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Abstract. The problem of maintaining a representation of a dynamic
graph as long as a certain property is satisfied has recently been con-
sidered for a number of properties. This paper presents an optimal al-
gorithm for this problem on vertex-dynamic connected distance hered-
itary graphs: both vertex insertion and deletion have complexity O(d),
where d is the degree of the vertex involved in the modification. Our
vertex-dynamic algorithm is competitive with the existing linear time
recognition algorithms of distance hereditary graphs, and is also simpler.
Besides, we get a constant time edge-dynamic recognition algorithm. To
achieve this, we revisit the split decomposition by introducing graph-
labelled trees. Doing so, we are also able to derive an intersection model
for distance hereditary graphs, which answers an open problem.

1 Introduction

Motivated by their practical applications as well as by their related the-
oretical challenges, dynamic graph algorithms have received particular
attention over the last few years [12]. Solving a problem on a dynamic
graph consists of an algorithm that, under a series of graph modifica-
tions (vertex or edge modification), updates a data structure supporting
elementary queries (e.g. adjacency). Let us note that the series of mod-
ifications to which the graph is submitted is not known in advance. To
be of interest, such an algorithm should not recompute a solution from
scratch. In order to ensure locality of the computation, most of the known
dynamic graph algorithms are based on decomposition techniques. For
example, the SPQR-tree data structure has been introduced in order to
dynamically maintain the 3-connected components of a graph which al-
lows on-line planarity testing [2].

This paper considers the dynamic representation problem which asks
for the maintenance of a representation of a dynamic graph as long as
a certain property Π is satisfied. Existing literature on this problem in-
cludes representation of chordal graphs [18], proper interval graphs [16],
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cographs [21], directed cographs [7], permutation graphs [8]. The data
structures used for the last four results are strongly related to the mod-
ular decomposition tree [14]. The split decomposition (also called 1-join
decomposition), introduced by Cunningham [9], is a generalization of the
modular decomposition. A natural question is to ask whether the split de-
composition can be used to dynamically represent wider graph families?
We answer positively to this question.

The algorithmic aspects of the split decomposition, unlike the modular
decomposition, are not well understood. For instance, totally decompos-
able graphs are known to be the distance hereditary graphs [1, 15], which
form an interesting family of graphs for several reasons: they general-
ize the well-known cographs [5], which are totally decomposable by the
modular decomposition; they are the graphs of rankwidth 1 [20] and are
among the elementary graphs of clique-width 3 [4]; they also have vari-
ous theoretical characterizations... Computing the split decomposition in
linear time [10] is very complicated. It follows that most of the known
algorithms (even recent ones) operating on distance hereditary graphs
do not rely on the split decomposition but rather on a heavy breadth-
first search layering characterization [1], or on some ad-hoc (rooted) tree
decompositions [3, 17, 23]. Similarly the recent O(1) edge-only dynamic
recognition algorithm [6] is based on the BFS layering characterization.

In this paper, we revisit the split decomposition theory [9] under the
new framework of graph-labelled trees, which formalize the (unrooted) tree
decomposition underlying the split decomposition (see Section 2). As a
by-product, we can derive two new characterizations of distance hered-
itary graphs (see Section 3). The first one is an intersection model for
the family of distance hereditary graphs. The existence of such a model
was known [19], but to our knowledge, the model itself was still not dis-
covered [22]. Graph-labelled trees also yield an incremental characteriza-
tion of distance hereditary graphs from which we can deduce an optimal
vertex-dynamic algorithm to represent distance hereditary graphs (see
Section 4). These are the first results obtained for the split decomposi-
tion in the framework of graph-labelled trees. Moreover the simplicity of
the solutions we propose witnesses the elegance of graph-labelled trees:
e.g. our O(d) vertex insertion algorithm is not only competitive with
the existing static linear time recognition algorithms [3, 11, 15], but is
also simpler. We also get a constant time edge-dynamic recognition algo-
rithm, different from [6] (see Section 5). We believe that new applications
or generalizations of the split decomposition could be derived from graph-
labelled trees.
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2 Split decomposition and graph-labelled trees

