x is directed at Step k of
Algorithm 2 applied to T". Since = > by = b, the edges b and x have the same cocycle direction in
D', ie. z € D'". It follows that CND' CCtND'".

By (5), we have a € C*(T;e), hence e € C(T;a) = C, and also e € D'. We have e € C' N D' and
CND'CCTnND'F, contradicting the orthogonality property.

Set C' = C(T";a). We have a € Ct N C'F.

(8) (CND)\{a,b} CCrND'* and (8) (C'N D)\ {a,b} CC'""ND*

We have C'\ {a} C T, hence (C N D)\ {a,b} CTND' C D't by (3). Let z € (CND')\{a,b}
We have z € (T'N D') \ {b}, hence a < Min C*(T';z) by (5). On the other hand z € C = C(T;a),
hence a € C*(T'; z). It follows that a = Min C*(T’;z). We have z = b; with ¢ > k. By Algorithm 2
applied to T', at Step i the edge x = b; is directed in the cocycle direction of C*(T'; z) opposite to
the direction of a. Now C(T’;a) N C*(T';x) = {x, a}, hence by orthogonality the edges = and a have
the same cycle direction in the cycle C, i.e. x € CT.

(9) ¢nNnD' C{a,b} and (9') C'ND C {a,b}

Suppose C' N D"\ {a,b} # 0. By (8) and graphical orthogonality, we have a € D'~ or b € C,
and both hold if {a,b} CCN D'

Suppose a € D'~. Then a € C'N D' C {a,b}, hence by orthogonality, we have C' N D' = {a, b}
and b € C'"". By (8) and graphical orthogonality applied to C' N D, we have a € D~. Then
a € CND C {a,b}, hence by orthogonality, we have C N D = {a,b} and b € C*. Therefore
{a,b} CCND' bothae€ D'~ and b€ C~ should hold: contradiction.

The case b € C'~ is similar, and left to the reader.

(10) By (5), we have a = Min C*(T;e), with e = by € (TN D)\ {b} and ¢ > k. We have
e€ C=C(T;a), hencee e CN((TNDY\{b}) C(CND")\{b} C{a} by (9). Therefore a = e.
Hence a = Min C*(T';a), i.e. a is internally active. Then, necessarily, a = e; = by, since T and 1"
have internal activity 1, contradicting e = by with £ > 1 (5). O

NB. We point out that the converse algorithm, from (1, 0)-active orientations to (1,0)-active span-
ning trees, is more involved. It has been obtained in the geometric and general context of oriented
matroids. A possible construction is by deletion/contraction of the greatest element [11] (see also [7]).
But overall its main definition in [11] is in terms of extensions of linear programming.
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4. THE BIJECTION FOR (0, 1)-ACTIVITIES

The case of (0, 1)-activities can be reduced to (1, 0)-activities by the following Proposition, whose
proof is straightforward.

Proposition 5. Let G be an ordered graph with edge-set {e1 < es...}.

(i) If T is a spanning tree with (1,0) activities, then T \ {e1} U{ea} is a spanning tree with (0, 1)
activities. The mapping defined by T — T \ {e1} U {ea} is a bijection between the sets of spanning
trees of G with (1,0) resp. (0,1) activities.

(i) If G is an orientation of G with (1,0) orientation activties, then the orientation of G,
denoted —., G, obtained by reversing the direction of e, has (0,1) orientation activities. The

mapping defined by G — —¢, G is a bijection between the sets of orientations of G with (1,0) resp.
(0,1) activities. m|

A bijection for (0,1) activities can be obtained either from the bijection for (1,0) activities in G
by means of Proposition 5, or from the bijection for (1,0) activities in the dual graph G* when G
is planar (or in the dual oriented matroid in general). It can be shown that these two bijections are
identical, providing a strong duality property for the correspondence, see [11] for details (or also [7]).

Figure 2 shows an application of Proposition 5 to the planar graph Wy considered in Figure 1.
We observe that the (0, 1)-orientation associated with the spanning tree 7' = 2368 is different from
the orientation associated with the same tree by the algorithm of [15]: the edge 8 of [12 Fig.4] is
reversed in Figure 2.

