Integer Linear System Solving

Pascal Giorgi

in collaboration with Arne Storjohann

Challenges in Linear and Polynomial Algebra in Symbolic Computation Software October 1-6, 2005.

Motivations

Large linear systems are involved in many mathematical applications

over a field:

- ▶ integers factorization [Odlyzko 1999],
- discrete logarithm [Odlyzko 1999; Thomé 2003],

over the integers:

- number theory [Cohen 1993],
- group theory [Newman 1972],
- ▶ integer programming [Aardal, Hurkens, Lenstra 1999]

Problem

Let A a non-singular matrix and b a vector defined over \mathbb{Z} . Problem: Compute $x = A^{-1}b$ over the rational numbers.

$$A = \begin{bmatrix} -289 & 236 & 79 & -268 \\ 108 & -33 & -211 & 309 \\ -489 & 104 & -24 & -25 \\ 308 & 99 & -108 & 66 \end{bmatrix}, b = \begin{bmatrix} -131 \\ 321 \\ 147 \\ 43 \end{bmatrix}.$$

$$x = A^{-1}b = \begin{bmatrix} \frac{-9591197817}{95078} \\ \frac{131244}{47539} \\ \frac{2909895}{665546} \\ \frac{2909895}{665546} \end{bmatrix}$$

Main difficulty: expression swell

Interest in linear algebra

Integer linear systems are central in recent linear algebra algorithms

Determinant :

[Abbott, Bronstein, Mulders 1999; Storjohann 2005]

▶ Smith Form:

[Eberly, Giesbrecht, Villard 2000]

▶ Nullspace, Kernel:

[Chen, Storjohann 2005]

▶ Diophantine solutions :

[Giesbrecht 1997;Giesbrecht, Lobo, Saunders 1998; Mulders, Storjohann 2003; Mulders 2004]

Algorithms for non-singular system solving

► Gaussian elimination and CRA $O^{\sim}(n^{\omega+1}\log||A||)$ bit operations

► Linear P-adic lifting [Monck, Carter 1979, Dixon 1982] $O^{\sim}(n^3 \log ||A||)$ bit operations

► High order lifting [Storjohann 2005] $O^{\sim}(n^{\omega} \log ||A||)$ bit operations

P-adic algorithm for dense systems

```
Scheme to compute A^{-1}b:
1)
     1.1) B := A^{-1} \mod p
     1.2) r := b
2) for i := 0 to k
     2-1) x_i := Br \mod p
     2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
     3-2) rational reconstruction on x
```

P-adic algorithm for dense systems

```
Scheme to compute A^{-1}b:
1)
      1.1) B := A^{-1} \mod p
                                                                   O^{\sim}(n^3 \log ||A||)
      1.2) r := b
2) for i := 0 to k
                                                                  k = O^{\sim}(n)
                                                                   O^{\sim}(n^2 \log ||A||)
      2-1) x_i := Br \mod p
      2-2) r := (1/p)(r - A.x_i)
                                                                   O^{\sim}(n^2 \log ||A||)
3)
      3-1) x := \sum_{i=0}^{k} x_i . p^i
      3-2) rational reconstruction on x
```

Dense linear system in practice

Efficient implementations are available :

```
LinBox 1.0 [www.linalg.org]
IML library [www.uwaterloo.ca/~z4chen/iml]
```

Details:

- level 3 BLAS-based matrix inversion over prime field
 - with LQUP factorization [Dumas, Giorgi, Pernet 2004]
 - with Echelon form [Chen, Storjohann 2005]
- ▶ level 2 BLAS-based matrix-vector product
 - use of CRT over the integers
- rational number reconstruction
 - half GCD [Schönage 1971]
 - heuristic using integer multiplication [NTL library]

Timing of Dense linear system solving

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

Random dense linear system with coefficients over 3 bits :

n	500	1000	2000	3000	4000	5000
time	0.6s	4.3s	31.1s	99.6s	236.8s	449.2s

Random dense linear system with coefficients over 20 bits :

n	500	1000	2000	3000	4000	5000
time	1.8s	12.9s	91.5s	299.7s	706.4s	MT

performances improvement by a factor 10 compare to NTL's tuned implementation

what does happen when matrices are sparse?

