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Abstract. Comparing two expressions of the Tutte polynomial of an ordered oriented
matroid yields a remarkable numerical relation between the numbers of reorientations
and bases with given activities. A natural activity preserving reorientation-to-basis
mapping compatible with this relation is described in a series of papers by the present
authors. This mapping, equivalent to a bijection between regions and no broken cir-
cuit subsets, provides a bijective version of several enumerative results due to Stanley,
Winder, Zaslavsky, and Las Vergnas, expressing the number of acyclic orientations in
graphs, or the number of regions in real arrangements of hyperplanes or pseudohyper-
planes (i.e. oriented matroids), as evaluations of the Tutte polynomial. In the present
paper, we consider in detail the supersolvable case – a notion introduced by Stanley –
in the context of arrangements of hyperplanes. For linear orderings compatible with
the supersolvable structure, special properties are available, yielding constructions
significantly simpler than those in the general case. As an application, we completely
carry out the computation of the active bijection for the Coxeter arrangements An

and Bn. It turns out that in both cases the active bijection is closely related to a
classical bijection between permutations and increasing trees.
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1. Introduction

The Tutte polynomial of a matroid is a variant of the generating function for the
cardinality and rank of subsets of elements. When the set of elements is ordered linearly,
the Tutte polynomial coefficients can be combinatorially interpreted in terms of two
parameters associated with bases, called activities [8],[24]. If the matroid is oriented,
another combinatorial interpretation of these coefficients can be given in terms of two
parameters associated with reorientations, also called activities [17]. Comparing these
two expressions of the Tutte polynomial of an ordered oriented matroid, we get the
relation oi,j = 2i+jbi,j between the number oi,j of reorientations and the number of
bases bi,j with the same activities i, j.

The above relation is a strengthening of several results of the literature on counting
acyclic orientations in graphs (Stanley 1973), regions in arrangements of hyperplanes
(Winder 1966, Zaslavsky 1975) and pseudohyperplanes, or acyclic reorientations of ori-
ented matroids (Las Vergnas 1975) [14],[22],[24],[28] (see also [5],[13],[15],[16]).

The natural question arises whether there exists a bijective version of this relation
[17]. More precisely, the problem is to define a natural reorientation-to-basis mapping
that associates an (i, j)-active basis with every (i, j)-active reorientation, in such a way
that each (i, j)-active basis is the image of exactly 2i+j (i, j)-active reorientations.

A construction of a mapping with the requested properties for general oriented
matroids is given in [12]. This mapping has several interesting additional properties,
implying in particular its natural equivalence with a bijection, and its relationship with
linear programming [12a] and decomposition of activities [12b]. We have made a de-
tailed study of some particular classes in separate papers: uniform and rank-3 oriented
matroids in [10], graphs in [11]. In the present paper, we consider active mappings in
the case of supersolvability, a notion introduced by R. Stanley in [20],[21]. Here, the
existence of fibers allows us to simplify the construction significantly.

The paper is written in terms of arrangements of hyperplanes in Rd. Regions
correspond to acyclic reorientations of matroids and simplices to matroid bases. The
generalization of the results of the present paper to oriented matroids – i.e. from hyper-
plane to pseudohyperplane arrangements – is straightforward.

The paper is organized as follows. Section 2 recalls the main features of the active
reorientation-to-basis bijection for general oriented matroids [12]. In Section 3, we re-
call the definition and basic properties of supersolvable hyperplane arrangements. We
derive in a simple way from the existence of fibers the weakly active mapping from the
set of regions onto the set of internal simplices. In Section 4, we show how the general
construction by deletion/contraction of the active mapping [12c] can be simplified in
the supersolvable case. The weakly active mapping is simpler to construct, the active
mapping has more interesting properties. In particular, the set of regions having a same
image under the active mapping has a natural characterization in terms of sign rever-
sals on arbitrary parts of the active partition. As a consequence, the active mapping
restricted to the set of regions on positive sides of their active elements (minimal ele-
ments in the active partition) is a bijection onto the set of internal simplices, and this
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restriction generates the entire active mapping by sign reversals. Actually, the active
mapping can be refined into an activity preserving bijection between the set of regions
and the set of simplices containing no broken circuits, a basis of the Orlik-Solomon
algebra [1],[19],[27].

In the remainder the paper, we apply the previous results to the computation of
the active mapping in two important particular cases. In Section 5, we compute the
active mapping for the braid arrangement, a well-known arrangement related to acyclic
orientations of complete graphs, permutations of n letters, and the Coxeter group An.
For the braid arrangement, the weakly active mapping and the active mapping are
equal. They constitute a variant of a classical bijection between permutations and
increasing spanning trees [7],[9],[25] (see [23] p. 25), and also another construction of
the bijection of [11] between trees and acyclic orientations with a fixed unique sink in the
complete graph. In Section 6 we compute the active mappings for the hyperoctahedral
arrangement, related to signed permutations, and the Coxeter group Bn. In this case
also, the two active mappings are equal. They constitute another variant of the same
classical bijection.

2. The active bijection for general oriented matroids

Oriented matroid terminology is used throughout the paper. Basic definitions and
properties of matroids and oriented matroids can be found in [3],[18].

The Tutte polynomial of a matroid M on a set of elements E can be defined by
the formula

t(M ; x, y) =
∑

A⊆E

(x − 1)r(M)−rM (A)(y − 1)|A|−rM (A)

where rM is the rank function of M .
Activities have been introduced by W.T. Tutte for spanning trees in graphs [24],

and extended to matroid bases by H.H. Crapo [8]. Let B be a basis of a matroid M on
a linearly ordered set E, or ordered matroid. An element e ∈ B is internally active if e
is the smallest element of its fundamental cocircuit C∗(B; e) with respect to B. Dually,
an element e ∈ E \B is externally active if e is the smallest element of its fundamental
circuit C(B; e) with respect to B. We denote by AI(B) the set of internally active
elements of B, and by AE(B) the set of externally active non elements of B. We set
ι(B) = |AI(B)| and ε(B) = |AE(B)|. The non-negative integers ι(B) and ε(B) are
called the internal respectively external activity of B.

Let Bmin
M = {f1, f2 . . . , fr}< be the basis of M minimal for the lexicographic order

with respect to the ordering of E, or minimal basis of M for short. It can be easily
shown that every element of the minimal basis is internally active, and that any element
internally active in some basis is an element of the minimal basis.

We say here that a basis B with ι(B) = i and ε(B) = j is an (i, j)-basis. Denoting
by bi,j = bi,j(M) the number of (i, j)-bases of M , the Tutte polynomial has the following

the electronic journal of combinatorics 11(2) (2006), #R30 3



expression in terms of basis activities [8],[24]

t(M ; x, y) =
∑

i,j≥0

bi,jx
iyj

Let M be an ordered oriented matroid on E. An element e ∈ E is orientation active,
or O-active, if e is the smallest element of some positive circuit of M . An element e ∈ E
is orientation dually-active, or O∗-active, if e is the smallest element of some positive
cocircuit. We denote by AO(M) respectively AO∗(M) the set of O- respectively O∗-
active elements of M , and we set o(M) = |AO(M)|, o∗(M) = |AO∗(M)|. The non-
negative integer o(M) respectively o∗(M) is called the orientation activity, or O-activity,
respectively orientation dual-activity, or O∗-activity, of M .

For A ⊆ E, we denote by −AM the reorientation of M obtained by reversing signs
on A (this notation differs slightly from the notation AM used in [3]). If no confusion
results, we occasionally say that the set A itself is a reorientation. We denote by oi,j(M)
the number of subsets A ⊆ E such that o∗(−AM) = i and o(−AM) = j. We say that
a reorientation A such that o∗(−AM) = i and o(−AM) = j is an (i, j)-reorientation.

The notions of O- and O∗-activities have been introduced in [17] in relation to the
following expression of the Tutte polynomial in terms of orientation activities

t(M ; x, y) =
∑

i,j

oi,j2−i−jxiyj

From this formula, it immediately follows that
∑

i oi,0 = t(2, 0) is the number of acyclic
reorientations of M . Hence, the above formula generalizes results of [5],[14],[22],[26],[28].

Since the Tutte polynomial does not depend on any ordering, as a consequence of
this formula, oi,j does not depend on the ordering of E. Comparing with the expression
of the Tutte polynomial in terms of basis activities, we get the following relation between
the numbers of reorientations and bases with the same activities

oi,j = 2i+jbi,j

This relation is at the origin of our work on active bijections [10],[11],[12].

The active reorientation-to-basis mapping α introduced by the authors in [12a]
has several definitions. One way is to use a reduction to (1, 0) activities. Let B be
a basis with activities (1, 0) of an ordered oriented matroid M on E. There exists
A ⊆ E, unique up to complementation, such that, after reorienting on A, the covector
C∗(B; b1) ◦ C∗(B; b2) ◦ . . . ◦ C∗(B; br) is positive, and the vector C(B; c1) ◦ C(B; c2) ◦
. . . ◦ C(B; cr) has only b1 = e1 negative, where B = {b1, b2, . . . , br}< and E \ B =
{c1, c2, . . . , cn−r}<, and C(B; e) respectively C∗(B; e) is chosen in the pair of signed
fundamental circuits respectively cocircuits such that e is positive. We recall that the
operation ◦ is the composition of signed sets defined by (X ◦ Y )+ = X+ ∪ (Y + \ X−)
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and (X ◦ Y )− = X− ∪ (Y − \ X+) [3]. Then, −AM is orientation (1, 0)-active, and the
correspondence between B and A is a bijection up to opposites. We set α(−AM) = B.
A simple algorithm computes A knowing B [12b].

The general case is obtained by decomposing activities into (1, 0)-activities, both
for bases and for orientations, and then by glueing the bijections of the (1, 0) case. We
obtain in this way α for any reorientation, as the inverse of a construction using bases.

A direct construction of α from a given reorientation can be given, but is more
elaborate. The computation of the unique basis satisfying the above properties, the
fully optimal basis, of an ordered (1, 0)-active oriented matroid M , can be made by
using oriented matroid programming [12a].

The decomposition of activities in (1, 0)-activities uses minors associated with active
partitions both for bases and orientations. The active partition associated with a basis
is too technical to be described here. We will use in the paper the orientation active
partition. For our purpose, it suffices to describe the acyclic case (which implies the
general case by matroid duality [12b]).

Let AO∗ = {a1, a2, . . . , ak}< be the (orientation dually-)active elements of M . For
i = 1, 2, . . . , k, let Xi be the union of all positive cocircuits of M with smallest element
≥ ai. The sets Xi i = 1, 2, . . . , k are the active covectors of M , and the sequence X =
Xk ⊂ . . . ⊂ X1 is the active (covector) flag. The active partition E = A1 +A2 + . . .+Ak

of M is defined by Ai = Xi \ Xi+1 for i = 1, 2, . . . , k − 1, and Ak = Xk. The active
partition is naturally ordered by the order of the smallest elements in its parts.

The active mapping preserves active partitions. It turns out that the 2i+j (i, j)-
active reorientations associated with a given (i, j)-active basis are obtained from any
one of them by reversing signs on arbitrary unions of parts of the active partition.

Another way to define the active mapping is by means of inductive relations using
deleting/contraction of the greatest element. We will use this approach in the proofs of
Section 4. Here, also, we restrict ourselves to the acyclic case.

Let M be an acyclic ordered oriented matroid on E, and ω be the greatest element
of E. We denote by AO∗

ω(M) the set of smallest elements of positive cocircuits of M
containing ω. Note that by definition maxAO∗

ω is the smallest element of the part
containing ω in the active partition. As usual, M\e respectively M/e denotes the
oriented matroid obtained from M by deletion respectively contraction of an element
e. An isthmus of M is an element e such that M\e = M/e, or, equivalently, r(M\e) =
r(M) − 1.