Any graph G = (V (G), E(G)) we consider is simple and loopless. For a
subset S ⊆ V (G), G[S] is the subgraph of G induced by S. If T is a
tree and S a subset of leaves of T , then T (S) is the smallest subtree of T
spanning the leaves of S. If x is a vertex of G then G−x = G[V (G)−{x}].
Similarly if x /∈ V (G), G + (x, S) is the graph G augmented by the new
vertex x adjacent to S ⊆ V (G). We denote N(x) the neighbourhood of
a vertex x. The neighborhood of a set S ⊆ V (G) is N(S) = {x /∈ S |
∃y ∈ S, xy ∈ E(G)}. The clique is the complete graph and the star is the
complete bipartite graph K1,n. The universal vertex of the star is called
its centre and the degree one vertices its extremities.

Definition 2.1. [9] A split of a graph G is a bipartition (V1, V2) of
V (G) such that 1) |V1| > 2 and |V2| > 2; and 2) every vertex of N(V1) is
adjacent to every vertex of N(V2).

Cliques and stars are called degenerate since for any such graph on at
least 4 vertex, any non-trivial vertex bipartition is a split. A graph with
no split that is not degenerate is called prime. The split decomposition of
a graph G, as originally studied in [9], consists of: finding a split (V1, V2),
decomposing G into G1 = G[V1 ∪ {x1}], with x1 ∈ N(V1) and G2 =
G[V2∪{x2}] with x2 ∈ N(V2), x1 and x2 being called the marker vertices;
and then recursing on G1 and G2. In [9], Cunningham presents the idea of
a tree decomposition. But its main result stating the uniqueness of lastly
resulting graphs in a split decomposition focuses on the set of resulting
graphs more than on the structure linking them together. To reformulate
Cunningham’s result in terms of tree, let us introduce some terminology.

Definition 2.2. A graph-labelled tree (T,F) is a tree in which any node
v of degree k is labelled by a graph Gv ∈ F on k vertices such that there
is a bijection ρv from the tree-edges incident to v to the vertices of Gv.

We call nodes the internal vertices of a tree, and leaves the other ones.
Let (T,F) be a graph-labelled tree and l be a leaf of T . A node or a leaf
u different from l is l-accessible if for any tree-edges e = wv and e′ = vw′

on the l, u-path in T , we have ρv(e)ρv(e
′) ∈ E(Gv). By convention, the

unique neighbor of l in T is also l-accessible. See Figure 1 for an example.

Definition 2.3. The accessibility graph G(T,F) of a graph-labelled tree
(T,F) has the leaves of T as vertices, and there is an edge between x and
y if and only if y is x-accessible.
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Fig. 1. A graph-labelled tree and its accessibility graph.

Lemma 2.1. Let (T,F) be a graph-labelled tree and T1, T2 be the subtrees
of T −e where e is a tree-edge non-incident to a leaf. Then the bipartition
(L1, L2) of the leaves of T , with Li being the leaf set of Ti, defines a split
in the graph G(T,F).

We can naturally define the split and the converse join operations on
a graph-labelled tree (T,F) as follows (see Figure 2):

• Split of (T,F): Let v be a node of T whose graph Gv has a split
(A,B). Let GA and GB be the subgraphs resulting from the split
(A,B) and a, b be the respective marker vertices. Splitting the node v
consists in substituting v by two adjacent nodes vA and vB respectively
labelled by GA and GB such that for any x ∈ V (GA) different from
a, ρvA

(x) = ρv(x) and ρvA
(a) = vAvB (similarly for any x ∈ V (GB)

different from b, ρvB
(x) = ρv(x) and ρvB

(b) = vAvB).
• Join of (T,F): Let uv be a tree-edge of T . Then joining the nodes

u and v consists in substituting them by a single node w labelled
by Gw the accessibility graph of the tree with only edge u, v and
respective labels Gu and Gv. For any vertex x of Gw, ρw(x) = ρv(x)
or ρw(x) = ρu(x) depending on which graph x belonged.