5
8 2
7 1
6 , 3
T=2368

Figure 2

5. THE GENERAL CORRESPONDENCE

In this section, we construct the active (tree-orientation) correspondence associating with a gen-
eral spanning tree of activities (4,j) a set of 2¢*J orientations with the same activities, such that
each orientation is the image of a unique spanning tree.

The main content of this section is that the construction of the active correspondence can be
reduced to the (1,0) case by means of active partitions of the edge-set. It turns out that, contrasting
with Sections 3,4,6, where specific properties of graphs are used, Section 5 is a mere specialization
to graphs of properties holding in matroids and oriented matroids. In consequence, we will only
sketch the main results, and refer the reader to [11] (see also [7]) for details and proofs.

Active partitions can be described either in terms of spanning trees in an ordered graph, or
of orientations in an ordered directed graph. One main point is that if a spanning tree and an
orientation are related by the active correspondence, then the two definitions produce the same
active partition. The definition of an active partition in terms of spanning trees is much more
involved than its definition in terms of orientations. However, in both cases, the first step is to
separate the two dual types of activities, and the second step is to reduce the construction to (1,0)
activities.
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Let G be an ordered graph with edge-set E, and T be a spanning tree of G with activities (4, 7).
The first step is to construct a set F' C E whose elements are called external. Then E \ F' is the set
of internal elements. For the reader’s convenience, we sketch the construction of F' (see [4] for more
details and proofs).

For X C F set

fX)= XU |J C(T5e) U{ecE| §CCL(T;e)C X }
eeTNX

where C% (T'; e) is the set of elements of C*(T';e) strictly smaller than e, and

foo = rix.

i>1

Let a; < ... < a; be the internally active elements of T, and let F = E\ f({a1, ...,a;}).

Then F separates the internal and external activities: T\ F is a spanning tree with (7, 0) activities
of the contraction G/F of G by F, and TN F is a spanning tree with (0, j) activities of the subgraph
G(F) [4],

Let be an orientation associated with T' by the active correspondence. By a classical result
of G. Minty (1960), in a directed graph an edge belongs either to a directed cycle or to a directed
cocycle, but not to both. Then F is the totally cyclic part of 8, i.e. the union of all directed cycles
of G, and E \ F is the acyclic part of G, i.e. the union of all directed cocycles of E’)

It follows from this first reduction that without loss of generality, we may restrict the construction
to (¢,0) or (0,j) activities. Furthermore, internal and external elements, and also totally cyclic
parts and acyclic parts, being related by duality (cycles and cocycles play dual parts), we may
restrict ourselves to spanning trees with external activity 0, or internal spanning trees, and acyclic
orientations. The second step reduces the construction to (1,0) activities.

For an internal spanning tree 7" with internally active elements a; < ... < a4, for j = 1,2, ..., set

Aj = f{aj, s ai) \ f{aj41, s ai})
The active partition for T is the partition
E=A+..+A4,.
Set
T; =TNA;,
then T =T; + ... + T;. And set
Gi=G/(A1UAU...UA; 1)\ (41 UAj 1o U...UA)

where, as usual \ denotes the deletion, and / denotes the contraction.

Let G be an acyclic orientation of the ordered graph G with o*(a) =14,and let a1 < ... < a; be
its O*-active edges. Then, for j =1,2,...,¢, set

Aj = U D\ U D
p directed cocycle p directed cocycle

Min D:a]- Min D>a]-

The active partition of 8 for the orientation is the partition
E=A+Ay+- -+ A4;

The activity class of orientations of 8 is the set of 2! orientations obtained by reversing all edge
directions in the 2! possible unions of some of the 4;’s. As easily seen, these 2! orientations have
the same active partition.

Set

8]‘:8/(A1UA2U...UA]',1)\(A]'+1UA.H,QU...UAZ').
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Theorem 6. The sets T; are spanning trees with (1,0) orientation activities in the graphs G; on

the edge-sets A;. The graphs 8]- on the edge-sets A; have (1,0) orientation activities. The number
of acyclic orientations with given active partition is 2" times the number of spanning trees with same
active partition.

