
FFPACK: Finite Field Linear Algebra Package

Jean-Guillaume Dumas

Université Joseph Fourier,
Laboratoire de Modélisation et Calcul,

50 av. des Mathématiques.
B.P. 53 X, 38041 Grenoble, France.

Jean-Guillaume.Dumas@imag.fr

Pascal Giorgi

Laboratoire de l’Informatique du
Parallélisme,

LIP–ENS Lyon. 46, allée d’Italie,
F69364 Lyon Cédex 07, France.

Pascal.Giorgi@ens-lyon.fr

Clément Pernet

Université Joseph Fourier,
Laboratoire de Modélisation et Calcul,

50 av. des Mathématiques.
B.P. 53 X, 38041 Grenoble, France.

Clement.Pernet@imag.fr

ABSTRACT
The FFLAS project has established that exact matrix mul-
tiplication over finite fields can be performed at the speed
of the highly optimized numerical BLAS routines. Since
many algorithms have been reduced to use matrix multipli-
cation in order to be able to prove an optimal theoretical
complexity, this paper shows that those optimal complex-
ity algorithms, such as LSP factorization, rank determinant
and inverse computation can also be the most efficient.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis; F.2.1 [Analysis of Algorithms and Problem Com-
plexity]: Numerical Algorithms and Problems—computa-
tions in finite fields.

General Terms
Algorithms, Experimentation, Performance.

Keywords
Word size Finite fields; BLAS level 1-2-3; Linear Algebra
Package; Matrix Multiplication; LSP Factorization

1. INTRODUCTION
Exact matrix multiplication over finite fields can now be

performed at the speed of the highly optimized numerical
BLAS routines. This has been established by the FFLAS
project [8]. Moreover, since finite field computations e.g.
do not suffer from numerical stability, this project showed
also an easy effectiveness of the algorithms with even bet-
ter arithmetic complexity (such as Winograd’s variant of
Strassen’s fast matrix multiplication) [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’04, July 4–7, 2004, Santander, Spain.
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

Now for the applications. Many algorithms have been de-
signed to use matrix multiplication in order to be able to
prove an optimal theoretical complexity. In practice those
algorithms were only seldom used. This is the case e.g. in
many linear algebra problems such as determinant, rank,
inverse, system solution or minimal and characteristic poly-
nomial. Over finite fields or over the integers those finite
field linear algebra routines are used to solve many differ-
ent problems. Among them are integer polynomial factor-
ization, Gröbner basis computation, integer system solving,
large integer factorization, discrete logarithms, error cor-
recting codes, etc. Even sparse or polynomial linear algebra
needs some very efficient dense subroutines [12, 10]. We
believe that with our kernel, each one of those optimal com-
plexity algorithms can also be the most efficient.

The goal of this paper is to show the actual effectiveness
of this belief for the factorization of any shape and any rank
matrices. The application of this factorization to determi-
nant, rank, and inverse is presented as well.
Some of the ideas from FFLAS, in particular the fast ma-
trix multiplication algorithm for small prime fields, are now
incorporated into the Maple computer algebra system since
its version 8. Therefore an effort towards effective reduc-
tion has been made within Maple by A. Storjohann[4]. Ef-
fective reduction for minimal and characteristic polynomial
were sketched in [20] and A. Steel has reported on simi-
lar efforts within his implementation of some Magma rou-
tines. We provide a full C++ package available directly1

or through LinBox
2[7]. Extending the work undertaken by

the authors et al.[18, 8, 3, 11], this paper focuses on ma-
trix factorization, namely the exact equivalent of the LU
factorization. Indeed, unlike numerical matrices, exact ma-
trices are very often singular, even more so if the matrix
is not square ! Consequently, Ibarra, Moran and Hui have
developed generalizations of the LU factorization, namely
the LSP and LQUP factorizations [16]. In section 4 we deal
with the implementation of those two routines as well as
memory optimized (an in-place and a cyclic block) versions
using the fast matrix multiplication kernel. Those imple-
mentations require the resolution of triangular systems with
matrix right or left hand side. In section 3 the triangu-
lar system solver (Trsm routine using BLAS terminology) is
therefore studied. Then, in section 5, we propose different

1
www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas/FFLAS

2
www.linalg.org

uses of the factorization routine to solve other classical linear
algebra problems. In particular, speed ratios are presented
and reflects the optimal behavior of our routines.

