EuroComb 07

FULLY OPTIMAL BASES AND THE ACTIVE BIJECTION IN GRAPHS, HYPERPLANE ARRANGEMENTS, AND ORIENTED MATROIDS

Emeric Gioan

CNRS (LIRMM - Université Montpellier 2), France

joint work with Michel Las Vergnas

Hyperplane arrangement, represented by its intersection with a central sphere:

two symmetric halfspheres delimited by one the hyperplanes

Consider the number of regions that do not touch a given hyperplane (on a given side): $bounded\ regions\ w.r.t.$ the hyperplane chosen as $hyperplane\ at\ infinity$

This number does not depend on the chosen hyperplane!

A bipolar orientation of a graph w.r.t. two adjacent vertices (s, s') is an acyclic orientation with unique source s and unique sink s'

The number of bipolar orientations does not depend on the choice of the edge e = (s, s').

The property in graphs is a particular case of the property in hyperplane arrangements

edge $v_i v_j \longrightarrow$ hyperplane $x_i - x_j = 0$ spanning trees \longrightarrow bases acyclic orientations \longrightarrow regions bipolar orientations \longrightarrow bounded regions

More generally the property is true in oriented matroids.

Theorem [Zaslavsky 75, Las Vergnas 77]

The number of bounded regions of an oriented matroid (with no loop nor isthmus), w.r.t. to a given element e, on the positive side on e, does not depend on e and equals

$$\beta(M) = t_{1,0}(M)$$

More generally the property is true in oriented matroids.

Theorem [Zaslavsky 75, Las Vergnas 77]

The number of bounded regions of an oriented matroid (with no loop nor isthmus), w.r.t. to a given element e, on the positive side on e, does not depend on e and equals

$$\beta(M) = t_{1.0}(M)$$

This number is the coefficient of x (or y) in the Tutte polynomial of M:

$$t(M; x, y) = \sum_{i,j} t_{i,j} x^i y^j$$

Theorem [Tutte 54]

If the ground set of M is linearly ordered, then the number of (i, j)-active bases w.r.t. the linear ordering is an invariant and equals $t_{i,j}$.

Let M be an ordered oriented matroid on E (or an ordered hyperplane arrangement E, or a graph with an ordered set of edges E).

The ground set $E = e_1 < ... < e_n$ is linearly ordered, and a bounded region (or a bipolar orientation) is always thought of w.r.t. e_1 .

The (bounded) active bijection of M is a bijective mapping from the set of bounded regions w.r.t. e_1

onto the set of (1,0)-active bases w.r.t. (E,<).

This bijection has a very simple definition...

...but, first, what is a (1,0)-active basis?

Let B be a basis of M.

 $C_e = fundamental\ circuit\ of\ e \not\in B\ \text{w.r.t.}\ B = \text{unique\ circuit\ in}\ B \cup e$

 $C_b^* = fundamental\ cocircuit\ {\rm of}\ b \in B\ {\rm w.r.t.}\ B = {\rm unique\ cocircuit\ in}\ (E \setminus B) \cup b$

fundamental tableau of $B = \text{matrix } n \times n \text{ on } \{0, x\}$ with

 C_e as non-zero elements of row $e \notin B$,

 C_b^* as non-zero elements of column $b \in B$

 \mathbf{Ex} . Fundamental tableau of basis 136

Assume the ground set E of M is ordered: $E = e_1 < ... < e_n$

B is (1,0)-active if

the smallest non-zero element of a row is non-zero in a previous one

i.e.
$$min \ C_e \in \cup_{a < e, a \notin B} \ C_a$$

the smallest non-zero element of a column is non-zero in a previous one (except first column)

i.e.
$$min \ C_b^* \in \cup_{a < b, a \in B} \ C_a^* \text{ for } b \neq e_1$$

Ex. Basis 136 is (1,0)-active

If M is an **oriented** matroid, or a **signed** arrangement, or a **directed** graph,

signed fundamental tableau of $B = \text{matrix } n \times n \text{ on } \{0, +, -\} \text{ with }$

 C_e as non-zero elements of row $e \notin B$, with its signs in $\{+, -\}$, and (by convention) e signed -

 C_b^* as non-zero elements of column $b \in B$, with its signs in $\{+, -\}$, and (necessarily) b signed +

 $\mathbf{Ex.}$ Signed fundamental tableau of 136, w.r.t. to the blue region.

Let M be an ordered oriented matroid (or signed arrangement, or directed graph).