Theorem 2.1.[12c] Let M be an acyclic ordered oriented matroid with greatest element
ω. The active mapping α associating a basis with M is determined by the following
inductive relations.

(1) If −ωM is acyclic, and if ω is not an isthmus of M , then
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(1.1) if maxAO∗
ω(M) > maxAO∗

ω(−ωM), we have α(M) = α(M\ω),
(1.2) if maxAO∗

ω(M) < maxAO∗
ω(−ωM), we have α(M) = α(M/ω) ∪ {ω},

(1.3) if maxAO∗
ω(M) = maxAO∗

ω(−ωM), let B = α(M/ω), C = C∗(B ∪ {ω}; ω),
and e = min

(
C \⋃

D
)
, where the union is over all positive cocircuits D of M such that

minD > maxAO∗
ω(M), then

(1.3.1) if e and ω have a same sign in C, we have α(M) = α(M\ω),
(1.3.2) if e and ω have opposite signs in C, we have α(M) = α(M/ω) ∪ {ω}.

(2) If −ωM is not acyclic, we have α(M) = α(M\ω).
(3) If ω is an isthmus of M , we have α(M) = α(M/ω) ∪ {ω}.

It follows from Theorem 2.1 that, when both M and −ωM are acyclic, we have
{α(M), α(−ωM)} = {α(M/ω) ∪ {ω}, α(M\ω)}. This equality expresses a symmetry
between M and −ωM .

A simple interpretation of Theorem 2.1 in terms of linear programming in the
uniform case is given in [10].

The paper is mainly written in terms of hyperplane arrangements, a language
well-suited for the geometric intuition of a fiber, our main tool in the sequel. When
convenient, we will nevertheless occasionally use the language of matroids. We briefly
survey the relationship between matroids and hyperplane arrangements.

To associate an oriented matroid with a central arrangement of hyperplanes H of
Rd, we need that signs be associated with the half-spaces defined by the hyperplanes of
H. When the hyperplanes are defined by linear forms, the oriented matroid M = M(H)
of H is the oriented matroid of linear dependencies over R of the linear forms defining
the arrangement. Otherwise, signs can be attributed arbritrarily, and a standard con-
struction can be given [3]. The oriented matroid M is acyclic if and only if the (unique)
region on the positive sides of all hyperplanes of H, called the fundamental region, is
non-empty. More generally, a region R of H is determined by its signature (called max-
imal covector in oriented matroid terminology), that is signs relative to the hyperplanes
of H of any of the interior points of R. A signature determines a (non-empty) region
R of the arrangement if and only if, by reorienting the matroid M on the subset A of
hyperplanes with negative signs, we get an acyclic oriented matroid. The region R is
the fundamental region of −AM . Thus, we have a bijection between regions and subsets
A such that −AM is acyclic.

The vertices of the fundamental region R of an acyclic oriented matroid M cor-
respond bijectively to the positive cocircuits of M . Actually, we should have more
accurately said extremal ray instead of vertex, since the regions of H are polyhedral
cones. However, if no confusion results, we will use the terminology of polyhedra, as
usual in the theory of oriented matroids. The positive cocircuit Cv associated with a
vertex v of R is the set of hyperplanes of H not containing v. A hyperplane h of H
supports a facet F of the fundamental region R if and only if −hM is acyclic. The
fundamental region of −hM is the region opposite to R with respect to F .
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When the arrangement is ordered, we usually represent geometrically the smallest
hyperplane as the plane at infinity. Then, orientation (1, 0)-active regions, having no
vertex in the plane at infinity, are bounded regions. More generally, the minimal basis
can be seen as the standard coordinate basis, yielding a hierarchy of directions at infinity,
namely, the ordered partition of the vertex set defined by vertices not in f1, vertices in
f1 but not in f2, . . . , and in general vertices in (f1∩f2∩ . . .∩fi)\fi+1, for 1 ≤ i ≤ r−1.
Then, the orientation dual-activity of a region is the number of different sorts of vertices
it contains. In other words, it is also the number of non-null intersections of the frontier
of the region with successive differences of the minimal flag f1 ∩ f2 ∩ . . . ∩ fr ⊂ . . . ⊂
f1 ∩ f2 ⊂ f1 ⊂ Rd.

Theorem 2.2 sums up the main properties of the active mapping from regions onto
the set of simplices (more accurately simplicial cones) with zero external activity, or
internal simplices, sufficient for our purpose in the present paper.

Theorem 2.2. [12] The active mapping α maps the regions of an ordered hyperplane
arrangement onto the set of internal simplices of the arrangement. It not only preserves
activities, but also the active partition.

A (k, 0)-active simplex is the image of 2k (k, 0)-active regions. The signatures of
these regions are related by reversing signs on arbitrary unions of parts of the active
partition.

The active mapping is naturally equivalent to several bijections involving regions
and simplices. The bijection (iii) below is the active region-to-simplex bijection men-
tioned in the title of the paper.

(i) Bijection between activity classes of regions and internal simplices.
We call activity class of a region with activities (k, 0) the set of 2k regions obtained by
reversing arbitrary parts of its active partition. By Theorem 2.2, the active mapping,
defined in Theorem 2.1, satisfies: α(−AR) = α(R), where R is any region and A is
a union of parts of the active partition of R. Note that −AR has the same active
partition as R. This 2k to 1 correspondence between regions and internal simplices is
a bijection between activity classes of regions and internal simplices. This bijection is
invariant under reorientation. In other words, it does not depend on the signature of the
arrangement or on a fundamental region. It depends only on the unsigned arrangement,
i.e., on the unique reorientation class of oriented matroids defined by any oriented
matroid associated with the geometric hyperplane arrangement.

(ii) Bijection between regions and the set NBC of no broken circuit subsets.
We recall that a no broken circuit subset is a subset of elements containing no circuit
with its smallest element deleted. When a signature or a fundamental region is fixed,
the bijection (i) can be refined in the following way: let αNBC(R) = α(R)\{ai1 , . . . , aij

},
where R is a region, and {ai1 , . . . , aij

} the set of its orientation dually-active elements
signed negatively in the signature of R. This mapping αNBC is a bijection between
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regions and NBC, since NBC = ]B basis[B\AI(B), B] as well-known [1]. This bijection
preserves activities generalized to subsets accordingly with this partition of NBC.

(iii) Bijection between regions with positive active elements and internal simplices.
When a signature, or a fundamental region is fixed, the common restriction of the
mappings α or αNC on regions with active elements signed positively is a bijection with
the set of internal simplices.
Bijection (ii) can also be obtained from bijection (iii). We have αNBC(−AR) = α(R) \
{ai1 , . . . , aij

}, where R is a region with positive active elements, and A is a union of
parts of the active partition of R with smallest elements {ai1 , . . . , aij

}.

(iv) Bijection between (pairs of opposite) bounded regions and (1, 0)-simplices.
This bijection, a restriction of any of the bijections (i), (ii) or (iii), and for which a
direct definition has been given above, does not depend on a signature, like (i).

We mention that in the case of graphs, assuming that the lexicographically minimal
spanning tree is edge-increasing with respect to some given vertex, there is also a bijec-
tion between acyclic orientations having this given vertex as unique sink and internal
spanning trees [11] (see also Section 5 below, in the case of Kn).

Finally, we point out that definitions and results presented here in terms of hy-
perplane arrangements generalize in a straightforward way to oriented matroids, equiv-
alently, to arrangements of pseudohyperplanes. A definition of supersolvable oriented
matroids can be found in [2].

3. Supersolvable hyperplane arrangements

The notion of supersolvable lattice has been introduced by R. Stanley in connection
with the factorization of Poincaré polynomials [20],[21]. By definition a lattice is super-
solvable if it contains a maximal chain of modular elements. Accordingly, a hyperplane
arrangement is supersolvable if and only if its lattice of intersections ordered by reverse
inclusion is supersolvable.

We will use in the sequel the following definition of supersolvability of a hyperplane
arrangement by induction on its rank [2]. We recall that the rank of a hyperplane
arrangement is equal to the dimension of the ambient space minus the dimension of the
intersection of all hyperplanes, plus 1 (i.e., equal to the rank of its matroid).

• Every hyperplane arrangement of rank at most 2 is supersolvable.
• A hyperplane arrangement H of rank r ≥ 3 is supersolvable if and only it contains

a supersolvable sub-arrangement H ′ of rank r − 1 such that for all h1 6= h2 ∈ H \ H ′

there is h′ ∈ H ′ such that h1 ∩ h2 ⊆ h′. In this situation, we write H ′ / H.
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Classical examples of supersolvable real arrangements are the braid arrangement,
related to the Coxeter group An (see Section 5 below), and the hyperoctahedral ar-
rangement, related to the Coxeter goup Bn (see Section 6 below), and also arrangements
associated with chordal graphs (see Example 3.2 below).

Let H ′ / H. We denote by Π(R) the region of H ′ containing a region R of H. The
fiber of a region R in H is the set Π−1(Π(R)) of regions of H contained in the region of
H ′ containing R.

The adjacency graph of a hyperplane arrangement is the graph having regions as
vertices, such that two vertices are joined by an edge if and only if the corresponding
regions have a common facet, equivalently, if one region can be obtained from the other
in the oriented matroid of the arrangement by reversing the sign of the hyperplane
supporting the common facet.

Proposition 3.1. [2] Let H be a supersolvable arrangement, and H ′/H. The restriction
of the adjacency graph to a fiber is a path of length |H \ H ′|.

We say that a region is extreme in its fiber if the corresponding vertex is at an end
of the fiber path in Proposition 3.1.

Let H be a supersolvable hyperplane arrangement of rank r. We call a resolution
of H a sequence Hi, i = 1, 2, . . . , r, of supersolvable sub-arrangements of H such that
Hi is of rank i for i = 1, 2, . . . , r and H1 / H2 / . . . / Hr = H.

When H is supersolvable and linearly ordered, we say that a resolution H1 / H2 /
. . . / Hr = H is ordered if H1 < H2 \H1 < . . . < Hr \Hr−1, where H1 < H2 \H1 means
that elements in H1 are smaller than elements in H2 \ H1.

In an ordered resolution, we have min(H \Hi−1) ∈ Hi for all 1 ≤ i ≤ r. Hence, the
minimal basis is Bmin = {f1, f2, . . . , fr}< with fi = min(Hi \ Hi−1) for all 1 ≤ i ≤ r.

In the remainder of this section, H1 / H2 / . . . / Hr = H is an ordered resolution of
a supersolvable arrangement.
Example. Figure 1 shows an ordered resolution 1/1234/123456789 of the supersolvable
arrangement associated with the Coxeter group B3.

Activities of regions and simplices have simple characterizations in the supersolv-
able case. We will use them, together with the adjacency graph, to build an activity
preserving mapping from regions to simplices, called the weakly active mapping.

Proposition 3.2. A basis B = {b1, b2, . . . , br}< of H is internal if and only if bi ∈
Hi \ Hi−1 for all 1 ≤ i ≤ r. In this case, AI(B) = B ∩ Bmin.
Proof. We prove Proposition 3.2 by induction on r. If r = 1 we have b1 = f1. Let
B = {b1, b2, . . . , bi−1} be an internal basis of Hi−1, i.e. a basis with zero external activity.
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Figure 1. Ordered resolution of a supersolvable hyperplane arrangement

If bi ∈ Hi \Hi−1, then B ∪ bi is a basis of Hi, which is internal since Hi−1 < Hi \Hi−1

and the intersections of hyperplanes in Hi \ Hi−1 are in Hi−1.
Conversely, if a basis B = {b1, b2, . . . , br}< is not of this form, then there exist i, j

and k such that {bi, bj} ⊆ Hk\Hk−1. Since the intersection of bi and bj is contained in a
hyperplane of Hk−1, there exists a circuit containing bi, bj , and an element e ∈ Hk−1\B.
Note that e is smaller than bi and bj since Hk−1 < Hk. Hence the basis B is not internal.