Observe that if (T,F) is obtained from (T ′,F ′) by a join or a split
operation, then it follows from the definitions that G(T,F) = G(T ′,F ′).

Among the join operations, let us distinguish: the clique-join, oper-
ating on two neighboring nodes labelled by cliques, and the star-join,
operating on star-labelled neighboring nodes u, v such that the tree-edge
uv links the centre of one star to an extremity of the other. A graph-
labelled tree (T,F) is reduced if neither clique-join nor star-join can be
applied, i.e. the clique nodes are pairwise non-adjacent and two star nodes
u and v can be adjacent only if ρu(uv) and ρv(uv) are both centres or
both extremities of their respective stars Gu and Gv.
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Fig. 2. The split and the join operations on a graph-labelled tree.

Theorem 2.1 (Cunningham’s Theorem reformulated). For any
connected graph G, there exists a unique reduced graph-labelled tree (T,F)
such that G = G(T,F) and any graph of F is prime or degenerate.

For a connected graph G, the split tree ST (G) of G is the unique re-
duced graph-labelled tree (T,F) in the above Theorem 2.1 (see Figure 1).

The next two lemmas are central to proofs of further theorems.

Lemma 2.2. Let ST (G) = (T,F) be the split tree of a connected graph
G. Let l be a leaf of T , and e = uv, e′ = uv′ be distinct tree edges such that
u is a l-accessible and e is on the u, l path in T . Then ρu(e)ρu(e′) ∈ E(Gu)
if and only if there exists a l-accessible leaf l′ in the subtree of T − e′

containing v′.

The above easy lemma can be rephrased as follows: if u and v are two
adjacent l-accessible nodes, then there exists a l-accessible leaf l ′ such
that the l, l′-path contains the tree edge u, v. It follows that:

Lemma 2.3. Let ST (G) = (T,F) be the split tree of a connected graph
G. For any vertex x ∈ V (G), T (N(x)) has at most 2.|N(x)| nodes.

3 Characterizations of distance hereditary graphs

A graph is distance hereditary (DH for short) if the distance between any
given pair of vertices remains the same in any connected induced sub-
graphs. By [15], a graph is DH if and only if it is totally decomposable by
the split decomposition, i.e. its split tree is labelled by cliques and stars.
Hence DH graphs are exactly accessibility graphs of clique-star labelled
trees, clique-star trees for short. Among the possible clique-star trees, the
split tree is the unique reduced one. Figure 1 gives an example. We men-
tion that ternary clique-star trees were used in [13] to draw DH graphs.
Another general example is given by cographs, which can be characterized
as distance hereditary graphs whose stars in the split tree are all directed
towards a root of the tree.
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An intersection model. Given a family S of sets, one can define the
intersection graph I(S) as the graph whose vertices are the elements of
S and there is an edge between two elements if and only if they intersect.
Many restricted graph families are defined or characterized as the inter-
section graphs (e.g. chordal graphs, interval graphs. . . see [19]). Graph
families supporting an intersection model can be characterized without
even specifying the model [19]. This result applies to DH graphs, and no
model was known [22]. Based on clique-star trees, an intersection model
can be easily derived. Note that it can be equivalently stated by consid-
ering only reduced clique-star trees, or even only ternary ones. We call
accessibility set of a leaf l in a graph-labelled tree the set of pairs {l, l ′}
with l′ a l-accessible leaf.

Theorem 3.1 (Intersection model). A graph is distance hereditary if
and only if it is the intersection graph of a family of accessibility sets of
leaves in a set of clique-star trees.

Incremental characterization. Let G be a connected DH graph and
let ST (G) = (T,F) be its split tree. Given a subset S of V (G) and
x 6∈ V (G), we want to know whether the graph G + (x, S) is DH or not.

Definition 3.1. Let T (S) be the smallest subtree of T with leaves S. Let
u be a node of T (S).