2. BASE FIELDS
The algorithms we present in this paper are written gener-

ically with regards to the field over which they operate, as
long as they provide some conversion functions from a field
element to a floating point representation and backwards.
As demonstrated in [8] this is easily done for prime fields
and also for other finite fields, via a q-adic transformation.
The chosen interface is that of the LinBox fields [22, §5.3].
In the following, the prime field with characteristic p will be
denoted by Zp.

For our experiments we use some classical representa-
tions, e.g. modular prime fields, primitive roots Galois fields,
Montgomery reduction, etc. implemented in different li-
braries, as in [8, 6]. Still and all, when no special implemen-
tation is required and when the prime field is small enough,
one could rather use what we call a Modular<double> field
representation. Indeed, the use of the BLAS imposes conver-
sions between the field element representations and a corre-
sponding floating point representation. Hence a lot of time
consuming conversions can be avoided whenever the field ele-
ment representation is already a floating point number. This
is the case for the LinBox prime field Modular<double>,
where the exact representation of an element is stored within
the mantissa of a double precision floating point number.
Of course all the arithmetic operations remain exact as they
are always performed modulo a prime number. In this pa-
per, we only focus on two representations. The first one is
Modular<double> and the second one is that of the Givaro
library 3 which uses machine integer remaindering. This
classical representation will be denoted by Givaro-ZpZ.

3. TRIANGULAR SYSTEM SOLVING
WITH MATRIX HAND SIDE

In this section we discuss the implementation of solvers for
triangular systems with matrix right hand side (or equiva-
lently left hand side). This is also the simultaneous res-
olution of n triangular systems. Without loss of gener-
ality for the triangularization, we here consider only the
case where the row dimension, m, of the the triangular
system is less than or equal to the column dimension, n.
The resolution of such systems is a classical problem of lin-
ear algebra. It is e.g. one of the main operation in block
Gaussian elimination. For solving triangular systems over
finite fields, the block algorithm reduces to matrix multi-
plication and achieves the best known arithmetic complex-
ity. Therefore, from now on we will denote by ω the expo-
nent of square matrix multiplication (e.g. from 3 for clas-
sical, to 2.375477 for Coppersmith-Winograd). Moreover,
we can bound the arithmetical cost of a m × k by k × n
rectangular matrix multiplication (denoted by R(m,k, n)) as
follows: R(m,k, n) ≤ Cωmin(m, k, n)ω−2max(mk,mn, kn)
[15, (2.5)]. In the following subsections, we present the block
recursive algorithm and two optimized implementation vari-
ants.

3
www-id.imag.fr/Logiciels/givaro

3.1 Scheme of the block recursive algorithm
The classical idea is to use the divide and conquer ap-

proach. Here, we consider the upper left triangular case
without loss of generality, since the any combination of up-
per/lower and left/right triangular cases are similar: if U
is upper triangular, L is lower triangular and B is rect-
angular, we call ULeft-Trsm the resolution of UX = B,
LLeft-Trsm that of LX = B, URight-Trsm that of XU = B
and LRight-Trsm that of XL = B.

Algorithm ULeft-Trsm(A, B)

Input: A ∈ Zp
m×m, B ∈ Zp

m×n.
Output: X ∈ Zp

m×n such that AX = B.
Scheme
if m=1 then

X := A−1
1,1 × B.

else (splitting matrices into bm
2
c and dm

2
e blocks)

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

X2 :=ULeft-Trsm(A3, B2).
B1 := B1 − A2X2.
X1 :=ULeft-Trsm(A1, B1).

return X.

Lemma 3.1. Algorithm ULeft-Trsm is correct and its the-
oretical cost is bounded by Cω

2(2ω−2−1)
nmω−1 arithmetic op-

erations in Zp for m ≤ n.