The inclusion AI(B) ⊆ B ∩ Bmin is true in general. In the supersolvable case, if
bi ∈ B ∩ Bmin then the flat generated by {bj, j < i} is Hi−1, and bi ∈ Hi \ Hi−1. So
bi = fi = min(Hi \ Hi−1) = min(E \ closure(B − bi)). Hence b ∈ AI(B).

Proposition 3.3. Let R be a region of H = Hr, with fiber Π(R) in Hr−1. If R is
not extreme in its fiber, then AO∗(R) = AO∗(Π(R)). If R is extreme in its fiber, then
AO∗(R) = AO∗(Π(R)) ∪ {fr}.

Proof. The element fi+1, i < r − 1, is dually active in the region Π(R) of Hr−1 if this
region is adjacent to the flat Hi−1 of Hr−1 (geometrical interpretation of activities of
reorientations). If Π(R) is adjacent to the flat Hi, and if Π(R) is cut in H = Hr by a
hyperplane e, then e cuts Hi. According to Proposition 3.1, the region R has at most
two facet hyperplanes in Hr. The intersection of these hyperplanes is included in the
frontier of R, and is included in a hyperplane of Hr−1, by definition of a supersolvable
arrangement. Hence, for all i < r − 1, R is adjacent to Hi in Hr if and only if Π(R) is
adjacent to Hi in Hr−1. Hence Π(R) and R have the same dual-active elements, except
maybe fr.
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The extreme regions of the fiber in H are those touching the flat Hr−1 of H.
Geometrically, this means that they touch the line of intersection of the elements of
Hr−1 in H, and this means that fr is dually-active. Conversely, non-extreme regions
do not touch this line, and fr is not dually-active.

Definition-Algorithm 3.4. Inductive construction of the weakly active mapping α1

We define a mapping α1 from regions to simplices of a supersolvable ordered ar-
rangement H with an ordered resolution by induction on the rank. In rank 1, the
arrangement is reduced to one hyperplane h1, there are two regions R1 and R2. We set
α1(R1) = α1(R2) = {h1}.

Suppose the rank ≥ 2, and let R be a region of H. By induction, we know that
α1(Π(R)) is equal to a simplex {b1, b2, . . . , br−1}< of Hr−1. By Proposition 3.1 the
adjacency graph of H restricted to the fiber of R is a path λ joining the two extreme
regions of the fiber.

• If R is extreme in its fiber, set br = fr, where fr is the r-th element of the
minimal basis, the smallest hyperplane in Hr \ Hr−1, i.e. the smallest edge of λ.

• If R is not extreme in its fiber, then R has two facets in Hr \Hr−1, corresponding
to the two edges of λ incident to R. One of these two facets separates R from at least
one of the two regions of the fiber adjacent to fr. Let br be the other facet. Graphically,
if we direct the edges of λ different from fr away from fr, then br is the edge of λ
directed away from R.

We set α1(R) = {b1, b2, . . . , br}<.

Theorem 3.5. The mapping α1 is an activity preserving (surjective) mapping from
regions to internal simplices of an ordered supersolvable hyperplane arrangement.

The number of regions associated with a basis with internal activity i is 2i.

Proof. For each fiber associated with an internal basis B of Hr−1, the two extreme
regions of the fiber are associated with B ∪ fr. If Hr \ Hr−1 is not reduced to fr, then
the mapping built from the adjacency graph of regions in the fiber, preserves activities
by Propositions 3.1 and 3.2. Since the two extreme regions in each fiber (and only they
in each fiber) have the same image, we get the last result by induction on the rank.

Example 3.1. Figure 2 shows the weakly active mapping α1 for the arrangement of
Figure 1. We show the construction for two fibers associated with the bases 12 (the left
one) and 14 of H2.

Example 3.2. The hyperplane arrangement H(G) associated with a graph G = (V, E),
V = {v1, v2, . . . , vn}, is the arrangement of Rn having a hyperplane of equation xi = xj

for each edge vivj ∈ E. A graph is said to be chordal, or triangulated, if every cycle of
length at least 4 has a chord, i.e. if there exists an edge of the graph joining two non-
consecutive vertices of the cycle. As well-known, the arrangement H(G) is supersolvable
if and only if G is chordal [21]. The following classical alternate definition of chordal
graphs is the graphic form of the inductive definition of supersolvable arrangement of
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Figure 2. The weakly active mapping for the arrangement of Figure 1

[2]. The graph G = (V, E) is triangulated if and only if there exists a reindexing of the
vertices such that, for all 2 ≤ i ≤ n, the vertices vj with j < i adjacent to vi constitute
a clique of G.

For 2 ≤ i ≤ n, let Ei−1 be the set of edges vjvk ∈ E such that j, k ≤ i. Then,
with r = n − 1, E1 / E2 / . . . / Er = E is a resolution of H(G). Assume the edge-set
of G is linearly ordered, such that the above resolution is ordered. The mapping α1

from acyclic orientations of G to spanning trees is constructed by inductively applying
Definition-Algorithm 3.4 as follows.

Let −→
G be an acyclic orientation of G, and T ′ = α1(

−→
G \ v) with v = vn. Let N be

the set of neighbours of v. Since −→
G [N ] is a complete acyclic directed graph, there is a

unique directed path u1 → u2 → . . . → uk containing all vertices of N . The orientation
of −→G being acyclic, there is 0 ≤ j ≤ k such that the edges joining v and N are directed
from ui to v for 1 ≤ i ≤ j and from v to ui for j + 1 ≤ i ≤ k. Set −→

G j = −→
G . Then, as is

easily seen, the fiber path of −→G is −→
G0 −−− −→

G1 −−− . . . −−− −→
Gk. Two consecutive

acyclic orientations −→
G i−1 and −→

G i, 1 ≤ i ≤ k, of this path are related by reversing the
direction of the edge uiv. Therefore the corresponding regions of the fiber are separated
by the hyperplane associated with uiv.

Suppose u`v, 1 ≤ ` ≤ k, is the smallest edge of E \ Er−1 in the ordering of E.
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Then, applying Definition-Algorithm 3.4, we have

• α1(
−→
Gj) = T ′ ∪ {u`v} if j = 0 or j = k,

• α1(
−→
Gj) = T ′ ∪ {ujv} if 1 ≤ j ≤ ` − 1,

• α1(
−→
Gj) = T ′ ∪ {uj+1v} if ` ≤ j ≤ n − 1.

The case when G is a complete graph is studied more completely in Section 5.

Remark. The construction of α1 in each fiber only uses the adjacency graph, the
element of the minimal basis cutting this fiber, and the compatibility of the ordering
with the resolution of H. Hence, the image of a region under α1 is not affected by
changing the linear order provided it is compatible with the given resolution and has
the same minimal basis (i.e. the smallest element in each Hj \ Hj−1 is not changed).

4. The active mapping for supersolvable hyperplane arrangements

The weakly active mapping having a simple construction in the supersolvable case
may seem more natural than the active mapping considered in this section. However,
the active mapping has many interesting structural properties. The regions associated
with a given basis have a natural characterization, related to the fact that the active
mapping not only preserves active elements, but also active partitions. In the general
case, the two active mappings coincide for (1, 0) activities, i.e. for bounded regions of
arrangements [12c].

We point out that, in the bounded case, the active mapping has a natural inter-
pretation in terms of optimization and linear programming [12a]. Finally, particularly
in the supersolvable case, the active mapping can be seen as a refinement of the weakly
active mapping. The same construction is used in each path of a sequence of nested
paths representing the fiber, when it has a dual activity superior to 1, instead of a single
path representing the fiber as in the previous Section.

In the whole section H1/H2/. . ./Hr = H is an ordered resolution of a supersolvable
hyperplane arrangement.

Let R be a region of H with AO∗(R) = {a1, . . . , ak}<. By Proposition 3.3, every
active flag of a non-extreme region of the fiber of R is of the form Xk ⊂ Xk−1 ⊂ . . . ⊂
X1 = H with associated active partition Ak = Xk, Ai = Xi \ Xi+1 for 1 ≤ i ≤ k − 1,
and with min(Ai) = min(Xi) = ai. We order this set of active partitions of non-extreme
regions in the fiber Π(R) by lexicographic inclusion: the partition A1 + . . .+Ak−1 +Ak

is smaller than the partition A′
1 + . . . + A′

k−1 + A′
k if and only if there exists an index i

with 1 ≤ i ≤ k, such that Ai ⊂ A′
i and Ai′ = A′

i′ for all i′, i < i′ ≤ k. Active flags are
ordered consistently.
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Proposition 4.1. Let A be the active partition of a region in a fiber Π. The set of
regions in Π with active partition smaller than A constitute a connected subpath of the
path defined by all regions in Π in the adjacency graph.

Let X = Xk ⊂ . . . ⊂ X1 be the active flag corresponding to A. Let 1 ≤ j ≤ k + 1
be the smallest index such that the frontier of every region with active flag smaller
than X contains the intersection of hyperplanes in Hr \ Xj (we make the convention
Xk+1 = ∅). This intersection is a face F , and, when Xj 6= ∅, Xj is the support of the
covector corresponding to F .

Then, the set of hyperplanes in Hr \ Hr−1 which are facets of regions with active
flag smaller than X is Hr \ (Hr−1 ∪Xj). Furthermore, a hyperplane belongs to this set
if and only if it contains the face F .

Proof. First, consider a given face in the arrangement. The set of regions, in the fiber
Π, of which frontier contains this face form a path. Indeed each region in this set
is obtained from any other region in this set by successive reorientations of elements,
one by one, such that the intermediate regions remain in the set, and every element
is used at most once. Now, consider i fixed subsets Xk ⊂ . . . ⊂ Xk−i+1. With the
geometrical interpretation of active flags, and the above observation, we deduce that
the set of regions for which these i fixed subsets are the i first subsets in the active flag
form a path, since it is an intersection of subpaths of a path. The inclusion relation of
faces corresponding to active flags corresponds exactly to the lexicographic inclusion of
the subsets that form the active flags. Hence, the set of regions whose active sequence
is smaller than a given one is exactly a set of regions having i fixed smallest subsets
Xk ⊂ . . . ⊂ Xk−i+1, and thus forms a path in the fiber. By definition of the ordering
of active flags, the set Xj is maximal belonging to every active flag smaller than X , if
it exists. The face F corresponds to a covector with support Xj if j < k + 1, and to
the intersection of all hyperplanes (null vector) if j = k +1. The hyperplanes which are
facets of regions in the path are exactly hyperplanes containing the corresponding face
F . So they form the set (Hr \ Hr−1) ∩ (Hr \ Xj).

When A is the active partition of a region in Π, we define P (A) as the path
of Proposition 4.1 included in Π, together with the two regions in Π adjacent to the
extremity regions of this path. We also define F (A) as the intersection of the set of
hyperplanes separating regions of this path, i.e. edges of P (A). In the notations of
Proposition 4.1, this face is F and corresponds to the covector with support Xj when
Xj 6= ∅.

We have four isomorphic ordered sets, relative to the set of non-extreme regions of
a given fiber:
(1) the set of active partitions A ordered lexicographically by (set) inclusion,
(2) the set of active flags X (successive unions in A) ordered consistently,
(3) the set of paths P (A) ordered by (graphical) inclusion,
(4) the set of faces F (A) ordered by (geometrical) reverse inclusion.
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Let A be the active partition of a region in Π. We associate with A a minor of the
path Π as follows: for every path P (A′), strictly contained in P (A), all vertices (regions)
of this path are deleted, except the extreme ones, and all edges are deleted, except the
smallest. The remaining path is called the reduced path of A. By construction, every
non extreme region in the fiber corresponds to a non extreme region of one and only
one reduced path in the fiber.