Using the bijection of Section 3 on each tree T for j = 1,2,...,4, we associate with each T}
a directed graph 8]- and its opposite with (1,0) activities. Then let 8 be the directed graph
obtained by directing the edges of G with respect to the directions in the ¢ minors G;. Then
has (i,0) activities. We define the active correspondence by associating the directed graph 8 with
the spanning tree 7', and the spanning tree 7" with all graphs in the activity class of G'. This
active correspondence associates the same spanning tree with all orientations in an activity class,
and moreover preserves active elements and active partitions.

The proofs of Theorem 6 and all the results mentioned above, and the statements and proofs of
the mixed case, when both F' and E \ F are not empty, can be found in [11] (see also [7]) in the
more general context of oriented matroids. We will illustrate its content in Section 6 on an example
(Figures 3 and 4).

The activity classes constitute a partition of the set of orientations of a graph. The active
correspondence induces an activity preserving bijection between spanning trees and activity classes
of orientations.

6. A BIJECTION FOR ACYCLIC ORIENTATIONS WITH A UNIQUE SINK

C. Greene and T. Zaslavsky have shown in [12] that the number of acyclic orientations of a graph
G with a unique sink at a given vertex is equal to ¢(G;1,0). In [6], D.D. Gebhard and B.E. Sagan
give three bijective proofs of this result. The third one [6] Th.4.1 is by means of an explicit bijection
between acyclic orientations with a given unique sink and internal spanning trees, as suggested by
the relation t(G;1,0) = >, ;0.

It turns out that the correspondence defined in Section 5 provides another bijection between inter-
nal spanning trees and acyclic orientations with a given unique sink, which moreover preserves active
edges. The internally active edges of an internal tree become O*-active edges of the orientation.

Lemma 7. In an ordered graph, the smallest edge of any cocycle belongs to the lexicographically
smallest spanning tree.

Proof. Let G be an ordered graph, and T be its lexicographically smallest spanning tree.

(1) Let e € Ty and D be the fundamental cocycle of e with respect to Tp. Then e is the smallest
element of D. Otherwise there is a € D such that a < e, and the spanning tree Ty — e + a is
lexicographically smaller than Tj.

(2) Conversely, let X be an elementary cocycle of G with smallest element a. Suppose a & Ty. Let
e € XNTpy, and D be the fundamental cocycle of e with respect to Tp. Since e is the smallest element
of D by (1), we have a ¢ D. By elimination there is a cocycle Y such that ¢ € Y C (DUX)—e. Since
a is smallest in X and e smallest in D, we have a smallest in Y. We have Y N Ty C (X NTp) — e,
hence |Y N Tp| < |X N Tp|. Applying inductively this property, we obtain that there is X with
X NTy =0, a contradiction since cocycles and spanning trees always meet. Hence a € Tp. a

We say that a spanning tree 7" in an ordered graph is increasing with respect to a vertex s if the
edges increase for the ordering along any path of 7" beginning at s.

Proposition 8. Let G be an ordered graph such that the lexicographically smallest spanning tree is
increasing with respect to a vertex s.

Then there is exactly one acyclic orientation with a unique sink at s in each activity class of
acyclic orientations of G, namely the unique orientation in the class defined by reversing or not
all edge directions in subsets of the active partition in order to obtain that active edges are directed
towards s on Ty.

Note that the hypothesis implies s is an extremity of the smallest (non loop) edge of G.
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Proof. Let Ty denote the lexicographically smallest spanning tree of G = (V, E). By hypothesis Tg
is increasing with respect to s.
(1) The edges of a directed (elementary) cocycle D defined by a 2- partition V = Vi + Vs in an
acyclic orientation %[G with a unique sink at s € V| are directed from Vs to Vi.

Since G is acyclic, G (V3) contains at least one sink s'. If the edges of D were directed from V;
to V3, then s’ would be a sink of G with s # s, contradicting the uniqueness.
(2) If G is an acyclic orientation of G with a unique sink at s, then the O*-active edges of Ty are
directed toward s on Ty.

