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Motivations

Large linear systems are involved
in many mathematical applications

over a field :

» integers factorization [Odlyzko 1999],

» discrete logarithm [Odlyzko 1999 ; Thomé 2003],
over the integers :

» number theory [Cohen 1993],

» group theory [Newman 1972],

» integer programming [Aardal, Hurkens, Lenstra 1999]



Problem

Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1b over the rational numbers.
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Interest in linear algebra

Integer linear systems are central in recent
linear algebra algorithms

» Determinant :
[Abbott, Bronstein, Mulders 1999 ; Storjohann 2005]

» Smith Form :
[Eberly, Giesbrecht, Villard 2000]

» Nullspace, Kernel :
[Chen, Storjohann 2005]

» Diophantine solutions :
[Giesbrecht 1997 ;Giesbrecht, Lobo, Saunders 1998 ; Mulders, Storjohann 2003 ; Mulders
2004]



Algorithms for non-singular system solving

» Gaussian elimination and CRA
O"(n“*log ||A||) bit operations

» Linear P-adic lifting [Monck, Carter 1979, Dixon 1982]
O (n®log||A||) bit operations

» High order lifting [Storjohann 2005]
O"(n* log||A||) bit operations



P-adic algorithm for dense systems

Scheme to compute A~1b :

1)
1.1) B:=A1modp
12)r:=b
2) for i :=0 to k
2-1) x; := Br mod p
2-2) r:=(1/p)(r — Ax;)
3)

5 .
31) x:=>_gxi-p
3-2) rational reconstruction on x
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Dense linear system in practice

Efficient implementations are available :
LinBox 1.0 [www.linalg.org]
IML Iibrary [www.uwaterloo.ca/“z4chen /iml]

Details :

> level 3 BLAS-based matrix inversion over prime field
e with LQUP factorization [Dumas, Giorgi, Pernet 2004]
e with Echelon form [Chen, Storjohann 2005]

» level 2 BLAS-based matrix-vector product
e use of CRT over the integers

» rational number reconstruction
e half GCD [Schénage 1971]
e heuristic using integer multiplication [NTL library]



Timing of Dense linear system solving

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

Random dense linear system with coefficients over 3 bits :
[ n ][ 500 | 1000 [ 2000 | 3000 | 4000 | 5000 |
[ time ][ 0.6s | 4.3s | 31.1s | 99.6s [ 236.8s | 449.2s |

Random dense linear system with coefficients over 20 bits :
[ n ][ 500 | 1000 | 2000 [ 3000 [ 4000 [ 5000 |
’ time H 1.8s \ 12.9s \ 91.5s \ 299.7s \ 706.4s \ MT ‘

performances improvement by a factor 10
compare to NTL's tuned implementation



what does happen when matrices are sparse ?

We consider sparse matrices with O(n) non zero elements
< matrix-vector product needs only O(n) operations.



Scheme to compute A~1h :

1)
1.1) B:=A"1mod p
12)r:=b
2) for i :=0 to k
2-1) x; := Br mod p
2-2) r:=(1/p)(r — Ax;)
3)

B .
31) x:=3 gxi.p
3-2) rational reconstruction on x



Sparse linear system and P-adic lifting
P-adic lifting doesn't improve complexity as in dense case.
< computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986 ; Kaltofen, Saunders 1991] :
modular inverse is replaced by modular minimal polynomial

Let A € Z;*" of full rank and b € Z7. Then x = A~!bh can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}
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Sparse linear system and P-adic lifting
P-adic lifting doesn't improve complexity as in dense case.
< computing the modular inverse is proscribed due to fill-in

Solution [Wiedemann 1986 ; Kaltofen, Saunders 1991] :
modular inverse is replaced by modular minimal polynomial
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P-adic algorithm for sparse systems

Scheme to compute A~1h :

1)
1.1) N := minpoly(A) mod p
12)r:=b
2) for i :=0 to k
2-1) x; := (—=1/N[0]) %8 " N[i].A"~1r mod p
2-2) r:=(1/p)(r — Ax;)
3)

X .
1) x:=3_gxi-p
3-2) rational reconstruction on x



P-adic algorithm for sparse systems

Scheme to compute A~1h :