The following definition-algorithm gives a direct definition of the active mapping
in the supersolvable case. We will then establish that the general active mapping of
Section 2 and the present one are equal in this special case. To distinguish them until
the equality is proved, the active mapping of Section 2 will be denoted by α.

Definition-Algorithm 4.2. Inductive construction of the active mapping α.
We define the mapping α from the regions of H to its internal simplices by induction

on the rank. Let R be a region of H. By induction, we know that α(Π(R)) is equal to
the simplex {b1, b2, . . . , br−1}< of Hr−1.

The input for the computation is the path of the fiber Π(R), and the active partition
– or active flag – of each region in Π(R).

• If R is extreme in Π(R), set br = fr, where fr is the r-th element of the minimal
basis, hence the smallest hyperplane in Hr \ Hr−1, and the smallest edge of the fiber.

• If R is not extreme in Π(R), then let A be its active partition, let λ be the
reduced path of A, and let e be the smallest edge (hyperplane) of λ. Then R is adjacent
to two edges (hyperplanes) in λ. One of these two hyperplanes separates R from at
least one of the two regions of the fiber adjacent to e. Let br be the other hyperplane.
Graphically, if we direct the edges of λ different from e away from e, then br is the edge
of λ directed away from R.

We set α(R) = {b1, b2, . . . , br}<.

Note that the above construction is very similar to the construction of α1, except
that the path which has to be considered is the reduced path associated with the region,
instead of its whole fiber.

Note also that a direct computation, not using the reduction to reduced paths, is
obtained by replacing the second point with the following:

• If R is not extreme in Π(R), let A be its active partition. By convention, we
set the active partitions of extreme regions of the fiber to be strictly greater than the
others. Let R1, R2 be the first vertices (regions) with active partitions greater than A
in both sides of R on the path Π associated with the fiber. Let e be the smallest edge
(hyperplane) of the subpath [R1, R2] of Π. Reversing if necessary, we adapt the notation
such that e is in [R1, R]. Let R′ be the first vertex with active partition greater than or
equal to A when going from R on the subpath ]R, R2] (we may have R′ = R2, but by
definition R′ 6= R). Then br is the smallest edge of the subpath [R, R′].

We mention briefly that, in fact, the reduction to reduced paths is related to a more
general definition of α by decomposition of activites [12b]. The basis associated with α
is calculated in a minor where the induced region is bounded with respect to the smallest
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element. Here, this minor is the arrangement of hyperplanes containing the face F (A)
where the smaller faces, in the ordered set (4) mentioned above, are contracted. As we
shall see in next Proposition 4.4, the mappings α and α1 coincide for bounded regions.
Thus, it is not surprising that the construction applied to reduced paths for α is the
same as the construction applied to the whole fiber path for α1.

Theorem 4.3. The mapping α is an activity preserving (surjective) mapping from the
set of regions to the set of internal simplices of an ordered supersolvable arrangement.

Two regions have the same image under α if and only if they have the same active
partition, and one can be obtained from the other by reorienting parts of the active
partition. The number of regions in the inverse image of a simplex with internal activity
i is 2i.

Proof. The mapping α is an activity preserving mapping in exactly the same way as
α1 in Theorem 3.5. The reorientation property is available for the general construction
[12b]. In the present case of a supersolvable arrangement, this property has an easy
proof by induction on the rank, since reorienting a subset in the active flag amounts to
reversing a path in the fiber, that is to reversing several reduced paths. Furthermore,
the construction of the maximal element of the basis associated with a region is invariant
under the reversal of the relevant reduced path.

Proposition 4.4 The mappings α and α1 coincide on regions with activities (1, 0).

Proof. This property is obvious since the inductive definitions of α and α1 coincide
for regions not touching f1 (except at the null vector). Indeed, all these regions have
AO∗ = {f1} as their set of orientation dually-active elements.

Example 4.1. Figure 3 shows the active mapping for the example of Figures 1 and 2.
The active paths for the two fibers associated with 12 are shown. In these two fibers,
for regions associated with 127 or 128, the active partition is 1678 + 23459, since the
hyperplanes 6, 7, 8 and 1 meet at one point, which means that the intersection of the
frontiers of these two regions is this intersection point. For regions associated with 126
or 129, the active partition is 1 + 23456789, since 1 is a facet of these regions. For
regions associated with 125, the active partition is 1+234+56789, which is the minimal
flag. We observe that the paths formed by regions associated with 125, 126, and 129
are reversed in the two fibers associated with 12, due to the reorientation of 23456789
to pass from one region to the other, whereas the paths formed by regions associated
with bases 127 and 128 have same direction, due to the reorientation of 23459 to pass
from one region to the other. Moreover, in the fiber on the left, we see that regions
associated with bases 126, 127 and 128 are switched in Figures 2 and 3, showing that
α1 and α may be different on regions with internal activity > 1.

the electronic journal of combinatorics 11(2) (2006), #R30 16



1 2 3 4

5

6

7

8

9
125

126

128

127

129

125

135

138

137

139

136

135

145

148

149

147

146

145

125

129

128

127

126

125

125

126

128

127

129

125

5

8

7

6

9

fiber 12 (left)

125

129

128

127

126

125

9

8

7

6

5

fiber 12 (right)

Figure 3. The active mapping for the arrangement of Figure 1

Example 4.2. Figure 4 is a more involved example of a fiber in a rank-4 supersolvable
arrangement, with incomparable active partitions. First consider three independent
hyperplanes 1, 2 and 3 in the real affine space with rank 3, and a region delimited by
these hyperplanes, that is a cone with apex O = 1∩2∩3. This cone is cut by hyperplanes
4, a, b, c, d, e, f, g, h in such a way that two of these hyperplanes do not cut inside the
cone, and the intersections with 1 and 2 are represented in Figure 4. In particular
a ∩ b ∩ c ∩ d ∩ e ∩ f ∩ g ∩ h is a point I. Hence this figure is a partial representation
of the cone, whose information is sufficient to build the mappings. We use the ordering
1 < 2 < 3 < 4 < a < b < c < d < e < f < g < h.

We have to check that this arrangement can be completed into a supersolvable
arrangement for which no other hyperplane cut the cone, and for which every other
hyperplane contains O. For i, j ∈ {4, a, b, c, d, e, f, g, h} and i 6= j, set Hij to be the
hyperplane containing i ∩ j and O. For i, j ∈ {a, b, c, d, e, f, g, h}, the hyperplane Hij

contains the line (OI). Moreover, for i, j ∈ {a, b, c, d, e, f, g, h}, we have H4i∩H4j ⊆ Hij .
For i ∈ {a, b, c, d, e, f, g, h}, set H3i to be the hyperplane containing O, I and the point
3 ∩ 4 ∩ i. Then for i ∈ {a, b, c, d, e, f, g, h} we have 3 ∩ H4i ⊆ H3i. Finally, we get a
supersolvable arrangement with resolution H1 / H2 / H3 / H4 equal to {1} / H1 ∪
{2} ∪ {

Hij | i, j ∈ {a, b, c, d, e, f, g, h}} ∪ {
H3i | i ∈ {a, b, c, d, e, f, g, h}} / H2 ∪

{3} ∪ {
H4i | t ∈ {a, b, c, d, e, f, g, h}} / H3 ∪ {4, a, b, c, d, e, f, g, h}. For a compatible

ordering, this arrangement fits the setting of the previous results, which we apply below.
By construction, the chosen cone defines a fiber delimited by 1, 2 3 and cut only by
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Figure 4. The active mapping in a rank-4 fiber

4, a, b, c, d, e, f, g, h. Hence we omit on the figure and in the active partitions the other
hyperplanes that are useless for the construction.

Thus, the (partial) ordered resolution of this supersolvable arrangement is 1 / 12 /
123 / 1234abcdefgh = H. The minimal basis is 1234, and the minimal flag 1 ⊃ 1 ∩ 2 ⊃
1∩ 2∩ 3. The fiber has orientation dually-active elements 1, 2, 3. Hence it is associated
with 123 in H3. Since the two extreme regions in the fiber have orientation dually-active
elements 1, 2, 3, 4, they are associated with 1234 by α.

A perspective view of the arrangement and of the active mapping is shown in the
left part of Figure 4. The median part of Figure 4 shows the sequences of nested faces,
representing geometrically the active flags, followed by the (partial) active partitions of
regions. The partially directed reduced paths used in the Definition-Algorithm 4.2 are
represented in the right part of Figure 4. For the non-extreme regions, the corresponding
active flags are 1bcd ⊂ 1bcd2aefgh ⊂ H and 2aefg ⊂ 1bcd2aefgh ⊂ H which are
minimal, and both strictly smaller than 1 ⊂ 1bcd2aefgh ⊂ H.

The isomorphism of ordered sets mentioned previously appears in the right part of
Figure 4 (in colors). Precisely, the active partition 1bcd + 2aefgh + 34 corresponds to
the 2-dimensional face 1∩b∩c∩d, and to the path delimited by c and d (in green). The
active partition 1efg + 2abcdh + 34 corresponds to the 2-dimensional face 1 ∩ e∩ f ∩ g,
and to the path delimited by e and f (in blue). These two intervals being minimal,
they are equal to their associated active path. The active partition 1 + 2abcdefgh + 34
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corresponds to the 1-dimensional face 1 ∩ 2 ∩ a ∩ b ∩ c ∩ d ∩ e ∩ f ∩ g ∩ h, and to the
path delimited by d and h (in red). The corresponding active path has edges a, b, e and
h. Finally, the active partition 1 + 2 + 34abcdefgh corresponds to the 0-dimensional
intersection of all hyperplanes – not represented in this affine representation – and to
the path delimited by 4 and d. The corresponding active path has two edges 4 and a.

The construction of α can be done by first considering the path induced by d, b, c,
since the flag 1bcd ⊂ 1bcd2aefgh ⊂ E is minimal. Then the edges d and c are directed
away from b, yielding the mapping for 123d and 123c. Independently, the path g, f, e
yields the mapping for 123f and 123g. Then c, d, f, g are deleted, and we consider the
path induced by b, a, e, and, lastly, the paths induced by a and 4.

An equivalent definition of the active mapping, closer to the general inductive
definition by deletion/contraction of Theorem 2.1 [12c], is given by Lemma 4.5.2 below.

For h ∈ H, we denote by R \ h the region of H \ h containing R. Note that if
h ∈ Hr \ Hr−1, then H \ h is supersolvable with resolution H1 / . . . / Hr−1 / Hr \ h.

Lemma 4.5.1. Let ω ∈ Hr \ Hr−1 be a facet of R. We assume that R and −ωR are
not extreme. Let ai = max(AO∗

ω(R)), and let A1 + . . . + Ak be the active partition of
R. Let ai′ = max(AO∗

ω(−ωR)), and let A′
1 + . . . + A′

k be the active partition of −ωR.
We have ai < ai′ if and only if Ai′ ⊂ A′

i′ and Aj = A′
j for all j such that i′ < j ≤ k.

We have ai = ai′ if and only if Aj = A′
j for all j such that 1 ≤ j ≤ k.

Moreover, in these two cases, the active partition of R\ω equals A′
1\ω+. . .+A′

k\ω.

Proof. First, every positive cocircuit of R, resp. ωR, with smallest element aj >
max(ai, ai′) does not contain ω, and so is also a positive cocircuit of −ωR, resp. R.
Hence Aj = A′

j for all j such that max(i, i′) < j ≤ k.
Secondly, we assume that ai < ai′ . Every positive cocircuit of R with smallest

element ai′ does not contain ω and so Ai′ ⊆ A′
i′ . But ω ∈ A′

i′ \ Ai′ . Hence Ai′ ⊂ A′
i′ .