Proof. The correctness of algorithm ULeft-Trsm can be
proven by induction on the row dimension of the system.
For this, one only has to note that

X =

[
X1

X2

]

is solution ⇐⇒

{
A3X2 = B2

A1X1 + A2X2 = B1

Let C(m, n) be the cost of algorithm ULeft-Trsm where m
is the dimension of A and n the column dimension of B.
It follows from the algorithm that C(m,n) = 2C(m

2
, n) +

R(m
2

, m
2

, n). By counting each operation at one recursive
step we have:

C(m, n) =

log m
∑

i=1

2i−1R(
m

2i
,
m

2i
, n)

Now, since m ≤ n, we get ∀i R(m

2i , m

2i , n) = Cω

(
m

2i

)ω−1
n

and therefore:

C(m, n) =
Cωnmω−1

2

log m
∑

i=1

(
1

2i

)ω−2

which gives the O(nmω−1) bound of the lemma.

3.2 Implementation using the BLAS “dtrsm”
Matrix multiplication speed over finite fields was improved

in [8, 18] by the use of the numerical BLAS4 library: matri-
ces were converted to floating point representations (where
the linear algebra routines are fast) and converted back to
a finite field representation afterwards. The computations
remained exact as long as no overflow occurred. An im-
plementation of ULeft-Trsm can use the same techniques.

4
www.netlib.org/blas

Indeed, as soon as no overflow occurs one can replace the
recursive call to ULeft-Trsm by the numerical BLAS dtrsm
routine. But one can remark that approximate divisions can
occur. So we need to ensure both that only exact divisions
are performed and that no overflow appears. Not only one
has to be careful for the result to remain within acceptable
bounds, but, unlike matrix multiplication where data grows
linearly, data involved in linear system grows exponentially
as shown in the following.
The next two subsections first show how to deal with di-
visions, and then give an optimal theoretical bound on the
coefficient growth and therefore an optimal threshold for the
switch to the numerical call.

3.2.1 Dealing with divisions
In algorithms like ULeft-Trsm, all divisions appear only

within the last recursion’s level. In the general case it can-
not be predicted whether these divisions will be exact or
not. However when the system is unitary (only 1’s on the
main diagonal) the division are of course exact and will even
never be performed. Our idea is then to transform the ini-
tial system so that all the recursive calls to ULeft-Trsm are
unitary. For a triangular system AX = B, it suffices to
factor first the matrix A into A = UD, where U , D are re-
spectively an upper unit triangular matrix and a diagonal
matrix. Next the unitary system UY = B is solved by any
ULeft-Trsm (even a numerical one), without any division.
The initial solution is then recovered over the finite field via
X = D−1Y . This normalization leads to an additional cost
of:

• m inversions over Zp for the computation of D−1.
• (m − 1)m

2
+ mn multiplications over Zp for the nor-

malizations of U and X.

Nonetheless, in our case, we need to avoid divisions only
during the numerical phase. cwTherefore, the normalization
can take place only just before the numerical routine calls.
Let β be the size of the system when we switch to a numerical
computation. To compute the cost, we assume that m =
2iβ, where i is the number of recursive level of the algorithm
ULeft-Trsm. The implementation can however handle any
matrix size. Now, there are 2i normalizations with systems
of size β. This leads to an additional cost of:

• m inversions over Zp.
• (β − 1)m

2
+ mn multiplications over Zp.

This allows us to save
(

1
2
− 1

2i+1

)
m2 multiplications over

Zp from a whole normalization of the initial system. One
iteration suffices to save 1

4
m2 multiplications and we can

save up to 1
2
(m2 −m) multiplications with log m iterations.

3.2.2 A theoretical threshold
The use of the BLAS routine trsm is the resolution of the

triangular system over the integers (stored as double for
dtrsm or float for strsm). The restriction is the coefficient
growth in the solution. Indeed, the kth value in the solu-
tion vector is a linear combination of the (n − k) already
computed next values. This implies a linear growth in the
coefficient size of the solution, with respect to the system
dimension. Now this resolution can only be performed if
every element of the solution can be stored in the mantissa
of the floating point representation (e.g. 53 bits for double

). Therefore overflow control consists in finding the largest
block dimension b, such that the result of the call to dtrsm

will remain exact.