1. u is fully-accessible if any subtree of T − u contains a leaf l ∈ S;
2. u is singly-accessible if it is a star-node and exactly two subtrees of

T − u contain a leaf l ∈ S among which the subtree containing the
neighbor v of u such that ρu(uv) is the centre of Gu;

3. u is partially-accessible otherwise.

We say that a star node is oriented towards an edge (or a node) of T
if the tree-edge mapped to the centre of the star is on the path between
the edge (or node) and the star.

Theorem 3.2 (Incremental characterization). Let G be a connected
distance hereditary graph and ST (G) = (T,F) be its split tree. Then
G + (x, S) is distance hereditary if and only if:

1. at most one node of T (S) is partially accessible;
2. any clique node of T (S) is either fully or partially-accessible.
3. if there exists a partially accessible node u, then any star node v 6=

u of T (S) is oriented towards u if and only if it is fully accessible.
Otherwise, there exists a tree-edge e of T (S) towards which any star
node of T (S) is oriented if and only if it is fully accessible.
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4 A vertex-only fully-dynamic recognition algorithm

In this section we mainly compute the characterization given by Theorem
3.2 to obtain the following main result.

Main Theorem 4.1. There exists a fully dynamic recognition algorithm
for connected distance hereditary graphs with complexity O(d) per vertex
insertion or deletion operation involving d edges.

The vertex insertion algorithm yields a linear time recognition algo-
rithm of (static) DH graphs, thereby achieving the best known bound but
also simplifying the previous non-incremental ones [15, 11, 3].

Corollary 4.1 (Static recognition). The vertex insertion routine en-
ables to recognize distance hereditary graphs in linear time.

The following data structure is used for the clique-star tree ST (G) =
(T,F) of the given DH graph G: a (rooted) representation of the tree
T ; a single clique-star marker distinguishing the type of each node; a
centre-marker distinguishing the centre of each star node; and the degree
of each node. Let us notice that this data structure is an O(n) space
representation of the DH graphs on n vertices.

4.1 Vertex insertion algorithm

Computing the smallest subtree spanning a set of leaves. Given
a set S of leaves of a tree T , we need to identify the smallest subtree
T (S) spanning S, and to store the degrees of its nodes. This problem is
easy to solve on rooted (or directed) trees by a simple bottom-up marking
process with complexity O(|T (S)|). So an arbitrary root of T is fixed.

1. Mark each leaf of S. A node is active if its father is not marked.
2. Each marked node marked its father as long as: 1) the root is not

marked and there is more than one active node, or 2) the root is
marked and there is at least one active node.

3. As long as the root of the subtree induced by the marked nodes is a
leaf not in S, remove this node and check again.

Testing conditions of Theorem 3.2. The first two conditions of The-
orem 3.2 are fairly easy to check by following Definition 3.1: a node u
is fully-accessible if its degrees in T (S) and T are the same; u is singly-
accessible if it is a star, if it has degree 2 in T (S) and if the centre
neighbor belongs to T (S); and u is partially accessible otherwise, such a
node having to be unique if it exists. This test costs O(|T (S)|).



8 Emeric Gioan, Christophe Paul

We now assume that the first two conditions of Theorem 3.2 are ful-
filled. At first, the case is trivial if |S| = 1. So assume |S| > 1.

We define local orientations on vertices of a tree as the choice, for
every vertex u, of a vertex f(u) such that either f(u) = u or f(u) is
a neighbor of u. Local orientations are called compatible if 1) f(u) = u
implies f(v) = u for every neighbor v of u, and 2) f(u) = v implies
f(w) = u for every neighbor w 6= v of u. It is an easy exercise to see that
if local orientations are compatible then exactly one of the two following
properties is true: either there exists a unique vertex u with f(u) = u, in
this case u is called node-root, or there exists a unique tree-edge uv with
f(u) = v and f(v) = u, in this case uv is called edge-root.