Thirdly, we assume that ai = ai′ . Let e ∈ H such that the smallest element of its
part in the active partition of R, resp.−ωR, is aj , resp. a′

j. Assume that aj < a′
j ≤ ai.

By definition, there exists a cocircuit C′ with smallest element a′
j , positive in −ωR. If

C′ does not contain ω, then C′ is also a positive cocircuit of R, which is a contradiction
with a′

j > aj and the definition of aj . Hence C′ has only one negative element ω in R.
By definition of ai, there exists a positive cocircuit C of R containing ω with smallest
element ai. Let C′′ be a cocircuit of R containing e, obtained by matroid elimination
of ω from C and C′. Then C′′ is a positive cocircuit of R containing e with smallest
element ≥ a′

j , which is a contradiction with a′
j > aj and the definition of aj . Hence

aj = a′
j , and so the active partitions or R and −ωR are equal. The two implications

above prove the two equivalences in the lemma.
Finally, we assume that ai ≤ ai′ . Let e ∈ H, such that the smallest element of its

part in the active partition of −ωR, resp. R \ω, is a′
j, resp. aj . Every positive cocircuit

of −ωR with smallest element a′
j and containing e contains a positive cocircuit of R \ω,

such that this cocircuit contains e and has its smallest element greater than or equal to
a′

j . Hence a′
j ≤ aj. Conversely, let C be a positive cocircuit of R\ω with smallest element
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aj and containing e. If C is a positive cocircuit of −ωR, then aj ≤ a′
j by definition of

a′
j . Indeed, otherwise, it can be written C = (D \ ω) ∪ (D′ \ ω) where D, resp. D′, is

a positive cocircuit containing ω of R, resp. −ωR. So aj = min(min(D), min(D′)). If
D′ contains e then aj ≤ min(D′) ≤ a′

j . If D contains e then aj ≤ min(D) ≤ ai ≤ ai′ .
Let D′′ be a positive cocircuit of −ωR containing ω with min(D′′) = ai′ . By matroid
elimination of ω from D and D′′, there is a positive cocircuit D′′′ of −ωR containing e
with min(D′′′) ≥ min(D). Hence aj ≤ min(D) ≤ min(D′′′) ≤ a′

j. Therefore, the active
partition of R \ ω conforms to the description given in the lemma.

Lemma 4.5.2. The mapping α is constructed by the following algorithm.
Let R be a region of H, and ω be the greatest hyperplane in H.

(1) If ω > fr is a facet of R, then
(1.1) if maxAO∗

ω(R) > maxAO∗
ω(−ωR), then α(R) = α(R \ ω),

(1.2) if maxAO∗
ω(R) < maxAO∗

ω(−ωR), then α(R) = α(Π(R)) ∪ {ω},
(1.3) if maxAO∗

ω(R) = maxAO∗
ω(−ωR), then, set s = max(α(R \ ω)),

(1.3.1) if s is a facet of R, then α(R) = α(R \ ω),
(1.3.2) otherwise, α(R) = α(Π(R)) ∪ {ω}.

(2) If ω > fr is not a facet of R, then α(R) = α(R \ ω).
(3) If ω = fr then α(R) = α(Π(R)) ∪ {ω}.

Note that, when ω > fr is a facet of R, this algorithm builds at the same time
the image of R and −ωR under α, one being equal to α(Π(R)) ∪ {ω}, and the other to
α(R \ ω) = α(Π(R)) ∪ {s}.

Proof. First, if R is extreme, then max AO∗
ω(R) > maxAO∗

ω(−ωR). Secondly, if ω is
not a facet of a region R then the active partition of R \ ω is obtained by removing ω
from its part in the active partition of R. Moreover, maxAO∗

ω(R) = maxAO∗
ω(−ωR)

if and only if R and −ωR are non extreme regions of the same reduced path, thanks to
Lemma 4.5.1. Thus, the equivalence of this construction with the definition of α is easy
to check. We omit the details.

Lemma 4.5.3. For all regions R of a supersolvable arrangement of hyperplanes H with
an ordered resolution, we have α(R) \ max(α(R)) = α(Π(R)).

Proof. Let ω be the greatest element of H. By definition of α (Section 2): if ω ∈ α(R)
then α(R) = α(R/ω) ∪ ω, and if ω 6∈ α(R) then α(R) = α(R \ ω). Moreover, if ω = fr,
then ω is an isthmus and the result is obvious. We assume now that ω > fr.

Clearly, H \ω is supersolvable, and the fibers of H \ω are obtained by removing ω
in the fibers of H. Hence, all elements superior to max(α(R)) can be deleted, so that
we may assume, for the sequel, ω = max(α(R)). Thus α(R) \ max(α(R)) = α(R/ω).

Let e ∈ H with fr ≤ e < ω. By definition of a supersolvable arrangement of
hyperplanes, the intersection of e and ω is included in a hyperplane of Hr−1. Hence the
face (R/ω)\e of H \e cannot be cut by e. In other words, e does not belong to a positive
cocircuit of −eR/ω. Hence, by definition of α, we have α(R/ω) = α(R/ω \ e). Applying
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this successively to all e ∈ ((Hr \ω) \Hr−1), we then get α(R/ω) = α(R/ω \ ((Hr \ω) \
Hr−1)). But ω is an isthmus of R\((Hr \ω)\Hr−1), hence α(R/ω\((Hr \ω)\Hr−1)) =
α(R \ (Hr \ Hr−1)) = α(Π(R)).

Theorem 4.5. The mapping α from regions of an ordered supersolvable arrangement
to internal simplices is equal to the mapping α (restricted to regions).

Proof. We prove this by induction on the rank of H. We have to prove that the definition
given in Lemma 4.5.2 coincides with the definition of α. In view of Lemma 4.5.3, we
just have to check that the two definitions coincide in the case where max AO∗

ω(R) =
maxAO∗

ω(−ωR). This case corresponds to the case 1.3 of the definition of α.
In that case, let B = α(R/ω). By Lemma 4.5.3, we have B = α(Π(R)), and by

the induction hypothesis, B = α(Π(R)). Let C = C∗(B ∪ ω; ω). Since B is included in
Hr−1, the flat of M generated by B is Hr−1. Hence the support of C is Hr \ Hr−1.

Let e = min
(
C \⋃

D
)
, where the union is over all positive cocircuits D of M such

that minD > maxAO∗
ω(M). Let a1 < . . . < ak be the set of active elements of R, and

X = Xk ⊂ . . . ⊂ X1 be the active flag of R, with corresponding active partition A. Let
ai = max(AOω(M)). We get e = min(C \ Xi+1) = min(Hr \ (Hr−1 ∪ Xi+1)). Let Fω

be the face corresponding to the positive covector of R with support Xi+1.
The hyperplane ω contains the face F (A) by Proposition 4.1, since it is a facet of

the path P (A) for which R is a non-extreme vertex. Hence F (A) ⊆ Fω. If F (A) ⊂ Fω

then there would be a region R′ with active flag X ′ = X ′
k ⊂ . . . ⊂ X ′

1 and ω ∈ X ′
i+1,

which would be a contradiction with X ′ being smaller than X . Hence F (A) = Fω.
So Xi+1 ∩ (Hr \ Hr−1) is the set of edges of the path P (A), and e is the minimal

edge of this path. Hence e is the minimal edge of the reduced path of A. By definition
of α, we have br = ω if and only if ω separates R and e, that is if and only if ω and e
have opposite signs in C. Hence the two definitions are the same.

5. The active mappings for the braid arrangement

We apply in this section the results of Section 3 and 4 to the braid arrangement.
The two active mappings α and α1 are equal, and equivalent to a known bijection
between permutations and increasing trees, in a simple and explicit way. The active
mappings are constructed here from Definition-Algorithm 3.4 and Definition-Algorithm
4.2 for supersolvable arrangements. Another way could be by applying the results of
[11] Sections 6-7 for graphs, since the braid arrangement is graphic.

The braid arrangement, denoted here by Bn, is a real arrangement consisting of
n(n − 1)/2 hyperplanes. In Rn, a realization of Bn is given by the equations hi,j ≡
−xi + xj = 0 for 1 ≤ i < j ≤ n. This arrangement is of rank n − 1: all hyperplanes
contain the line x1 = x2 = . . . = xn. Projecting along this line, we get an alternate
description of Bn as the arrangement of full rank comprised by the mirrors of symmetry
of the regular simplex Sn of Rn−1.
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As is well-known, the braid arrangement Bn, the complete graph Kn with vertices
indexed by {1, 2, . . . , n}, the permutation group Sn, and the Coxeter group An−1 are
closely related combinatorial objects.

• Bn and Kn. If the hyperplane hi,j is associated with the directed edge ij of
Kn, then the regions of Bn are in bijection with the acyclic orientations of Kn. The
fundamental region with all hi,j > 0 corresponds to the acyclic orientation of Kn with
all edges directed from i to j for 1 ≤ i < j ≤ n.

• Kn and Sn. An acyclic orientation of Kn defines a linear ordering of its vertices,
that is a permutation of {1, 2, . . . , n}, and conversely. An edge ij is directed from i
to j when i < j. Hence, the source respectively sink of the orientation is the minimal
respectively maximal element of the associated permutation. The fundamental region
is associated with the identity permutation.

2

3 4
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13 14

34

123 124

134

3412 4312

3142

31
24

1324 1423

1342

1234 1243

1432

4123

4132

Figure 5. 4-permutations and the barycentric subdivision of the 4-simplex

• Sn and An−1 The transpositions si = (i, i+1), i = 1, 2, . . . , n− 1, a standard set
of generators of Sn, constitute n−1 involutions. They satisfy the relations (sisi+1)3 = 1
for 1 ≤ i ≤ n−1 and (sisj)2 = 1 if 1 ≤ i, j ≤ n−1 with j ≥ i+2, hence these involutions
define the Coxeter group An−1

• Bn, Sn and An−1. In the interpretation of the Coxeter group An−1 as the sym-
metry group of the regular simplex Sn of Rn−1, the reflections of An−1, conjugates of
the generators s1, s2, . . . , sn−1 in the group, are geometrically the mirrors of symmetry
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of the edges of Sn, i.e. the hyperplanes orthogonal to the edges at their middles. These
reflections define the first barycentric subdivision BSn of Sn, dividing the polytope Sn

into n! simplicial cells. The elements of An−1 corresponds bijectively to the permu-
tations of 12 . . . n, and also to the simplices of BSn. With the permutation i1i2 . . . in
is associated the simplex of BSn with vertices i1, i1i2,. . ., i1i2 . . . in, where i1i2 . . . ik
denotes the barycenter of the vertices i1, i2, . . . , ik of Sn. See Figure 5 and Figure 6.

In the sequel, we will use whichever language is more convenient.

12 13 23

14

24

34

3124

3142

3412

4312

1324

1342

1432

4132

1234

1243

1423

4123

Figure 6. The braid arrangement B3 and 4-permutations

The braid arrangement is supersolvable as pointed out by Stanley [21] Prop. 2.8.
The standard resolution of Bn is B2 / B3 / . . . / Bn. It follows immediately from the
equations that hi,n ∩ hj,n ⊂ hi,j .

The colexicographical ordering of the hyperplanes ij = hi,j is a standard linear
ordering

12 < 13 < 23 < 14 < 24 < 34 < . . .

of Bn, defined by ij < k` if either j < `, or j = ` and i < k. Actually, the colexicographic
ordering is only one among many linear orderings of Bn yielding the desired properties
for active mappings. We say that a linear ordering of Bn is admissible if it is an ordering
compatible with the standard resolution and such that 1i is the smallest hyperplane of
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Bi \ Bi−1 for 2 ≤ i ≤ n. In Section 5, we suppose Bn ordered by an admissible linear
ordering.