We now propose a bound for the values of the solutions
of such a system; this bound is optimal (in the sense that
there exists a worst case matching the bound when n = 2ib).
This enables the implementation of a cascading algorithm,
starting recursively and taking advantage of the BLAS per-
formances as soon as possible.

Theorem 3.2. Let T ∈ Z
n×n be a unit diagonal upper

triangular matrix, and b ∈ Z
n, with |T | ≤ p − 1 and |b| ≤

p − 1. Let X = (xi)i∈[1..n] ∈ Z
n be the solution of T.X = b

over the integers. Then, ∀ k ∈ [0..n − 1]:
{

(p − 2)k − pk ≤ 2
xn−k

p−1
≤ pk + (p − 2)k if k is even

−pk − (p − 2)k ≤ 2
xn−k

p−1
≤ pk − (p − 2)k if k is odd

The proof is presented in appendix A. The idea is to use an
induction on k with the relation xk = bk −

∑n

i=k+1 Tk,ixi.
Two lower and an upper bounds for xn−k are computed,
depending whether k is even or odd.

Corollary 3.3. |X| ≤ p−1
2

[
pn−1 + (p − 2)n−1

]
.

Moreover, this bound is optimal.

Proof. We denote by un = p−1
2

[pn − (p − 2)n] and vn =
p−1
2

[pn + (p − 2)n] the bounds of the theorem 3.2. Now
∀ k ∈ [0..n − 1] uk ≤ vk ≤ vn−1. Therefore the theorem 3.2
gives ∀ k ∈ [1..n] xk ≤ vn−1 ≤ p−1

2

[
pn−1 + (p − 2)n−1

]

Let T =










. . .
. . .

. . .
. . .

. . .

1 p − 1 0 p − 1
1 p − 1 0

1 p − 1
1










, b =










...
0

p − 1
0

p − 1










Then the solution X = (xi)i∈[1..n] ∈ Z
n of the system T.X =

b satisfies ∀ k ∈ [0..n − 1] |xn−k| = vk

Thus, for a given p, the dimension n of the system must
satisfy

p − 1

2

[
pn−1 + (p − 2)n−1] < 2m (1)

where m is the size of the mantissa so that the resolution
over the integers using the BLAS trsm routine is exact. For
instance, with a 53 bits mantissa, this gives quite small ma-
trices, namely at most 55 × 55 for p = 2, at most 4 × 4 for
p ≤ 9739, and at most p = 94906249 for 2 × 2 matrices.
Nevertheless, this technique is speed-worthy in most cases
as shown in section 3.4.

3.3 Recursive with delayed modulus
In the previous section we noticed that BLAS routines

within Trsm are used only for small systems. An alternative
is to change the cascade: instead of calling the BLAS, one
could switch to the classical iterative algorithm: Let A ∈
Zp

m×m and B, X ∈ Zp
m×n such that AX = B, then

∀i, Xi,∗ =
1

Ai,i

(Bi,∗ − Ai,[i+1..m]X[i+1..m],∗) (2)

The idea is that the iterative algorithm computes only one
row of the whole solution at a time. Therefore its threshold
t is greater than the one of the BLAS routine, namely it
requires only

t(p − 1)2 < 2m (3)

Resultantly, an implementation of this iterative algorithm
depends mainly on the matrix-vector product. The arith-
metical cost of such an algorithm is now cubic in the size of
the system, where blocking improved the theoretical com-
plexity. Anyway, in practice fast matrix multiplication al-
gorithms are not better than the classical one for such small
matrices [8, §3.3.2]. In section 3.4 we compare both hybrid
implementations with different thresholds to the pure recur-
sive one.