Let a be a O*-active edge of 8, and D be a directed cocycle with smallest edge a. By Lemma
7, we have a € Ty. Since T is increasing and a smallest in D, there is no edge of D on the path of
T from s to the closest vertex of a. Hence, with notation of (1), this path is in Vj, and by (1) a is
directed towards s.
(3) Conversely, let @ be the (unique) graph in a given activity class of acyclic orientations of G
such that the O*-active edges of this class are directed towards s on Ty. The graph G exists and is
unique by the properties stated in Section 5. The graph E’) has a unique sink at s.

Since G is acyclic, it has at least one sink s’. The smallest edge a of G incident to s is in Ty by

Lemma 7. Since the edge a is directed towards s in Tp by construction of G, and Ty is increasing
with respect to s, if s # s’ then there exists another edge b < a on Ty incident to s’, contradicting
the minimality of a. O

Theorem 9. Let G be an ordered graph, such that the lexicographically smallest spanning tree is
increasing with respect to a vertex s.

Then the mapping sending an internal spanning tree T of G to the unique acyclic orientation
with a unique sink at s belonging to the activity class of orientations associated with T by the
correspondence of Theorem 6, is an activity-preserving bijection from the set of internal spanning
trees of G onto the set of acyclic orientations of G with a unique sink at s. O

Theorem 9 is a straightforward corollary of Theorem 6 and Proposition 8. Note that given any
spanning tree T' in a graph G, and a vertex s, it is always possible - and easy - to linearly order the
edges of G so that T is the lexicographically smallest spanning tree and is increasing with respect to
s. Label the edges of T' by consecutive integers 1,2, ... in successive layers defined by their distance
to s. After T' has been labelled, label arbitrarily the edges not in 7T'.

The bijections provided by Theorem 9 are different from the Gebhard-Sagan bijections. We
observe that these bijections are activity-preserving by construction, whereas Gebbard-Sagan bijec-
tions are not in general. The orientation in Figure 1 of [10] p.139 has O*-activity 2, but the spanning
tree constructed by the algorithm has internal activity 3.

Figure 3 illustrates Theorem 9 on the graph Wy, already used in Figures 1 and 2. The Tutte
polynomial of Wy is

t(Wy z,y) = 2 + y* + 42° + 422y + 429” + 49° + 622 + 9zy + 6y + 32 + 3y
The graph W, has ¢t(Wy;1,0) = 14 internal spanning trees.

The lexicographically smallest spanning tree 1236 is increasing with respect to the NE (North-
East) vertex. For each acyclic orientation with unique sink at the NE vertex, we have indicated the
internal spanning tree T' given by Theorem 9 (its edges are drawn in heavy lines). We have also
indicated the active partition. The internal activity is the number of parts of the active partitions,
and the active edges are the first element of each part. By reversing all edge directions in arbitrarily
chosen parts of the active partition, we get the activity class associated with 7. By Proposition
8, in each activity class exactly one acyclic orientation has a unique sink at the NE vertex: this
orientation is shown on Figure 3.
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3 3 3 3
4 4 4 4
8 8 8 8
1236 1237 1238 1246
125 34 678 1 25 34678 1 2578 346 134 25 678
3 3 3 3
4 4 4 4
8 7 g 8 8
1248 1267 1268 1356
134 25678 13467 258 1 2345678 125 34 678
3 3 3 3
4 4 4 4
8 7 g 8 7 g
1357 1358 1456 1457
125 34678 12578 346 12345 678 12345678
3 3
4 4
2
[ 7 g
1458 1468
12345678 12345678

Hence Figure 3 also illustrates the bijection from internal spanning trees to activity classes of

acyclic orientations (a restriction of the active correspondence) defined in Section 5.

3

7 A8

G G, Gy
Figure 4

Figure 4 gives details of the construction of Section 5 for the spanning tree 7' = 1246. The
active partition is 134+25+678. The graphs of Theorem 6 are G; = G \ 25678, G2 = G /134 \ 678,
G3 = (G/12345. The spanning trees with (1,0) activities being unique in these very simple graphs
one can check easily that we have T} = 14, T, = 2, T3 = 6, and, of course, 1246 = 14 4+ 2 + 6.
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7. LINK WITH COMPONENTS OBTAINED FROM LINEAR VERTEX ORDERING

An enumeration of acyclic orientations with a unique sink in a graph, using the coefficients of the
chromatic polynomial, has been described by B. Lass in [13], in relation with results by P. Cartier,
D. Foata, I. Gessel and X. Viennot [18]. We prove in this section that the decomposition of an
acyclic orientation with a unique sink into V-components, constructed in [13] by means of a linear
ordering of the vertices, is a particular case of the active partition of the present paper, for some
suitably defined linear ordering of the edges.