We consider sparse matrices with O(n) non zero elements \hookrightarrow matrix-vector product needs only O(n) operations.

Scheme to compute
$$A^{-1}b$$
:

1)
$$1.1) B := A^{-1} \mod p$$
$$1.2) r := b$$

$$\alpha_i := Br \mod p$$

2-1)
$$x_i := Br \mod p$$

2-2) $r := (1/p)(r - A.x_i)$

3-2) rational reconstruction on x

2) for i :=0 to k
2-1)
$$x_i := Br \mod p$$

2-2) $r := (1/p)(r - A)$

3-1) $x := \sum_{i=0}^{k} x_i . p^i$

3)

P-adic lifting doesn't improve complexity as in dense case.

→ computing the modular inverse is proscribed due to fill-in

```
Solution [Wiedemann 1986; Kaltofen, Saunders 1991] : modular inverse is replaced by modular minimal polynomial
```

Let $A \in \mathbb{Z}_p^{n \times n}$ of full rank and $b \in \mathbb{Z}_p^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

P-adic lifting doesn't improve complexity as in dense case.

→ computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986; Kaltofen, Saunders 1991] : modular inverse is replaced by modular minimal polynomial

Let $A \in \mathbb{Z}_p^{n \times n}$ of full rank and $b \in \mathbb{Z}_p^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $\Pi^A(\lambda) = c_0 + c_1\lambda + ... + \lambda^d \in \mathbb{Z}_p[\lambda]$ be the minimal polynomial of A

Solution [Wiedemann 1986; Kaltofen, Saunders 1991] : modular inverse is replaced by modular minimal polynomial

Let $A \in \mathbb{Z}_p^{n \times n}$ of full rank and $b \in \mathbb{Z}_p^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $\Pi^A(\lambda)=c_0+c_1\lambda+...+\lambda^d\in\mathbb{Z}_p[\lambda]$ be the minimal polynomial of A

$$A^{-1}b = \frac{-1}{c_0}(c_1b + c_2Ab + ... + A^{d-1}b)$$

P-adic lifting doesn't improve complexity as in dense case.

→ computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986; Kaltofen, Saunders 1991] : modular inverse is replaced by modular minimal polynomial

Let $A \in \mathbb{Z}_p^{n \times n}$ of full rank and $b \in \mathbb{Z}_p^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $\Pi^A(\lambda) = c_0 + c_1\lambda + ... + \lambda^d \in \mathbb{Z}_p[\lambda]$ be the minimal polynomial of A

$$A^{-1}b = \underbrace{\frac{-1}{c_0}(c_1b + c_2Ab + \dots + A^{d-1}b)}_{X}$$

P-adic algorithm for sparse systems

```
Scheme to compute A^{-1}b:
1)
     1.1) \Pi := minpoly(A) \mod p
     1.2) r := b
2) for i := 0 to k
     (2-1) x_i := (-1/\Pi[0]) \sum_{i=1}^{\deg \Pi} \Pi[i] A^{i-1} r \mod p
     2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
     3-2) rational reconstruction on x
```

P-adic algorithm for sparse systems

Scheme to compute $A^{-1}b$:

```
1)
      1.1) \Pi := minpoly(A) \mod p
                                                                        O^{\sim}(n^2 \log ||A||)
      1.2) r := b
2) for i := 0 to k
                                                                        k = O^{\sim}(n)
      (2-1) x_i := (-1/\Pi[0]) \sum_{i=1}^{\deg \Pi} \Pi[i] A^{i-1} r \mod p \quad O^{\sim}(n^2 \log ||A||)
      2-2) r := (1/p)(r - A.x_i)
                                                                         O^{\sim}(n \log ||A||)
3)
      3-1) x := \sum_{i=0}^{k} x_i . p^i
      3-2) rational reconstruction on x
```

<u>Issue</u>: computation of Krylov space $\{r, Ar, ..., A^{\deg \Pi}r\} \mod p$

Integer sparse linear system in practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits and 10 non zero elements per row.

n	400	900	1600	2500
CRT + Wiedemann	7.3s	79.2s	464s	1769s
P-adic + Wiedemann	3.1s	32.7s	185s	709s
dense solver				