1)
1.1) N := minpoly(A) mod p
12)r:=b
2) for i :=0 to k
2-1) x; := (—=1/N[0]) %8 " N[i].A"~1r mod p
2-2) r:=(1/p)(r — Ax;)
3)
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O"(n log | Al[)

k = 0"(n)

O"(n* log || Al|)
0 (nlog ||Al])

Issue : computation of Krylov space {r, Ar, ...,Adeg”r} mod p




Integer sparse linear system in practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

| n [ 400 [ 900 [ 1600 [ 2500 |
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Integer sparse linear system in practice

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

| n [ 400 [ 900 [ 1600 [ 2500 |

CRT + Wiedemann || 7.3s | 79.2s | 464s | 1769s
P-adic + Wiedemann || 3.1s | 32.7s | 185s 709s

| dense solver [ 05s ] 35s| 13s | 4ls |

2-1) x; = Br mod p (dense case)
2-1) x; = (=1/N[0]) X% N[i].A2r mod p (sparse case)

Remark :

n sparse matrix applications is far from level 2 BLAS in practice.



Our objectives

In pratice :

Integrate level 2 and 3 BLAS in integer sparse solver

In theory :

Improve bit complexity of sparse integer linear system solving
= O"(n°) bits operations with § < 37



Integration of BLAS in sparse solver

Goal :
e Minimize the number of sparse matrix-vector products.
e Maximize the calls of level 2 and 3 BLAS.

Block Wiedemann algorithm is well designed to incorporate BLAS.

Let k be the blocking factor of Block Wiedemann algorithm.
then

» the number of sparse matrix-vector product is divided by roughly k.
> order k level 3 BLAS are integrated.



Block Wiedemann and P-adic

Replace vector projections by block of vectors projections

k

Al vV
KHI U ]

Let N =n/k
need right minimal block generator P € Z,[X] of

{UV, UAV, UAV, ..., UA2N v}

the cost to compute P is :
» O(k3N?) field operations [Coppersmith 1994],

» O (k3Nlog N) field operations [Beckermann, Labahn 1994 ; Kaltofen 1995 ;
Thomé 2002],

> O°(k¥Nlog N) field operations [Giorgi, Jeannerod, Villard 2003].



Block Wiedemann and P-adic

Scheme to compute A~1b :

1) for i :=0 to k
1-1) N := block minpoly {UA'V;}1. oy mod p
1-2) x; := LC(A'. Vi, N[i],1) mod p
1-3) r:=(1/p)(r — A.x;)

5 .
2_1) X = ZIZO Xi'P’
2-2) rational reconstruction on x



Block Wiedemann and P-adic

Scheme to compute A~1b :

1) for i :=0 to k k = O (n)
1-1) N := block minpoly {UA'V;}1 oy mod p  O"(k%nlog||A||)
1-2) x; == LC(A'.V;,N[i]«1) mod p O (n?log ||Al|)
1-3) r:= (1/p)(r — A.x;) O (nlog||All)

5 .
2_1) X = ZIZO Xi'p’
2-2) rational reconstruction on x

Not satisfying : computation of block minpoly. at each steps

How to avoid the computation of the block minimal polynomial?



Alternative to Block Wiedemann

Express the inverse of the sparse matrix throught structured forms.
< block Hankel structure

We consider

U

Ky=| YA LKy = [V|AV]...|AV-1V]

UAN-1



Alternative to Block Wiedemann

Express the inverse of the sparse matrix throught structured forms.
< block Hankel structure
We consider

U

Ky=| YA LKy = [V|AV]...|AV-1V]

-
than we have

KyAKy = H with H a block Hankel matrix.
Now, we can express A~! with

Al = K\/H_lKU



Alternative to Block Wiedemann

Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Koo Choi, Cabay 1990]

Hy T: Hy T
where Hy,H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices



Alternative to Block Wiedemann

Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Koo Choi, Cabay 1990]

Hy T H T

where Hy,H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices

Block coefficients in H;, Hy, T1 , T> come from Hermite Pade
approximant on Block coefficients of H [Labahn, Koo Choi, Cabay 1990].

Complexity of H=! reduces to polynomial matrix multiplication [Giorgi,
Jeannerod, Villard 2003].