The following definitions and results are introduced in [13]. We say that a linear ordering of
V = v < ... < vpqq reflects the connectivity of G if for all i, 1 < i <7+ 1, the vertex v; is adjacent
to at least one vertex v; with j < i.

Let E’) be an acyclic orientation of G with set of vertices V =v; < ... < vp41. We say that w € V
is accessible from v € V if there exists a directed path from v to w. Let W be the set of vertices
of G accessible from w; = v1, and inductively, if V'\ (W7 U...UW;_1) # 0, let w; be the smallest
vertex in V' \ (W, U...UW,_1) and let V; be the set of vertices in V' \ (W; U ... U W;_4) accessible
from w;. Then let &k be the integer such that V = (Wq + ... + Wg).

The sets W1, ..., W}, are called the V-components of 8, and k is the number of V-components of

. Note as an example that, by definitions, the acyclic orientation of G defined by (v;,v;) directed
from v; to v; when v; < vj, has exactly r + 1 V-components V = {v1} + ... + {vy41}.

A central result in [13] is that, for a connected graph G = (V| E) with a linear ordering of
V = v < ... < vp4q reflecting the connectivity of G, the coefficient ¢; o is the number of acyclic
orientations of G with unique sink v; with i+1 V-components. This result can be seen as a corollary
of the next Proposition.

Let G = (V,E) be a connected graph, with a linear ordering of V = v; < ... < v,11 and a
linear ordering of E. We say that these two linear orderings are connectivity-tree-compatible, or
ct-compatible for short, if:

(i) the linear ordering of V' reflects the connectivity of G

(ii) the minimal spanning tree To = by < ... < b, of G with respect to the linear ordering of E is
increasing with respect to vy

(i) for all 4, 1 < i <7, b; = (vit1,v;) with v; < vij1.

Note that the property (iii) can be replaced by:

(ii") for all 4, 1 < ¢ < r, the subgraph spanned by {vi,...,v;r1} is the subgraph spanned by
{bla ey bz}

Lemma 10. Let G = (V, E) be a connected graph.

(i) for any linear ordering on 'V which reflects the connectivity of G, there exists a linear ordering
on E ct-compatible with this ordering.

(ii) for any linear ordering on E for which the minimal spanning tree Ty = by < ... < b, of G is
increasing with respect to a vertex v, there exists one and only one linear ordering on' V' ct-compatible
with this ordering.

(111) there exist ct-compatible linear orderings on V and E.

Proof. (i) We build Ty by induction with by = (v1,v2) and, for 2 < i < r, the edge b; in the subgraph
induced by {v1,v2, .., 0541}, not in the subgraph induced by {v1, va,..,v;}. Then we order the edges
in Ty by by < by < ... < by, and the edges in E \ Ty arbitrarily with e > b, for e € E \ Tp.
(ii) Necessarily v = v; is the smallest vertex, the second vertex vo is the other vertex of b, and,
for all 3 <i < r+1, the vertex v; such that v; < ... < v; is the vertex of b; 1 not previously defined.
(iii) Obvious in view of (i), the existence of a linear ordering of the vertices reflecting the connec-
tivity being clear. O

Lemma 11. Let G = (V, E) be a connected graph with ct-compatible linear orderings on 'V and E.
Then for any connected subgraph H of G induced by W C V', the minimal edge in Ty which is not
an edge of H has an extremity equal to min(V \ W).
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Proof. Let b; be the minimal edge of Ty = b1 < ... < b, which is not an edge of H. If b; = by
then the result is obvious. We assume now i > 1. Let G’ be the graph induced by the connected
component of Ty \ b; containing b;. Let j be such that 1 < j < i — 1. Since Tp is increasing with
respect to vy, the edge b; is an edge of G', and since b; is smallest not in H, we have b; in H. Then,
since the linear orderings are ct-compatible, the vertices vy, ..., v; are all vertices of G’ and H. On
the other hand v;41, an extremity of b; by definition of compatibility between orders, is not a vertex
of G' nor H since b; is not an edge of G’ and since the linear ordering of V' reflects the connectivity
of G. So vir1 = min(V \ W). O