Integer sparse linear system in practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits and 10 non zero elements per row.

n	400	900	1600	2500
CRT + Wiedemann	7.3s	79.2s	464s	1769s
P-adic + Wiedemann	3.1s	32.7s	185s	709s
dense solver	0.5s	3.5s	13s	41s

Integer sparse linear system in practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits and 10 non zero elements per row.

n	400	900	1600	2500
CRT + Wiedemann	7.3s	79.2s	464s	1769s
P-adic + Wiedemann	3.1s	32.7s	185s	709s
dense solver	0.5s	3.5s	13s	41s

2-1)
$$x_i = Br \mod p$$
 (dense case)

2-1)
$$x_i = (-1/\Pi[0]) \sum_{i=1}^{\deg \Pi} \Pi[i] A^{i-1} r \mod p$$
 (sparse case)

Remark:

n sparse matrix applications is far from level 2 BLAS in practice.

Our objectives

In pratice:

Integrate level 2 and 3 BLAS in integer sparse solver

In theory:

Improve bit complexity of sparse integer linear system solving $\implies O^{\sim}(n^{\delta})$ bits operations with $\delta < 3$?

Integration of BLAS in sparse solver

Goal:

- Minimize the number of sparse matrix-vector products.
- Maximize the calls of level 2 and 3 BLAS.

Block Wiedemann algorithm is well designed to incorporate BLAS.

Let k be the blocking factor of Block Wiedemann algorithm. then

- \triangleright the number of sparse matrix-vector product is divided by roughly k.
- order k level 3 BLAS are integrated.

Block Wiedemann and P-adic

Replace vector projections by block of vectors projections

Let N = n/kneed right minimal block generator $P \in \mathbb{Z}_p[X]$ of $\{UV, UAV, UA^2V, ..., UA^{2N}V\}$

the cost to compute P is :

- ▶ $O(k^3 N^2)$ field operations [Coppersmith 1994],
- ► O^{*}(k³ N log N) field operations [Beckermann, Labahn 1994; Kaltofen 1995; Thomé 2002],
- $ightharpoonup O^{\sim}(k^{\omega} \, N \log \, N)$ field operations [Giorgi, Jeannerod, Villard 2003].

Block Wiedemann and P-adic

```
Scheme to compute A^{-1}b:

1) for i := 0 to k

1-1) \Pi := block \ minpoly \ \{UA^iV_i\}_{1..2N} \ mod \ p

1-2) x_i := LC(A^i.V_i, \Pi[i]_{*,1}) \ mod \ p

1-3) r := (1/p)(r - A.x_i)

2)

2-1) x := \sum_{i=0}^k x_i \cdot p^i

2-2) rational \ reconstruction \ on \ x
```

Block Wiedemann and P-adic

Scheme to compute $A^{-1}b$:

1) for i :=0 to k
$$k = O^{\sim}(n)$$

1-1) $\Pi := block \ minpoly \ \{UA^{i}V_{i}\}_{1..2N} \ mod \ p$ $O^{\sim}(k^{2}n \log ||A||)$
1-2) $x_{i} := LC(A^{i}.V_{i}, \Pi[i]_{*,1}) \ mod \ p$ $O^{\sim}(n^{2} \log ||A||)$
1-3) $r := (1/p)(r - A.x_{i})$ $O^{\sim}(n \log ||A||)$
2)
2-1) $x := \sum_{i=0}^{k} x_{i}.p^{i}$
2-2) $rational \ reconstruction \ on \ x$

Not satisfying : computation of block minpoly. at each steps

How to avoid the computation of the block minimal polynomial?

Express the inverse of the sparse matrix throught structured forms. → block Hankel structure

We consider

$$K_{U} = \begin{bmatrix} U \\ UA \\ ... \\ UA^{N-1} \end{bmatrix}, K_{V} = [V|AV|...|A^{N-1}V]$$

Express the inverse of the sparse matrix throught structured forms. → block Hankel structure

We consider

$$K_{U} = \begin{bmatrix} U \\ UA \\ ... \\ UA^{N-1} \end{bmatrix}, K_{V} = [V|AV|...|A^{N-1}V]$$

than we have

$$K_UAK_V = H$$
 with H a block Hankel matrix.