A basis B of M is fullly optimal in M if

the smallest element of each row is signed +

the smallest element of each column is signed – (except the first).

Rk. This implies M is bounded acyclic and B is (1,0)-active

 $\mathbf{Ex.}$ The basis 136 is not fully optimal w.r.t. to the blue region.

Ex. The basis 136 is fully optimal w.r.t. to the green region (obtained by reversing 6).

Main Theorem.

A bounded acyclic ordered oriented matroid M has one and only one fully optimal basis, denoted by $\alpha(M)$.

The mapping α is a bijection between bounded regions of M and (1,0)-active bases of M.

In particular, a bounded region of an ordered hyperplane arrangement, or a bipolar orientation of an ordered graph, has a unique fully optimal basis.

From bases to regions: just sign successively the elements one by one the good way!

From regions to bases: linear programming refinements...

Rk. There exist a deletion/contraction construction, and other characterisitc properties.

LINEAR PROGRAMMING REFINEMENTS

In usual linear programming, the vertex intersection of $B \setminus e_1$ is optimal if and only if

in the signed tableau of B

the first column $C_{e_1}^*$ is positive the second line C_{e_2} is negative (except on e_1)

Here we take into account the whole fundamental tableau, i.e.

all lines: multiobjective programming (instead of one objective function)
all columns: flag optimization (instead of one optimal face)

Ex. The region $\alpha^{-1}(136)$ has one fully optimal basis but it has two optimal vertices in usual LP and the same optimal vertex as the region $\alpha^{-1}(135)$

THE ACTIVE MAPPING IN THE GENERAL CASE

Th [Tutte 54]

$$t(M; x, y) = \sum_{i,j} b_{i,j} x^i y^j$$

where $b_{i,j} = \# (i,j)$ -active bases

Th [Las Vergnas 84]

$$t(M; x, y) = \sum_{i,j} o_{i,j} (\frac{x}{2})^{i} (\frac{y}{2})^{j}$$

where $o_{i,j} = \# (i,j)$ -active reorientations

$$o_{i,j} = 2^{i+j} b_{i,j}$$

THE ACTIVE MAPPING IN THE GENERAL CASE

The active mapping α maps an ordered oriented matroid onto one of its bases.

It is defined by

- 1) $\alpha(M)$ is the fully optimal basis of M if it is bounded acyclic
- $2) \ \alpha(M^*) = E \setminus \alpha(M)$
- 3) $\alpha(M) = \alpha(M/A) \cup \alpha(M(A))$

where A is the union of all positive circuits of M whose smallest element is the greatest possible minimal element of a positive cocircuit of M.

For a given oriented matroid, we get a $2^{i+j}-1$ activity preserving correspondence between all orientations and all bases

and, more specifically,

an activity preserving bijection between all subsets (related to bases) and all orientations between no-broken-circuit subsets and acyclic orientations

THE ACTIVE MAPPING IN THE GENERAL CASE

$$\alpha(M) = \bigoplus_{1 \leq k \leq \iota} \alpha(M(F_k'')/F_{k-1}'') \quad \biguplus \quad \biguplus_{1 \leq k \leq \iota} \alpha(M(F_{k-1}')/F_k')$$

active decomposing sequence of M:

$$\emptyset = F'_{\varepsilon} \subset ... \subset F'_0 = F_c = F''_0 \subset ... \subset F''_{\iota} = E$$

Theorem

$$t(M;x,y) = \sum \left(\prod_{1 \leq k \leq \iota} \beta \left(M(F_k')/F_{k-1}' \right) \right) \left(\prod_{1 \leq k \leq \varepsilon} \beta \left(M(F_{k-1}'')/F_k'' \right) \right) \, x^{\iota} \, \, y^{\varepsilon}$$

where the sum is over all active decomposing sequences of bases of M

Sum up

structure	active bijection	
oriented matroids	activity classes of reorientations	bases
	act. cl. of acyclic reorientations	internal bases
	act. cl. of totally cyclic reor.	external bases
	bounded acyclic reorientations	(1,0)-active bases
	reorientations	subsets
	acyclic reorientations	no-broken-circuit subsets
hyperplane	reorientations = signatures	bases = simplices
arrangements	acyclic reorientations = regions	
graphs	reorientations = orientations	bases = spanning trees
	unique sink acyclic orientations	internal spanning trees
	bipolar orientations	(1,0)-active spanning trees
uniform o.m.	bounded regions	LP optimal vertices
supersolvable A_n	permutations	increasing trees
supersolvable B_n	signed permutations	signed increasing trees