Proposition 12. Let G = (V, E) be a connected graph with ct-compatible linear orderings on'V and

E. Let 8 be an acyclic orientation of G with unique sink v; = min(V). Let V. = W; + ... + Wy, be
the partition of V' into V-components, and E = Ay + ... + A; the active partition of E, with respect
to (where the indices respect the linear ordering of the parts in the definitions).

We have k = i+ 1, Wi = {wi}, and for all j, 1 < j < i, Wi +Wa + ... + W41 is the set of
vertices of G(A1 + ... + A;).

Proof. First W; = {v;} since v; is a sink. Let a3 < ... < a; be the O*-active elements of E’) Let
1 < j < i. We prove the assertion by induction on j: assume that it is true for all j' < j. Let
a; = (vp,ve) with v, < ve. It follows from the definition of the active partition that a; is the
smallest edge of Ty which is not an edge of G(A4; + ... + A;j_1). It follows from the definition of
V-components and the induction hypothesis that vy, € Wi + ... + W;_;. By Lemma 11, we have
ve =min(V \ (Wi + ... + Wj_1)). Hence by definition of the V-components, v, = min(W;) = w;.

Let v be a vertex of G(A; +...+ A;) with v ¢ W7 + ...+ W;_1. By definition of active partitions,
8(A1 + ..+ A4;)/(A1 + ... + A;_1) has a unique source vy and unique sink vy, so there exists a
directed path in G from v, to v, so v € Wj.

Conversely, let v € W;. There exists a directed path in 8 from v, = w; to v. On the other

hand, since v; is the unique sink of 8, there exists a directed path from v to v;. If v is not a vertex
of G(Ay + ...+ Aj), since vy and vy are vertices of G(A; + ... + A;), these paths induce a cycle in

/(A1 + ... + A;), but this is impossible since E \ (41 + ... + 4;) = Aj41 + ...+ A; is a union of
directed cocycles of @ and so 8/(A1 + ... + Aj) is acyclic.

Since finally Wy + Ws + ... + W41 is the set of vertices of G(A; + ...+ A;) for all 1 < j <4, it
follows that k =14 + 1. O

This result states that for ct-compatible vertex and edge orderings the two constructions have
the same outcome. It is remarkable that originally their respective inductive definitions used reverse
orders: the active partition is built from the greatest active element to the smallest one, whereas
V-components are built from the first vertex to the last one.

Consider the upper right orientation of W, in Figure 3, for which the active decomposition is
shown on Figure 4. The ct-compatible linear ordering of the vertices is a < b < ¢ < d < e with
a, b, ¢, d, e respectively the North-East, central, South-East, North-West and South-West vertices.
The active partition is F = 134 + 25 + 658, the V-components are V' = {a} + {b,d} + {c} + {e}.
Indeed {a} = Wi is the unique sink, {a,b,d} = Wy + W, are the vertices of G(134) = G(A1),
{a,b,c,d} = Wy + Wy + W3 are the vertices of G(12345) = G(A; + A) and of course {a,b,c,d, e} =
Wi+ Wa + W3 + Wy =V are the vertices of G(12345678) = G(A1 + A2 + A3) = G.

Finally, for ct-compatible linear orderings on V' and E, an acyclic orientation 8 of G with
unique sink v; has k£ 4+ 1 V- components if and only if G’ has dual activity k, thus the partition
of the set of acyclic orientations with a unique given sink - which produces an enumeration with
respect to the coefficients of the Tutte polynomial - is the same when built from V-components
or from activity classes of orientations. However, the second point of view, based on edges and
duality instead of vertices, 1) extends to all orientations and all linear orderings on E, 2) is related
to a similar decompostion for spanning trees, and 3) generalizes to hyperplane arrangements and
oriented matroids.
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