The test for the third condition of Theorem 3.2 consists of building,
if possible, suitable compatible local orientations in the tree T (S):

1. Let u be a leaf of T (S). Then f(u) is the unique neighbor of u.

2. Let u be a star node of T (S). If u is partially-accessible, then f(u) = u.
If u is singly-accessible, then f(u) = v with v the unique neighbor v
of u belonging to T (S) such that ρu(uv) is an extremity of the star.
If u is fully-accessible, then f(u) = v with v the neighbor of u such
that ρu(uv) is the centre of the star.

3. Let u be a clique node of T (S). If u is partially-accessible, then f(u) =
u. Otherwise, u is fully-accessible and its neighbors are leaves or star
nodes. If f(v) = u for every neighbor v of u then f(u) = u. If f(v) = u
for every neighbor v of u but one, say w, then f(u) = w. Otherwise u
is an obstruction.

The third condition of Theorem 3.2 is satisfied if and only if 1) there is
no obstruction and 2) local orientations of T (S) are compatible. This test
can be done in time O(|T (S)|) by a search of T (S). Hence, the conditions
of Theorem 3.2 can be tested in O(|T (S)|) time.

Updating the split-tree. We now assume that graph G + (x, S) is DH.
So by Theorem 3.2 the split tree has either a unique node-root or a unique
edge-root. There are three cases (see Figure 3).

x

t
case 1

r u

x

case 2

v

x

w
case 3

u

Fig. 3. Vertex insertion.
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1. There is a node-root u being partially-accessible, or S is reduced to a
unique vertex u. We may have to make a first update of T by splitting
the node u under some conditions on the degrees. Let U , resp. A, be
the set of tree-edges adjacent to u in T , resp. in T (S).

(a) If u is a clique node with |U \ A| ≥ 2, then u is replaced with an
edge vw in T . Then v, resp. w, is labelled by a clique whose vertices
correspond to A, resp. U \A, except one which corresponds to vw.
In this case, v is now the node-root.

(b) If u is a star node with centre mapped to the tree edge e and
|(U \A)\ e)| ≥ 1, then u is replaced with an edge vw in T . Then v
is labelled by a star whose extremities correspond to A \ {e} and
centre to vw (we have |A\{e}| > 1 since u is not singly accessible),
and w is labelled by a star whose extremities correspond to (U \
A) ∪ {vw} and centre to e. If e ∈ A, then the edge vw is now the
edge-root. And if e 6∈ A, then the node v becomes the node-root.

If the tree still has a node-root r = u or r = v, then let s be its
neigbhor in T that does not belong to T (S). Then the insertion edge
is e = rs, and ST (G + (x, S)) is obtained by subdividing rs with a
star node t of degree 3 whose centre is ρw(rt) and making the leaf x
adjacent to t. Then, in the case where s is a star with centre ρv(st),
we proceed a join operation on the tree-edge st .

2. There is a node-root u not being partially-accessible, Then u is a
clique node, and ST (G + (x, S)) is obtained by adding the new leaf x
adjacent to u whose degree thereby increases by one.

3. There is an edge-root uv. Then ST (G + (x, S)) is obtained by sub-
dividing uv with a clique node w of degree 3 and making the leaf x
adjacent to w.

Each above update operation can be done in O(1) time, except the
splitting in case 1 which requires O(|T (S)|) time (by deleting A from
u to get w, and adding A to a new empty node v). Any other update
operation requires O(1) time to maintain the data structure of the split
tree (artificial root, degrees...). Then, the complexity for the whole in-
sertion algorithm derives from from previous steps and the fact that
O(|T (S)|) = O(|S|) (Lemma 2.3).

Theorem 4.2 (Vertex insertion). Let G + (x, S) be a graph such that
G is a connected distance hereditary graph. Given the data structure of
split tree ST (G), testing whether G+(x, S) is distance hereditary and if so
computing the data structure of ST (G+(x, S)) can be done in O(|S|) time.
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4.2 Vertex deletion algorithm

Removing a vertex x from a distance hereditary graph G always yields
a distance hereditary graph G − x. Let ST (G) be the split tree of G.
Updating the data structure of the split tree can be done as follows.