Now we focus on the dot product operation, base for
matrix-vector product. We use the results of [6], extend-
ing those of [8, §3.1]. There several implementations of a
dot product are proposed and compared on different ar-
chitectures. According to [6], where many different imple-
mentations are compared (Zech log, Montgomery, float, ...),
the best implementation is a combination of a conversion to
floating point representation with delayed modulus (for big
prime and vector size) and an overflow detection trick (for
smaller prime and vector size).

The first idea is to specialize dot product in order to make
several multiplications and additions before performing the
division (which is then delayed). Indeed, one needs to per-
form a division only when the intermediate result might
overflow. Now, if the available mantissa is of m bits and
the modulo is p, divisions happen at worst every n multi-
plications where n satisfies condition (3). There the best
compromise has to be chosen between speed of computation
and available mantissa. A double floating point represen-
tation gives actually the best performances for most of the
vector and prime sizes [6]. Moreover one can then perform
the division “à la NTL” using a floating point precomputa-
tion of the inverse: a ∗ b mod p = a ∗ b − ba ∗ b ∗ p−1c ∗ p.

For small primes, however, there is a faster method: the
second idea is to use an integer representation and to let the
overflow occur. Then one should detect this overflow and
correct the result if needed. Indeed, suppose that we have
added a product ab to the accumulated result t and that an
overflow has occurred. The variable t now contains actually
t − 2m. Well, the idea is just to precompute a correction
CORR = 2m mod p and add this correction whenever an
unsigned overflow has occurred. Now for a portable un-
signed overflow detection, we use a trick of B. Hovinen [14]:
since 0 < ab < 2m, an unsigned overflow has occurred if
and only if t + ab < t. Of course, better performances are
attained when several products are grouped (whenever pos-
sible) so that test and correction are also delayed [6]. Figure
1, shows the “quasi-optimal performances” obtained using
both techniques on a Pentium 3 (P3): the constant curve
is the very good behavior of a simple delayed division with
a double floating point representation and “à la NTL” di-
visions. The step curve is a blocked version of the overflow
and correction idea where a change of step reflects the need
of an additional division. An optimal implementation would
switch to one or the other representation depending on the
size of the prime and on the architecture.

3.4 “Trsm” implementations behavior
As shown in section 3.1 the block recursive algorithm Trsm

is based on matrix multiplications. This allows us to use the
fast matrix multiplication routine of the FFLAS package [8].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10000 20000 30000 40000 50000 60000

S
pe

ed
 (

M
fo

ps
)

Prime number

Dot product of a vector with 512 elements on a P3 993 MHz

Classical
double representation

Overflow trick

Figure 1: Speed improvement of dot product by de-
layed division, on a P3, 993 MHz

This is an exact wrapping of the ATLAS library5 used as a
kernel to implement the Trsm variants. In the following we
denote by “pure rec” the implementation of the recursive
Trsm described in section 3.1. “BLAS” denotes the variant
of section 3.2 with optimal threshold. “delayedt” denotes
the variant of section 3.3 where t satisfies equation 3. In
our comparisons we use the fields presented in section 2 as
base fields and the version 3.4.2 of ATLAS. Performances
are expressed in million of finite field operations (Mfops)
per second for n × n dense systems.

n 400 700 1000 2000 3000 5000

pure rec. 853 1216 1470 1891 2059 2184
BLAS 1306 1715 1851 2312 2549 2660

delayed100 1163 1417 1538 1869 2042 2137
delayed50 1163 1491 1639 1955 2067 2171
delayed23 1015 1465 1612 2010 2158 2186
delayed3 901 1261 1470 1937 2134 2166

n 400 700 1000 2000 3000 5000

pure rec. 810 1225 1449 1886 2037 2184
BLAS 1066 1504 1639 2099 2321 2378

delayed100 1142 1383 1538 1860 2019 2143
delayed50 1163 1517 1639 1955 2080 2172
delayed23 1015 1478 1612 2020 2146 2184
delayed3 914 1279 1449 1941 2139 2159

Table 1: Comparing speed (Mfops) of Trsm using
Modular<double>, on a P4, 2.4GHz (Upper table is
over Z5, lower table is over Z32749)