Now, we can express A^{-1} with

$$A^{-1} = K_V H^{-1} K_U$$

Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Koo Choi, Cabay 1990]

where H_1, H_2 are block Hankel matrices and T_1 , T_2 are block Toeplitz matrices

Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Koo Choi, Cabay 1990]

where H_1, H_2 are block Hankel matrices and T_1 , T_2 are block Toeplitz matrices

Block coefficients in H_1 , H_2 , T_1 , T_2 come from Hermite Pade approximant on Block coefficients of H [Labahn, Koo Choi, Cabay 1990].

Complexity of H^{-1} reduces to polynomial matrix multiplication [Giorgi, Jeannerod, Villard 2003].

```
Scheme to compute A^{-1}b:
1)
     1-1) compute S := \{ UA^{i+1}V \}_{i=0..N-1} \mod p
     1-2) compute H^{-1} \mod p from S
     1-3) r = b
2) for i := 0 to k
     2-1) x_i := K_V \cdot H^{-1} \cdot K_U \cdot r \mod p
     2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
     3-2) rational reconstruction on x
```

```
Scheme to compute A^{-1}b:
1)
      1-1) compute S := \{ UA^{i+1}V \}_{i=0..N-1} \mod p \quad O((n^2k \log ||A||))
      1-2) compute H^{-1} \mod p from S
                                                                O^{\sim}(nk^2 \log ||A||)
      1-3) r = b
2) for i := 0 to k
                                                                    k = O^{\sim}(n)
      (2-1) x_i := K_V \cdot H^{-1} \cdot K_U \cdot r \mod p
                                                           O^{\sim}((n^2 + nk) \log ||A||)
      2-2) r := (1/p)(r - A.x_i)
                                                                     O^{\sim}(n \log ||A||)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
      3-2) rational reconstruction on x
```

```
Scheme to compute A^{-1}b:
1)
      1-1) compute S := \{ UA^{i+1}V \}_{i=0..N-1} \mod p \quad O((n^2 k \log ||A||))
      1-2) compute H^{-1} \mod p from S
      1-3) r = b
2) for i := 0 to k
                                                                  k = O^{\sim}(n)
                                                         O^{\sim}((n^2 + nk) \log ||A||)
      2-1) x_i := K_V \cdot H^{-1} \cdot K_U \cdot r \mod p
      2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
      3-2) rational reconstruction on x
```

```
K_{V} = [V|AV|...|A^{N-1}V]
\downarrow
K_{V} = [V| ] + A[ |V| ] + ... + A^{N-1}[ |V]
```

Applying K_V to a vector corresponds to :

- ullet N-1 linear combinations of columns of V
- ullet N-1 applications of A

$$K_{V} = [V|AV|...|A^{N-1}V]$$

$$\downarrow$$

$$K_{V} = [V|] + A[|V|] + ... + A^{N-1}[|V]$$

Applying K_V to a vector corresponds to :

- ullet N-1 linear combinations of columns of V
- N-1 applications of A

 $O(Nkn\log||A||)$ $O(nN\log||A||)$

$$K_{V} = [V|AV|...|A^{N-1}V]$$

$$\downarrow$$

$$K_{V} = [V|] + A[|V|] + ... + A^{N-1}[|V]$$

Applying K_V to a vector corresponds to :

- ullet N-1 linear combinations of columns of V
- N-1 applications of A

 $O(Nkn\log||A||)$

How to improve the complexity?

$$K_{V} = [V|AV|...|A^{N-1}V]$$

$$\downarrow$$

$$K_{V} = [V|] + A[|V|] + ... + A^{N-1}[|V]$$

Applying K_V to a vector corresponds to :

- ullet N-1 linear combinations of columns of V
- $O(Nkn\log||A||)$

• N-1 applications of A

How to improve the complexity?

 \Rightarrow using special block projections \emph{U} and \emph{V}

Conjecture

Let U and V such that

$$U = \begin{bmatrix} u_1 & \dots & u_k \\ & \ddots & & & \\ & & u_{n-k+1} & \dots & u_n \end{bmatrix}$$

$$V^T = \left[\begin{array}{cccc} v_1 & \dots & v_k \\ & & \ddots & \\ & & v_{n-k+1} & \dots & v_n \end{array} \right]$$

where u_i and v_i are chosen uniformly and randomly from a sufficient large set.