Any ordering of the hyperplanes of Bn induces corresponding orderings of the edges
of Kn, of the transpositions of Sn and of the reflections of An−1.

The fiber of a permutation p of 12 . . . n is the set of n permutations obtained by
putting the letter n at each of the n possible places defined by the permutation p′

obtained from p by removing n. Let p′ = i1i2 . . . in−1. The fiber path is

p1 = ni1i2 . . . in−1 −−− p2 = i1ni2 . . . in−1 −−− . . . −−− pn = i1i2 . . . in−1n

Lemma 5.1.1. For any admissible ordering of Bn, the smallest hyperplane separating
two regions in the above fiber is 1n.

Proposition 5.1. Let p = i1i2 . . . in be a permutation of 12 . . . n, n ≥ 2, and 2 ≤ k ≤ n.
The letter k determines two subpermutations q1 = p[i1 . . . k] and q2 = p[k . . . in] of p.
If one of these two subpermutations, say q, does not contain 1 and contains a letter
smaller than k, set tk = jk, where j is the letter < k closest to k in q. Otherwise, set
tk = 1k.

Then, the weakly active mapping for an admissible linear ordering of Bn is given
by α1(p) = {t2, t3, . . . , tn}.

Proof. To determine tk, we have to apply Algorithm 3.3 to the greatest letter k of p′,
where p′ is obtained from p by deleting all letters > k. If the subpermutation q1 or q2

of p not containing 1 does not contain a letter smaller than k, then k is extreme in p′,
and we have tk = 1k by Algorithm 3.3 and Lemma 5.1.1. Otherwise k is not extreme
in p′, and we have p′ = . . . 1 . . . kj . . . or p′ = . . . jk . . . 1 . . . with j < k. By Algorithm
3.3 applied to p′, we have tk = jk. In this second case, we observe that in p all letters
between j and k are > k, achieving the proof.

Proposition 5.1 and its proof implicitly use the following definition. We say that a
letter a is active in a permutation p if a does not separate the letters < a.

By the properties of α1, {t2, t3, . . . , tn} is a spanning tree of Kn, and this spanning
tree is internal for the colexicographic ordering. As easily seen, a spanning tree T of
Kn with vertices labelled by 12 . . . n is internal for the colexicographic ordering if and
only if vertex labels increase along each of its paths beginning at 1. We say that a tree
with this property is increasing.

Note that by [12], for any ordering we have α = α1 on bounded regions, i.e. regions
having no vertex in the smallest hyperplane. For the braid arrangement, we may have
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α 6= α1 on an unbounded region if the order is not admissible (reverse the ordering of
14 and 34 in K4, for instance).

Theorem 5.2. For any admissible linear ordering of the braid arrangement, we have
α = α1.

To prove Theorem 5.2 we need a description of active partitions in order to be able
to apply Algorithm 4.2.

Lemma 5.2.1. Consider an acyclic orientation of Kn, associated with the directed path
i1i2 . . . in. The positive cocircuits of Kn are determined by partitions of this path into
two subpaths. A positive cocircuit of Kn consists of all edges joining the two sets of
vertices i1i2 . . . ij and ij+1 . . . in for some integer 1 ≤ j ≤ n − 1.

Lemma 5.2.1 is immediate.
An alternate point of view, in relation to the group structure, applies also to the

non-graphic hyperoctahedral arrangement of Section 6. A positive cocircuit C of Bn

is the set of hyperplanes not containing some vertex v of the fundamental region R.
Let p = i1i2 . . . in be the permutation associated with R. The hyperplanes supporting
the facets of R are the n − 1 transpositions ijij+1 for j = 1, 2, . . . , n − 1. Since R
is a simplex, a vertex v of R is determined by the unique facet opposite to it. It
follows from the group structure that the hyperplanes of Bn containing the vertex v
opposite to the facet ijij+1 are the transpositions of the subgroup of Sn generated by
the facet hyperplanes of R containing v. These facets, namely the transpositions i1i2,
i2i3, . . ., ij−1ij , ij+1ij+2, . . ., in−1in, generate the permutation groups Sj [i1, i2, . . . , ij]
and Sn−j [ij+1, . . . , in]. The cocircuit C consists of all transpositions of Sn not in these
two subgroups: we recover in the language of groups the characterization of Lemma
5.2.1 stated in terms of graphs.

The smallest letters of i1i2 . . . ij and ij+1 . . . in are 1 and a 6= 1 up to the order.
Then the smallest element of C is the transposition 1a, by definition of an orientation
dually-active element. Since a is smallest in its part, we observe that there is no letter i <
a such that p = . . .1 . . . a . . . i . . . or p = . . . i . . . a . . .1 . . .. Conversely, if this property
holds, then 1a is smallest in at least one positive cocircuit, namely i1 . . .1 . . . |a . . . in or
i1 . . . a| . . .1 . . . in.

For a letter a active in p, let p[a] be the smallest interval of p containing all letters
≤ a. The intervals p[a] are inclusion comparable. Let 2 = a1 < a2 < . . . < ak be the
active letters of p. Clearly, we have p[ai] = ai . . . p[ai−1] or p[ai] = p[ai−1] . . . ai.

If a letter a of p is active then the positive cocircuits with smallest element 1a are
exactly those defined by the cuts separating a from all letters < a. We say that an edge
of a positive cocycle with smallest element 1a is activated by 1a, or more briefly, by a.
The active partition of a region of BSn associated with a permutation p of n letters is a
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partition of the set of pairs of integers, i.e. edges of Kn,
(
[1...n]

2

)
= Aa1 +Aa2 + . . .+Aak

indexed by the active letters of p in increasing order. If a is an active letter, the set Aa

is the set of edges activated by a but by no active letter > a. It follows immediately
from Lemma 5.2.1 that the set Aa is exactly the set of edges of p[a] separated by at least
one of the cuts separating a from all letters < a, i.e. separating a = ai from p[ai−1],
with a0 = 1. Therefore

Lemma 5.2.2. Let 2 = a1 < a2 < . . . < ak be the active letters of p. Set a0 = 1. We
have Aai

= B(p[ai]) \ B(p[ai−1])

In order to apply the results of Section 4 for a proof of Theorem 5.2, we need a
description of the order structure of the active partitions of the permutations in a fiber.

Let p′ = i1i2 . . . in−1 be a permutation of 12 . . . n − 1. Its fiber in Bn is p1 =
ni1i2 . . . in−1, p2 = i1ni2 . . . in−1, . . . , pn = i1i2 . . . in−1n. Then, if ik = 1, we have
pk = . . . n1 . . ., pk+1 = . . . 1n . . .. The colexicographic ordering of the active partitions
has been defined in Section 4. Let Ai denote the active partition of pi.

Lemma 5.2.3. With above notation we have

A2 ≥ A3 ≥ . . . ≥ Ak < Ak+1 ≤ Ak+2 ≤ . . . ≤ An−1

Proof. Let p = i1 . . . na . . . in−1, and p′ = i1 . . . an . . . in−1 obtained from p by transpos-
ing a and n. We denote by A and A′ the corresponding active partitions. It follows
from the discussion after Lemma 5.2.1 that, if a is not active, we have A = A′. Suppose
a is active, and consider the case where p = . . . a . . . 1 . . . Since n is the greatest letter,
and is not at an end of either one, p and p′ have the same active letters. The letter
i1 on the left of a is clearly active. Let a′ be the greatest active letter on the left of
a. We have a′ > a since a is active, and 1 is on its right. We have p[a′] = a′ . . . na . . .,
and p′[a′] = a′ . . . an . . . after transposing a and n. It follows from Lemma 5.2.2 that
Aa′ ⊃ A′

a′ , and the inclusion is strict since an is in Aa′ but not in A′
a′ . Let b be an

active letter > a′. Since b is active, it is not between a′ and 1. Hence we have either
p = . . . b . . . a′ . . . na . . .1 . . . or p = . . . a′ . . . na . . .1 . . . b . . .. As easily seen by using
Lemma 5.2.2, in both cases we have Ab = A′

b. Therefore by definition of an admissible
linear ordering, we have A > A′.

The case p = . . . a . . .1 . . . is identical up to reversing inequalities.

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2. By Lemma 5.2.3, the smallest hyperplane cutting an active
interval of a fiber is always 1n. Hence, when applying Algorithm 4.2 to reduced active
intervals, directions from regions to hyperplanes defined by this smallest hyperplane are
identical for α and α1. Therefore α = α1.
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The above proof of Theorem 5.2 by applying Algorithm 4.2 follows from the induc-
tive construction of active mappings by deletion/contraction [12c]. Another construction
of the active mappings is by decomposition of activities [12a],[12b], used in [11] for the
general graphical case. The first step is to decompose the orientation dual-activity of
the acyclic oriented matroid under consideration into uniactive components by means of
the active partition, and then apply an algorithm valid in the uniactive case, or bounded
case, to compute the active basis. The general algorithm is based on oriented matroid
programming. Here, we will apply Algorithm 3.3. This construction by decomposition
applies simply to the braid arrangement, yielding an alternate proof of Theorem 5.2.

More precisely, let M be an acyclic oriented matroid on a linearly ordered set
E of elements. Let k ≥ 1 be the orientation dual-activity of M , and E = A1 +
A2 + . . . + Ak be its active partition. The active partition has a natural ordering
induced by the order of elements, since Ai contains a unique active element ai, which
is its smallest element. Notation is chosen such that a1 < a2 < . . . < ak. We form
Mi = M/(A1 + A2 + . . . + Ai−1) \ (Ai+1 + Ai+2 + . . . + Ak), where / and \ denote the
usual contraction and deletion operations of matroid theory. Then, Mi is uniactive, and
we have α(M) =

∑
i=1,2,...,k α(Mi) [12b] (see also [11] for the graphic case).

Alternate proof of Theorem 5.2. Let a be the i-th active letter of a permutation p. The
main step is to verify that the corresponding Mi is again associated with a permutation.
As we have observed above Aa can be computed in p[a]. By Lemma 5.2.2, reducing p
to p[a] amounts to deleting the edges in Ai+1 +Ai+2 + . . .+Ak. If a is not the smallest
active letter, let a′ be the active letter immediately smaller than a, otherwise set a′ = 1.
For convenience set p[1] = 1. We can write p[a] = aqp[a′] or p[a] = p[a′]qa. By Lemma
5.2.2, contracting all edges in A1 + A2 + . . . + Ai−1 amounts to identifying to 1 all
vertices in the path of Kn corresponding to p[a′], i.e. to reduce the permutation p[a′] to
the letter 1. Finally Mi is associated with the permutation 1qa.

By construction all letters in q are > a, showing that 1qa has indeed activity 1 (in
terms of a hyperplane arrangement with plane at infinity 1, the region 1qa is bounded).
In this case we know from [12c] that α(1qa) = α1(1qa).

To achieve the proof, we have to check that α1(1qa) is the restriction of α1(p) to the
letters of qa. This follows immediately from the definition of α1 in Theorem 5.1, since
the edge associated with a letter by α1 in p is computed in the smallest p[a] containing
it, hence also in the final 1qa, therefore in the same way in p and in 1qa.

Interestingly enough, it turns out that α is equivalent in a very simple way to a
classical bijection between permutations and increasing trees.

We quote from [23] p. 25. “Given p = i1i2 . . . in ∈ Sn, construct an (unordered) tree
T (p) with vertices 0, 1, 2, . . . , n by defining vertex i to be the successor of the rightmost
element j of p which precedes i and which is less than i. If there is no such element j,
then let i be the successor of the root 0. The correspondence p 7→ T (p) is a bijection
between Sn and increasing trees on n + 1 vertices.” According to the Notes [23] p. 41,
“The technique of representing [..] permutations by models such as words and trees
has been extensively developed primarily by the French.” More precisely, the bijection
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between permutations and increasing trees has been independently introduced in three
papers [7],[9],[25].