One can see from table 1 that the “BLAS” Trsm variant
with a Modular<double> representation is the most efficient
choice for small primes (here switching to BLAS happens for
n = 23 when p = 5 and m = 53). Now for big primes, de-
spite the very small granularity (switching to BLAS happens
only for n = 3 when p = 32749 and m = 53), this choice
remains the best as soon as the systems are bigger than
1000×1000. This is because grouping operations into blocks
speeds up the computation. Now in the case of smaller sys-
tems, the “delayed” variant is more efficient, due to the good
behavior of dot product. However the threshold t has to be
chosen carefully. Indeed using a threshold of 50 enables bet-

5
http://math-atlas.sourceforge.net[23]

n 400 700 1000 2000 3000 5000

pure rec. 571 853 999 1500 1708 1960
BLAS 688 1039 1190 1684 1956 2245

delayed150 799 1113 909 1253 1658 2052
delayed100 831 1092 1265 1571 1669 2046
delayed23 646 991 1162 1584 1796 2086
delayed3 528 755 917 1369 1639 1903

n 400 700 1000 2000 3000 5000

pure rec. 551 786 1010 1454 1694 1929
BLAS 547 828 990 1449 1731 1984

delayed100 703 958 1162 1506 1570 1978
delayed50 842 1113 1282 1731 1890 2174
delayed23 653 952 1086 1556 1800 2054
delayed3 528 769 900 1367 1664 1911

Table 2: Comparing speed (Mfops) of Trsm using
Givaro-ZpZ, on a P4, 2.4GHz (Upper table is over
Z5, lower table is over Z32749)

ter performances than the BLAS variant. This is because
the conversion from machine integers to floating point num-
bers becomes too big a price to pay. As a comparison, we
also provide performances for several thresholds, in partic-
ular the same as in the BLAS variant (3 and 23). Then
for larger matrices, conversions (O(n2)) are dominated by
computations (O(nω)), and the “BLAS” variant is again
the fastest one, provided that the field is small enough.

Now, table 2 reflects experiments using the integer based
modular fields of Givaro, Givaro-ZpZ. First, using these
fields, Trsm is slower than with Modular<double>. This is
due to the conversions needed for the matrix multiplications.
Note that with the shown thresholds (not bigger than 100)
the “overflow trick” used for the dotproduct slightly reduces
this loss because it also reduces the number of conversions
needed for the dotproduct.

To summarize, one would rather use a Modular<double>

representation and the “BLAS” Trsm variant in most cases.
However, when the base field is already specified, delayedt

could provide slightly better performances. This requires a
search for optimal thresholds which could be done through
an Automated Empirical Optimizations of Software[23].

4. TRIANGULARIZATIONS
We now come to the core of this paper, namely the matrix

multiplication based algorithms for triangularization over fi-
nite fields. The main concern here is the singularity of the
matrices. Moreover, practical implementations need to ef-
ficiently deal with the rank profile, unbalanced dimensions,
memory management, recursive thresholds, etc. Therefore,
in this section we present three variants of the recursive ex-
act triangularization. First the classical LSP of Ibarra et al.
is sketched. In order to reduce its memory requirements, a
first version, LUdivine, stores L in-place, but temporarily
uses some extra memory. Our last implementation is fully
in-place without any extra memory requirements and corre-
sponds to Ibarra’s LQUP. From both LUdivine and LQUP one
can easily recover the LSP via some extractions and permu-
tations.

4.1 LSP Factorization
The LSP factorization is a generalization of the well known

block LUP factorization for the singular case [1]. Let A be a
m × n matrix, we want to compute the triple < L, S, P >
such that A = LSP . The matrices L and P are as in LUP

factorization and S reduces to a non-singular upper triangu-
lar matrix when zero rows are deleted. The algorithm with
best known complexity computing this factorization uses a
divide and conquer approach and reduces to matrix multi-
plication [16]. Let us describe briefly the behavior of this
algorithm. The algorithm is recursive: first, it splits A in

L

S
YT

X Z
S

L

G
L1

Figure 2: Principle of the LSP factorization

halves and performs a recursive call on the top block. It thus
gives the T , Y and L1 blocks of figure 2. Then, after some
permutations ([XZ] = [A21A22]P), it computes G such that
GT = X via Trsm, replaces X by zeroes and eventually up-
dates Z = Z − GY . The third step is a recursive call on Z.
We let the readers refer e.g. to [2, (2.7c)] for further details.