Let D a random diagonal matrix.

Then

the block hankel matrix $H = K_U.A.D.K_V$ is full rank.

Experimental algorithm

```
Scheme to compute A^{-1}b:
1)
      1-1) choose at random special U and V
     1-1) compute S := \{ UA^{i+1}V \}_{i=0..N-1} \mod p
      1-2) compute H^{-1} \mod p from S
      1-3) r = b
2) for i := 0 to k
     2-1) x_i := K_V \cdot H^{-1} \cdot K_U \cdot r \mod p
     2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
     3-2) rational reconstruction on x
```

Experimental algorithm

```
Scheme to compute A^{-1}b:
1)
      1-1) choose at random special U and V
      1-1) compute S := \{ UA^{i+1}V \}_{i=0..N-1} \mod p O(n^2 \log ||A||)
      1-2) compute H^{-1} \mod p from S
                                                               O^{\sim}(nk^2 \log ||A||)
      1-3) r = b
2) for i :=0 to k
                                                                 k = O^{\sim}(n)
      (2-1) x_i := K_{V} \cdot H^{-1} \cdot K_{U} \cdot r \mod p
                                                      O^{\sim}((nN+nk)\log||A||)
      2-2) r := (1/p)(r - A.x_i)
                                                                  O^{\sim}(n \log ||A||)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
      3-2) rational reconstruction on x
```

Experimental algorithm

```
Scheme to compute A^{-1}b:
1)
     1-1) choose at random special U and V
     1-1) compute S := \{UA^{i+1}V\}_{i=0..N-1} \mod p O(n^2 \log ||A||)
     1-2) compute H^{-1} \mod p from S
     1-3) r = b
2) for i :=0 to k
                                                             k = O^{\sim}(n)
                                                    O^{\sim}((nN+nk)\log||A||)
     2-1) x_i := K_V \cdot H^{-1} \cdot K_U \cdot r \mod p
     2-2) r := (1/p)(r - A.x_i)
3)
     3-1) x := \sum_{i=0}^{k} x_i . p^i
     3-2) rational reconstruction on x
```

taking $N = k = \sqrt{n}$ gives a complexity of $O(n^{2.5} \log ||A||)$

Prototype implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools:

- BLAS-based matrix multiplication and matrix-vector product
- polynomial matrix arithmetic
 Karatsuba algorithm, middle product
- vector polynomial Evaluation/Interpolation using matrix multiplication

Performances

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits and $10\ \text{non}$ zero elements per row.

400	900	1600	2500
7.3s	79.2s	464s	1769s
3.1s	32.7s	185s	709s
1.7s	8.9s	30s	81s
0.5s	3.5s	13s	41s
	7.3s 3.1s 1.7s	7.3s 79.2s 3.1s 32.7s 1.7s 8.9s	7.3s 79.2s 464s 3.1s 32.7s 185s 1.7s 8.9s 30s

Performances under progress

use of LinBox library on SMP machine 64 Itanium 2 - 1.6Ghz, 128Go RAM.

non-singular sparse linear system with coefficients over 3 bits and 30 non zero elements per row.

matrix dimension 10.000.

- ▶ $block = 500 \hookrightarrow 10.323s \approx 2h50mn$
- ▶ $block = 400 \hookrightarrow 9.655s \approx 2h40mn$
- ▶ $block = 200 \hookrightarrow 22.966s \approx 6h20mn$
- \Rightarrow using dense solving $4.347s \approx 1h12mn$

matrix dimension 20.000.

▶ $block = 400 \hookrightarrow 47.545s \approx 13h15mn$

Conclusions

We provide an efficient algorithm for solving sparse integer linear system :

- improve the complexty by a factor \sqrt{n} (heuristic).
- allow efficiency by minimizing sparse matrix operation and maximizing BLAS use.

On going improvement:

- optimize the code (use of FFT, minimize the constant)
- provide an automatic choice of block dimension
- proove conjecture on special block projection