1. Remove the leaf x and update the degree of its neighbor v.
2. If v now has degree 2, then replace v with an edge between its neigh-

bors, and, if needed, reduce the clique-star tree on this edge.
3. If v is a star node whose centre neighbor was x, then G−x is no longer

connected, and the split-trees of each connected component are the
components of T − {v, x}.

It is easy to see that any operation costs O(1) except the join operation
which costs min(d′, d′′) where d′, d′′ are degree of the concerned nodes.
Since at least one of these nodes is fully accessible, this minimum degree
is lower than d. Hence this join operation costs O(d).

Lemma 4.1 (Vertex deletion). Let G be a connected distance heredi-
tary graph and x be a degree d vertex of G. Given the data structure of
split tree ST (G), testing whether G−x is a connected distance hereditary
graph and if so computing the data structure of ST (G − x) can be done
in O(d) time.

5 Other applications and concluding remarks

The results in this Section, and the previous ones, will be fully developped,
with proofs (omitted here for lack of space), in a forthcoming paper.

A constant time edge-only fully-dynamic recognition algorithm.

We consider the problem of adding or deleting an edge to a connected
distance hereditary graph and testing if the new graph is distance hered-
itary. We use again the split tree of the graph to do this test easily and
maintain the split tree in constant time. Another constant time algorithm
for this problen, with other technique, has been developped in [6].

Let G be a connected distance hereditary graph, and x and y two
vertices of G. If xy 6∈ E(G) resp. xy ∈ E(G), then let G′ = G + e resp.
G′ = G − e with e = xy. Let P be the path from x to y in ST (G),
which defines a word W on the alphabet {K,L,R, S}, where K stands
for a clique node, R for a star node with center directed towards x, L for
a star node with center directed towards y, and S for a star node with
center not directed towards x or y. Note that xy ∈ E(G) if and only if
W contains no letter S.
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Theorem 5.1. The graph G′ is distance hereditary if and only if W has
one of the following forms, where letters in brackets can be deleted.
Case G′ = G + e: (R)SS(L), (R)SK(L), (R)KS(L), (R)S(L).
Case G′ = G− e: (R)LR(L), (R)LK(L), (R)KR(L), (R)K(L), (R)(L).

In the deletion case, if W = (R)(L), then G′ is no longer connected.

As a consequence, we get the following constant time algorithm:

1. Test if W has length at most 4 and satisfies conditions of Theorem 5.1.
2. Update the split tree. Nodes of letters in brackets are called extreme.

(a) If the not-extreme nodes are not ternary, then make a split on
these nodes to get ternary nodes instead, in the path from x to y.

(b) Replace the not-extreme nodes with ternary nodes according to the
following table, and, in the cases where there are two not-extreme
nodes, exchange the edges of the graph-labelled tree adjacent to
these nodes, which are not in the path from x to y, between these
nodes. Extreme nodes are unchanged.

edge insertion −→
←− edge deletion

(R)SS(L) (R)LR(L)
(R)SK(L) (R)LK(L)
(R)KS(L) (R)KR(L)
(R)S(L) (R)K(L)

(c) If necessary, make (at most two) join operations involving the
nodes that have been changed to get a reduced graph-labelled tree.

Particular case of cographs. We mention that algorithms in this pa-
per can be adaptated to the particular case of cographs, which are totally
decomposable for the modular decomposition. Indeed, a connected co-
graph is a connected distance hereditary graph of which split tree has the
property that every star is directed towards a same given edge. The pre-
vious known fully-dynamic recognition algorithms of cographs (see [5] for
the vertex insertion and [21] for the other operations) can be restated in
the framework of graph-labelled trees, and then turn out to be equivalent
to special cases of the previous algorithms.

General split decomposition. We finally mention that a generalization
of our insertion algorithm to arbitrary graphs would have a complexity no
longer linear in the number of edges. Consider the example where a new
vertex is attached to the extermities of a path on n > 4 vertices (whose
nodes in the split tree form a path of ternary stars). The resulting cycle is
prime, witnessing Ω(n) changes in the split-tree representation. So, even
for circle graphs, such an algorithm would have Ω(n) time complexity.
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