We denote this bijection by α.

Lemma 5.3.1. Two permutations have the same image under α if and only if they are
related by a sequence of reversals of intervals of the form p[a] for a an active letter of p.

Lemma 5.3.1 follows from the general theory of [12b] since by Lemma 5.2.2 reversing
p[a] amounts to redirecting all edges in the part with smallest element a of the active
partition of p. It can also easily be proved directly.

Proof. As observed in the alternate proof of Theorem 5.2, the computation of α1(i) is
made in the smallest p[a] containing i. It follows immediately from its definition that it
is not affected by reversals of intervals of the form p[a]. Hence the condition is sufficient.
Let p and p′ be two permutations such that α(p) = α(p′) = T . The permutations p and
p′ have the same active letters, which are the neighbours of 1 in T . If a > 1 is active
then p[a] = aqp[b] or its reverse, p′[a] = aq′p′[b] or its reverse, where b is the active letter
preceding a. We may suppose inductively that p[b] = p′[b] or its reverse. By definition
of α1, the letters of q and q′ are the labels of vertices not equal to a of the connected
component of T \ {1} containing a. Hence q and q′ have the same letters. An easy
induction using the increasing property of T – which is omitted – would show that q
and q′ are equal or reverse depending on whether p and p′ begin by the same letter or
not.

Lemma 5.3.2. A reversal class of permutations contains exactly 2k permutations,
where k is the common number of active letters of permutations in the class. In each
reversal class, exactly one permutation ends respectively begins with 1.

Proposition 5.3. Let p be a permutation of 12 . . . n, and i1i2 . . . in−11 be the unique
permutation ending by 1 in the reversal class of p. Define p′ = i′1i

′
2 . . . i′n−1 by i′j = ij −1

for 1 ≤ j ≤ n − 1. Then the increasing tree T = α(p) is obtained from the increasing
tree T ′ = α(p′) by adding 1 to all vertex labels.

Proposition 5.3 follows immediately from Proposition 5.1 by using Lemma 5.3.2.
This proposition contains the property that the active mapping restricted to permuta-
tions ending or beginning with 1 is the active bijection onto the set of increasing trees.
We point out that this bijection is actually a particular case of a bijection induced by α
in the general graphical case between internal trees and acyclic orientations with unique
given sink or source [11]. The admissible edge ordering of the present section satisifies
the condition required in [11] for this bijection.

Figure 7 illustrates Proposition 5.3 in the case n = 4. Each column is associated
with an increasing tree T on 4 vertices. The 3-permutation p′ such that α(p′) = T ′
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Figure 7. The active mapping from 4-permutations onto increasing trees on 4 vertices

appears in italics. The 4-permutations in a column constitute the reversal class as-
sociated with T . The active bijection is defined by α(p) = T , where p is the unique
4-permutation ending with 1 in a reversal class – last in the corresponding column of
Figure 7 and appearing in boldface.

Proofs of the following propositions are straightforward. We omit them. Properties
(i) and (ii) of Proposition 5.4 follow from the results of this section, (iii) is restated from
[23] Prop. 1.3.16. We recall that a descent in a permutation i1i2 . . . in is a letter ik with
1 ≤ k ≤ n − 1 such that ik > ik+1.

Proposition 5.4. Let p = i1i2 . . . in be a permutation of 12 . . . n, and a1 = 2, . . . , ak be
the active letters of p.

(i) The neighbours of the root (vertex labelled by 1) of the increasing tree on n
vertices T = α(p) are the active letters of p.

(ii) The vertices of the subtree of T with root aj, 1 ≤ j ≤ k, are the letters of the
interval p[aj ] \ p[aj−1).

(iii) The leafs of T are the descents of p and the letter in.

Let a′ < a be two consecutive active letters. We have p[a] = p[a′]qa or the reverse.
We observe that the active part Aa is not changed if we permute q. The converse can
be easily established.
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Proposition 5.5. Two permutations have the same active partition if and only they
are related by a sequence of active reversals and permutations of q’s as above.

6. The active mappings for the hyperoctahedral arrangement

In this section, we apply results of Sections 3 and 4 to the hyperoctahedral ar-
rangement. Again, the two active mappings α and α1 are equal, and equivalent to the
classical bijection between permutations and increasing trees.

The hyperoctahedral arrangement, denoted here by HOn, is a real arrangement of
n2 hyperplanes. A realization in Rn is given by the equations hi,j ≡ xi − xj = 0 and
hi,j ≡ xi + xj = 0 for 1 ≤ i < j ≤ n, hi ≡ xi = 0 for 1 ≤ i ≤ n. These hyperplanes are
the mirrors of symmetry of the regular n-dimensional hyperoctahedron HOn, and also
of its dual polytope, the regular n-dimensional hypercube.

The regions of HOn – simplicial cones in the above representation – correspond
bijectively to the cells of the first barycentric subdivision BHOn of the hyperoctahedron,
or, equivalently, of the hypercube. Let the vertices of the hyperoctahedron be the
unit coordinate vectors, positive and negative, denoted by the letters 1 = (1, 0, . . . , 0),
1 = (−1, 0, . . . , 0), 2 = (0, 1, . . . , 0), 2 = (0,−1, . . . , 0), etc. A simplex of BHOn has n
vertices of the form i1, i1i2, . . ., i1i2 . . . in, where we denote by i1i2 . . . ik the barycenter
of the vertices labelled i1, i2, . . . , ik of HOn. As in the case of the braid arrangement,
with these n vertices labelled by words of increasing length, a simplex is naturally
associated the permutation i1i2 . . . in. However, in the case of BHOn some letters may
be endowed with a minus sign: we have a signed permutation. See Figure 8.

We denote by 1, 2, . . . the letters 1, 2, . . . endowed with a minus sign. In the liter-
ature, signed permutations associated with HOn are more often described as ordinary
permutations of the 2n letters n∗, . . . , 2∗, 1∗, 1, 2, . . . , n commuting with the involution
defined by the symbol ∗. The correspondence with signed permutations is straightfor-
ward: the signed permutation 231 is associated with the permutation 1∗32∗23∗1, and
conversely.

The reflections associated with the hyperplanes of HOn are the reflections of the
finite Coxeter group Bn. It is convenient to denote the hyperplanes of HOn by the action
of the corresponding reflection on the coordinates. We have hi,j = (i, j), hi,j = (i, j),
and hi = (i, i). We extend the notation to negative integers by setting i = −i, and using
the convention that if i is negative, then xi = −x|i|. We use the shorthand notation
(i, j) = ij. We have ij = −ji = −ij = ji for any positive or negative integers i, j. If
|i| 6= |j|, the equation of ij is xi − xj = 0.

The position of a region R, i.e. its signs with respect to the hyperplanes of HOn, can
be easily determined from the corresponding signed permutation p. By the choice of the
equation signs, the identity permutation 12 . . . n corresponds to the fundamental region
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Figure 8. The barycentric subdivision of the octahedron and signed 3-permutations

with all signs positive. The sign of a letter in p gives the position of R with respect to
the corresponding variable. If a letter i is positive respectively negative in p then R is on
the positive respectively negative side of the hyperplane ii. Let p = . . . i . . . j . . ., where
i, j can be positive or negative. Then R is on the positive side of the hyperplane ij, and
on the positive side of the hyperplane ij. The first rule follows, via reflections defined
by hyperplanes ii for negative letters i in p, from the same property in the positive
hyperoctant, as a consequence of the all positive signs for the fundamental region. The
second rule follows immediately from the equation xi +xj = 0 of the hyperplane ij since
x|i| has the sign of i on R. See Figure 9.

Example. Let p = 213. We read

22 = −, 11 = +, 33 = −, 21 = +, 23 = +, 13 = +, 21 = +, 23 = +, 13 = +.
Hence, after reordering,

11 = +, 22 = −, 12 = −, 12 = +, 33 = −, 23 = −, 13 = +, 13 = +, 23 = −.
Here, we have ij = + if and only if R and the fundamental region 123 are on the

same side of the hyperplane ij.
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Figure 9. The hyperoctahedral arrangement HO3 and signed 3-permutations

The regions of HOn have a group structure by composing the associated signed
permutations. The composition of two signed permutations is obtained by composing
the underlying ordinary (unsigned) permutations and applying a multiplicative rule of
signs. Example: let p = 3142, q = 2341, then pq = 4213 (composition from left to right:
first p, then q)

The resulting group is the Coxeter group Bn. The reflections si = i(i + 1) for
1 ≤ i ≤ n − 1 and sn = nn constitute a standard set of involutions generating Bn.
The classical relations between generators of Bn can easily be checked: (sisj)2 = 1 for
1 ≤ i < j ≤ n, j − i ≥ 2, (sisi+1)3 = 1 for 1 ≤ i ≤ n − 1, (sn−1sn)4 = 1.

The arrangement HOn is supersolvable. The standard resolution of HOn is

HO1 / HO2 / . . . / HOn

It is immediate to check that the intersection of two hyperplanes of HOn \ HOn−1

is contained in a hyperplane of HOn−1: the elimination of the variable xn from the
corresponding equations obviously produces the equation of a hyperplane in HOn−1.

Unlike Bn, no standard linear ordering of HOn prevails in the literature. A natural
choice is

11 < 22 < 12 < 12 < 33 < 23 < 13 < 13 < 23 < . . .
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However, as in Section 5, many other choices can be made for our purpose. We say that
a linear ordering of HOn is admissible if it is compatible with the standard resolution,
and such that hi = ii is the smallest hyperplane of HOi \HOi−1 for all 2 ≤ i ≤ n. The
example of Figures 1-2-3 is HO3, but with a non-admissible linear ordering.

Proposition 6.1. Let p = i1i2 . . . in be a signed permutation of the integers 1, 2, . . . , n,
n ≥ 1. For 1 ≤ k ≤ n, we set tk = ijik, where j is the greatest index less than k such
that |ij | < |ik|, if such an index exists, and tk = ikik otherwise.

Then, for any admissible linear ordering of HOn, we have α1(p) = {t1, t2, . . . , tn}.

Let i1, i2, . . . , in−1 be the (n−1)-permutation obtained by deleting n or n from the
n-permutation associated with a region R of HOn. The fiber of HOn containing R is

p1 = ni1i2 . . . in−1 −−− p2 = i1ni2 . . . in−1 −−− . . . −−− pn = i1i2 . . . in−1n −−− pn+1 =
i1i2 . . . in−1n −−− . . . −−− p2n−1 = i1i2 . . . nin−1 −−− p2n = ni1i2 . . . in−1

where the fiber path follows from Proposition 3.1.

Lemma 6.1.1. The smallest hyperplane separating two adjacent regions in the fiber of
a region of HOn is nn. This hyperplane is located at the middle of the fiber path. With
above notation, it separates pn and pn+1.

Using Lemma 6.1.1, the proof of Proposition 6.1 by applying Algorithm 3.3 is
straightforward.

As in Section 5, we recognize α1 as a variant of the same classical bijection between
permutations and increasing trees. We will discuss this point at the end of the section,
after obtaining α.

Proposition 6.1 implicitly uses the following definition. We say that a (signed)
letter a = ik of a signed permutation p = i1i2 . . . in of 12 . . . n is active in p if there is no
letter ij of p with j < k such that |ij | < |a|. The first letter of p and the signed letters
1, 1 are always active.

Theorem 6.2. For any admissible linear ordering of HOn, we have α = α1.

To prove Theorem 6.2 by means of Algorithm 4.2, we have to compare the active
partitions of the regions in a fiber of HOn.