Lemma 4.1. Algorithm LSP is correct. The leading term

of its theoretical cost is bounded by Cω

2ω−1−2
mω−1

(

n + m
2ω−2

)

arithmetic operations in Zp for m ≤ n.

This refines Ibarra’s original factor[16, Theorem 2.1] from
3n to n + m

2ω−2
. Moreover, when each one of the inter-

mediate block is of full rank, this factor even reduces to

n − m 2ω−2
−1

2ω−1−1
[19, Theorem 1]. And this nicely gives 2

3
n3,

when ω = 3, n = m and Cω = C3 = 2.

The point here is that, L being square m×m does not fit in
place under S. Therefore a first implementation produces an
extra triangular matrix. The following subsections address
this memory issue.

4.2 LUdivine
The main concern with the direct implementation of the

LSP algorithm, is the storage of the matrix L: it can not be
stored with its zero columns under S (as shown in figure 2).
Actually, there is enough room under S to store all the non
zero entries of L, as shown in figure 3. Storing only the non
zero columns of L is the goal of the LUdivine variant. One
can notice that this operation corresponds to the storage of
L̃ = LQ instead of L, where Q is a permutation matrix such
that QT S is upper triangular. Consequently, the recovery of
L from the computed L̃ is straightforward. Note that this
L̃ corresponds to the echelon form of [17, §2] up to some
transpositions.

Further developments on this implementation are given
in [3, 19]. However, this implementation is still not fully in
place. Indeed, to solve the triangular system G = X.T−1,
one has then to convert T to an upper triangular matrix
stored in a temporary memory space. In the same way,

X Z

Y

Figure 3: Principle of the LUdivine factorization

the matrix product Z = Z − GY also requires a temporary
memory allocation, since rows of Y have to be shifted. This
motivates the introduction of the LQUP decomposition.

4.3 LQUP
To solve the data locality issues, due to zero rows inside

S, one can prefer to compute the LQUP factorization, also
introduced in [16]. It consists in a slight modification of
the LSP factorization: S is replaced by U , the corresponding
upper triangular matrix, after the permutation of the zero
rows. The tranpose of this row permutation is stored in Q.

Z

Y

X

Figure 4: Principle of the LQUP factorization

This prevents the use of temporaries for Y and T , since the
triangles in U are now contiguous. Moreover, the number of
instructions to perform the row permutations is lower than
the number of instructions to perform the block copies of
LUdivine or LSP. Furthermore, our implementation of LQUP
also uses the trick of LUdivine, namely storing L in its com-
pressed form L̃. Thanks to all these improvements, this
triangulation appears to be fully in place. As will be shown
in section 4.4, it is also more efficient. Here again, the LSP

and LQUP factorizations are simply connected via S = QU .
So the recovery of the LSP is still straightforward.

4.4 Comparisons
As shown in previous sections the three variants of tri-

angularization mainly differ by their memory management.
Indeed, the main operations remain matrix multiplications
and triangular system solving. Therefore, the implementa-
tion of all these variants use the fast matrix multiplication
routine of the FFLAS package [8] and the triangular system
solver of subsection 3.2 as kernel. The results are impressive:
for example, table 3 shows that it is possible to triangularize
a 5000 × 5000 matrix over a finite field in 29.9 seconds. We
now compare the three routine speed and memory usage
with the same kernels: a Modular<double> representation
(so that no conversion overhead occur) and the recursive