Alternative to Block Wiedemann

Scheme to compute A~1b :

1)
1-1) compute S := {UA™V};—o. ny_1 mod p
1-2) compute H=* mod p from S
1-3)r=»
2) for i :=0 to k
2-1) x; := Ky.H™1.Ky.r mod p
2-2) r:=(1/p)(r — Ax;)
3)
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3-2) rational reconstruction on x
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Applying block Krylov space

Ky = [V|AV]...|AN-1V]
l
Ky =[V] 1+ A[ |V] ]+...+ AV |V]

Applying Ky to a vector corresponds to :
e N — 1 linear combinations of columns of V
e N — 1 applications of A



Applying block Krylov space

Ky = [V|AV]...|AN-1V]
l
Ky =[V] 1+ A[ |V] ]+...+ AV |V]

Applying Ky to a vector corresponds to :
e N — 1 linear combinations of columns of V O(Nknlog ||All)
e N — 1 applications of A O(nNlog||A|])



Applying block Krylov space

Ky = [V|AV]...|AN-1V]
l
Ky =[V] 1+ A[ |V] ]+...+ AV |V]

Applying Ky to a vector corresponds to :
e NV — 1 linear combinations of columns of V O(Nknlog ||All)
e N — 1 applications of A

How to improve the complexity ?



Applying block Krylov space

Ky = [V|AV]...|AN-1V]
l
Ky =[V] 1+ A[ |V] ]+...+ AV |V]

Applying Ky to a vector corresponds to :
e NV — 1 linear combinations of columns of V O(Nknlog ||All)
e N — 1 applications of A

How to improve the complexity ?

= using special block projections U and V



Conjecture
Let U and V such that

u ... Uk

Up—k+1 ... Up

Vi ... Vi
=

Vo—k+1 .. Vp

where u; and v; are chosen uniformly and randomly from a sufficient large
set.

Let D a random diagonal matrix.

Then

the block hankel matrix H = Ky.A.D.Ky is full rank.



Experimental algorithm

Scheme to compute A~1b :

1)
1-1) choose at random special U and V
1-1) compute S := {UAFV};_¢ n_1 mod p
1-2) compute H=! mod p from S
1-3)r=»>
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3)
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31) x:=3 oxi.p
3-2) rational reconstruction on x
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Experimental algorithm

Scheme to compute A~1b :

1)
1-1) choose at random special U and V
1-1) compute S := {UAFV};_¢ n_1 mod p
1-2) compute H=! mod p from S
1-3)r=»>

2) for i :=0 to k k = O7(n)
2-1) x; = Ky.H 1.Ky.r mod p O ((nN + nk) log ||Al])
2-2) r:=(1/p)(r — Ax;)

3)

B .
31) x:=3 oxi.p
3-2) rational reconstruction on x

taking N = k = /n gives a complexity of O"(n>*log ||Al|)



Prototype implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
» BLAS-based matrix multiplication and matrix-vector product

» polynomial matrix arithmetic
Karatsuba algorithm, middle product

» vector polynomial Evaluation/Interpolation using matrix
multiplication


www.linalg.org

Performances

use of LinBox library on Pentium 4 - 3.4Ghz, 2Go RAM.

non-singular sparse linear system with coefficients over 3 bits
and 10 non zero elements per row.

] n H 400 \ 900 \ 1600 \ 2500
CRT + Wiedemann 7.3s | 79.2s | 464s | 1769s
P-adic + Wiedemann 3.1s | 32.7s | 185s 709s
P-adic + block Hankel || 1.7s 8.9s 30s 81s

| dense solver 1055 355 ] 13s| 4ls




Performances under progress

use of LinBox library on SMP machine 64 Itanium 2 - 1.6Ghz, 128Go
RAM.

non-singular sparse linear system with coefficients over 3 bits
and 30 non zero elements per row.

matrix dimension 10.000.
» block =500 < 10.323s =~ 2h50mn
» block = 400 — 9.655s ~ 2h40mn
» block =200 — 22.966s ~ 6h20mn
= using dense solving 4.347s ~ 1h12mn

matrix dimension 20.000.
» block = 400 — 47.545s =~ 13h15mn



Conclusions

We provide an efficient algorithm for solving sparse integer linear system :

» improve the complexty by a factor \/n (heuristic).

» allow efficiency by minimizing sparse matrix operation and
maximizing BLAS use.

On going improvement :

> optimize the code (use of FFT, minimize the constant)
» provide an automatic choice of block dimension

» proove conjecture on special block projection