Let i1, i2, . . . , ik be signed letters. We denote by B[i1i2 . . . ik] respectively HO[i1i2
. . . ik] the braid respectively hyperoctahedral arrangement defined by the variables xij

1 ≤ j ≤ k. We note that the geometric (=unsigned) hyperplanes in B[i1i2 . . . ik] depend
on the signs of i1, i2, . . . , ik, but not those in HO[i1i2 . . . ik].

For instance, we have B[341] = {34, 31, 41} and HO[32] = {33, 32, 32, 22}.

Lemma 6.2.1. Let R be a region of HOn, and let p = i1i2 . . . in be the signed permu-
tation of 12 . . . n associated with R. Let F be a facet of R, supported by a hyperplane
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ikik+1 for some 1 ≤ k ≤ n − 1 or by inin (in this latter case we consider that k = n).
Let v be the (unique) vertex of the simplex R not contained in F . The cocircuit Cv,
consisting of all hyperplanes not containing the vertex v, is given by

Cv = HOn \ (B[i1 . . . ik] ∪HO[ik+1 . . . in]
)

The smallest hyperplane of Cv is aa, where a is the first active letter starting from ik
and going to the left.

Proof. The facets of R containing v are supported by the hyperplanes ijij+1 for j =
1, 2, . . . k − 1, k + 1, k + 2, . . . , n − 1 and inin if k < n. The transpositions associated
with these hyperplanes generate the subgroups A[i1, i2, . . . , ik] and B[ik+1, ik+2, . . . , in]
of signed permutations. The hyperplanes defined by the transpositions of these sub-
groups, namely B[i1 . . . ik] and HO[ik+1 . . . in], constitute the set of hyperplanes of
HOn containing v. Hence, the cocircuit Cv of HOn associated with v, consisting of
all hyperplanes not containing v, is equal to HO \ B[i1 . . . ik] ∪HO[ik+1 . . . in].

There is no letter i in p such that |i| < |a| between a and ik, otherwise the smallest
such letter would be active, contradicting the definition of a. Hence all letters i of p with
|i| < |a| are in the interval [ik+1 . . . in] of p. It follows that HO[ik+1 . . . in] contains all
hyperplanes of HOn smaller than aa in the ordering. Since aa is in Cv, this hyperplane
is the smallest hyperplane of Cv.

Lemma 6.2.2. With notation of Lemma 6.2.1, let a1, a2, . . . , ak = i1 be the active
letters of p, indexed such that p = ak . . . ak−1 . . . a1 . . .. We have |a1| = 1 < |a2| <
. . . |ak| and ak = i1.

The active partition of R is given by A1 = HO[a1 . . . in], and by Aj = HO[aj . . . in]\
HO[aj−1 . . . in] for 2 ≤ j ≤ k.

Proof. For a vertex v, let Cv denote the cocircuit of hyperplanes not containing v. Let
Xj be the union over all cocircuits Cv, where v is vertex of the region R whose smallest
element is one of aj , aj+1, . . . , ak. By Lemma 6.2.1, we have

X1 =
⋃

i`∈[i1...in]

(
(HO[i1 . . . in] \ (B[i1 . . . i`] ∪HO[i`+1 . . . in])

)

= HO[i1 . . . in]

and for 2 ≤ j ≤ k

Xj =
⋃

i`∈[ak=in...aj−1[

(
(HO[i1 . . . in] \ (B[i1 . . . i`] ∪ HO[i`+1 . . . in])

)

= HO[i1 . . . in] \ HO[aj−1 . . . in]

We have Ak = Xk, and Aj = Xj \Xj+1 for 1 ≤ j ≤ k − 1. Lemma 6.2.2 follows.
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Let i1i2 . . . in−1 be a signed permutation of the letters 1, 2, . . . , n − 1. Its fiber
in HOn is p1 = ni1i2 . . . in−1, p2 = i1ni2 . . . in−1,. . . , pn = i1i2 . . . in−1n, pn+1 =
i1i2 . . . in−1n, pn+2 = i1i2 . . . nin−1,. . . , p2n = ni1i2 . . . in−1.

Let Ai be the active partition of pi for 1 ≤ i ≤ 2n. As easily seen, p2, p3, . . . , p2n−1

have the same active letters. This follows also from Proposition 3.3 and Lemma 6.2.1.

The colexicographic ordering of active partitions has been defined in Section 4.

Lemma 6.2.3. We have Ai = A2n−i+1 for 1 ≤ i ≤ n, and

A1 ≥ A2 ≥ . . . ≥ An

Furthermore, we have Ai > Ai+1 if and only if n permutes with an active letter when
going from pi to pi+1.

We omit the proof, which is a straightforward consequence of Lemma 6.2.2.

Proof of Theorem 6.2. Let k be the index such that |ik| = n. The letter ik is active
if and only if k = 1. In this case, by the Algorithm 3.3 and 4.2, we have α(tn) =
nn = α1(tn). Suppose k ≥ 2, and let a = ij be the first active starting from ik
and going to the left. By Lemma 6.2.3, the active interval λ[R1, R2] is the interval
i1 . . . ij−1nij . . . ik−1ik+1 . . . in, . . . , i1 . . . ij−1nij . . . ik−1ik+1 . . . in of the fiber path. The
definition of an admissible linear ordering of HOn immediately implies that the minimal
edge of this symmetric interval is its middle edge nn. Theorem 6.2 follows readily from
Definition-Algorithm 4.2.

The classical bijection α between permutations of 12 . . . n and increasing trees on
n + 1 vertices labelled 01 . . . n [23] (see Section 5) readily provides a bijection between
signed n-permutations and increasing trees with n + 1 signed vertices. The increasing
tree associated with a signed permutation p is the image under α of the permutation
underlying p. Its vertices are signed in accordance with the signs of letters in p.

By removing the vertex labelled 0, we get an equivalent bijection between signed
n-permutations and increasing forests on n signed vertices.

We get from this bijection another equivalent one, between signed n-permutations
and increasing forests on n vertices with signed roots and signed edges, by keeping root
signs and signing an edge of the forest plus if its two vertices have the same sign, and
minus otherwise. Here, the definition of the edge-signature is chosen in accordance with
the graphical representation of HOn in Lemma 6.2.3.

Forgetting root signs, we obtain a mapping α′ from signed permutations to edge-
signed increasing trees on n vertices.

Proposition 6.3. We have α = α1 = α′.

The graphical representation of HOn is less classical than the graphical represen-
tation of Bn. It can be done as follows. We represent a hyperplane hi,j of HOn by
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the edge ij of the complete graph Kn, a hyperplane hi,j by the edge ij endowed with
a negative sign, and a hyperplane hi by the vertex i. This representation holds for
geometric (unsigned) hyperplanes. To represent signed hyperplanes, we would have to
consider directed edges and signed vertices.

We recall that a subset of the set of hyperplanes is internal if it contains no broken
circuit, i.e. a circuit with its smallest element deleted.

Lemma 6.3.1. A subset of n hyperplanes of HOn constitutes an internal simplex for
an admissible linear ordering if and only if the associated edges constitute an increasing
spanning forest of Kn, and the associated vertices are the smallest vertices of each tree
of this forest.

Proof. Let the n hyperplanes be associated with a set T of edges and a set V of vertices of
Kn. We have |V |+ |T | = n. The hyperplanes represented by the edges of an elementary
(i.e. without self- intersection) cycle of T plus the hyperplane associated with one vertex
v of this cycle are linearly dependent, as can immediately be seen from their equations.
Hence v is not in V . If v is chosen to be the smallest vertex of the cycle, we have a
contradiction with the internal property, this vertex v being minimal in its fundamental
circuit for the admissible linear ordering. Therefore, the subgraph T cannot contain
any cycle, hence is a forest. A path with edges in T joining two distinct vertices of V
produces a linear relation between the corresponding hyperplanes. Hence, a connected
component of T contains at most one vertex in V . Since T is a forest, and |V |+ |T | = n,
it follows that T is a spanning forest and each component contains exactly one vertex
of V . It remains to show that the forest is increasing, and that a vertex of V is the
smallest vertex of its component of the forest. This follows easily as above from the
internal property.

The proof of Proposition 6.3 follows readily from Proposition 6.1, Theorem 6.2 and
Lemma 6.3.1.

In Figure 10 the signed permutations with active letters positive appear at the top
of each column, showing the active bijection (in blue).

Proofs of the following propositions are straightforward. We omit them.

Lemma 6.4.1. Two signed permutations have the same image under the active map-
ping if and only if one can be obtained from the other by negating intervals of the form
p[a] . . . in for an active letter a of p. Thus, an activity class contains exactly 2k signed
permutations, where k is the activity of the class. It contains exactly one signed permu-
tation with all active letters positive.

Proposition 6.4. The active mapping is a bijection from the set of signed permutations
with positive active letters onto the set of edge-signed increasing forests.
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Figure 10. The active mapping α from signed 3-permutations
to edge-signed increasing forests on 3 vertices

Proposition 6.5. The number of edge-signed increasing forests on n vertices is equal
to (2n − 1)!! = (2n − 1)(2n − 3) . . .3.1.

Proof. We extend Kn to Kn+1 by adding an extra vertex labelled 0. By adding edges
joining 0 to the roots of an increasing spanning forest of Kn, we get a bijection between
increasing spanning forests of Kn and increasing spanning trees of Kn+1. An increasing
spanning tree of Kn+1 has its root 0 of degree i if and only if its internal activity for the
colexicographic ordering is i, since its active edges are exactly the edges incident to the
root. Hence, by classical properties of the Tutte polynomial (see Section 2), the number
of increasing spanning trees of Kn+1 with root of degree i is the coefficient ti,0 of the
Tutte polynomial of Kn+1. There are 2n−i ways of signing the n − i edges in Kn of
an increasing spanning tree of Kn+1 having its root of degree i. Therefore the number
of edge-signed increasing spanning forests of Kn is

∑
i≥1 2n−iti,0 = 2nt(Kn+1; 1/2, 0).

Since |xt(Kn+1; x, 0)| = χ(Kn+1; x) = x(x − 1) . . . (x − n), where χ(Kn+1) denotes the
chromatic polynomial of Kn+1, the number of edge-signed increasing spanning forests
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of Kn is 2n
(

1
xχ(Kn+1; x)

)
x= 1

2
= (2n − 1)(2n − 3) . . .3.1 = (2n − 1)!!.

The same proof shows that the number of increasing spanning forests of Kn with
q-colored edges is equal to qn

(
1
xχ(Kn+1; x)

)
x=1− 1

q

= ((n−1)q+1)((n−2)q+1 . . . (q+1).

Properties (i) (ii) (iii) of Proposition 6.6 follow from the results of this section, (iv)
follows from from [23] Prop. 1.3.16. For the definition of a descent in a permutation,
see Section 5.

Proposition 6.6. Let p = i1i2 . . . in be a signed permutation of 12 . . . n with active
letters a1, a2, . . . , ak.

(i) The number of components of the edge-signed increasing forest T = α(p) is equal
to the activity k of p.

(ii) The root of each component of T is an active letter of p
(iii) The vertices of the component of T with root aj, 1 ≤ j ≤ k, are the letters of

the interval [aj . . . aj−1[= p[aj] \ p[aj−1] of p.
(iv) The leaves of T are the descents of p and the letter in.
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Univ. Waterloo, (Waterloo 1971), 80–142.
[21] R. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197–217.
[22] R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178.
[23] R. Stanley, Enumerative Combinatorics vol. 1. Cambridge University Press (1986).
[24] W.T. Tutte, A contribution to the theory of chromatic polynomials. Canad. J.
Math. 6 (1954), 80-91.
[25] G. Viennot, Quelques algorithmes de permutations. Astérisque 38-39 (1976), 275-
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