with BLAS Trsm. For table 3, we used random dense square

n 400 1000 3000 5000 8000 10000
LSP 0.05 0.48 8.01 32.54 404.8 1804

LUdivine 0.05 0.47 7.79 30.27 403.9 1691
LQUP 0.05 0.45 7.59 29.90 201.7 1090

Table 3: Comparing real time (seconds) of LSP,
LUdivine, LQUP over Z101, on a P4, 2.4GHz

matrices (but with 3n non-zero entries) so as to have rank
defficient matrices. The timings given in table 3 are close
since the dominating operations of the three routines are
similar. LSP is slower, since it performs some useless zero
matrix multiplications when computing Z = Z − GY (sec-
tion 4.2). LQUP is slightly faster than LUdivine since row
permutations involve less operations than the whole block
copy of LUdivine (section 4.3). However these operations
do not dominate the cost of the factorization, and they are
therefore of little influence on the total timings. This is
true until the matrix size induces some swapping, around
8000 × 8000.

Now for the memory usage, the fully in-place implemen-
tation of LQUP saves 20% of memory (table 4) when com-
pared to LUdivine and 55% when compared to LSP. Ac-
tually, the memory usage of the original LSP is approxi-
mately that of LUdivine augmented by the extra matrix
storage (which corresponds exactly to that of LQUP: e.g.
5000 ∗ 5000 ∗ 8bytes = 200Mb). This memory reduction

n 400 1000 3000 5000 8000 10000
LSP 2.83 17.85 160.4 444.2 1136 1779

LUdivine 1.60 10.00 89.98 249.9 639.6 999.5
LQUP 1.28 8.01 72.02 200.0 512.1 800.0

Table 4: Comparing memory usage (Mega bytes) of
LSP, LUdivine, LQUP over Z101, on a P4, 2.4GHz with
512 Mb RAM

is of high interest when dealing with large matrices (further
improvements on the memory management are presented
section 4.5).

4.5 Data locality
To solve even bigger problems, say that the matrices do

not fit in RAM, one has mainly two solutions: either per-
form out of core computations or parallelize the resolution.
In both cases, the memory requirements of the algorithms
to be used will become the main concern. This is because
the memory accesses (either on hard disk or remotely via a
network) dominate the computational cost. A classical so-
lution is then to improve data locality so as to reduce the
volume of these remote accesses. In such critical situations,
one may have to prefer a slower algorithm having a good
memory management, rather than the fastest one, but suf-
fering from high memory requirements. We here propose to
deal with this concern in the case of rank or determinant
computations of large dense matrices. The generalization
to the full factorization case being direct but not yet fully
implemented.

To improve data locality and reduce the swapping, the
idea is to use square recursive blocked data formats [13]. A

variation of the LSP algorithm, namely the TURBO algorithm
[9], adapts this idea to the exact case. Alike the LQUP al-
gorithm which is based on a recursive splitting of the row
dimension (see section 4.3), TURBO achieves more data local-
ity by splitting both row and column dimensions. Indeed
the recursive splitting with only the row dimension tend to
produce “very rectangular” blocks: a large column dimen-
sion and a small row dimension. On the contrary, TURBO

preserves the squareness of the original matrix for the first
levels. More precisely each recursive level consists in a split-
ting of the matrix into four static blocks followed by five re-
cursive calls to matrix triangularizations (U, V, C, D, and Z,
in that order on figure 5), six Trsm and four matrix multipli-
cations for the block updates. In this first implementation,

Figure 5: Principle of the TURBO decomposition

only one recursive step of TURBO is used, the five recursive
calls being performed by the LQUP algorithm. For the actual
size of matrices, the quite complex implementation of more
recursive levels of TURBO is not yet mandatory.

Now for the comparisons of figure 6, we use the full LQUP
factorization algorithm as a reference. Factorization of ma-
trices of size below 8000 fit in 512Mb of RAM. Then LQUP is
slightly faster than TURBO, implementation of the latter pro-
ducing slightly more scattered groups. Now, the first field
representation chosen (curves 1 and 2) is a modular prime
field representation using machine integers. As presented in
[8], any matrix multiplication occurring in the decomposi-
tion over such a representation is performed by converting
the three operands to three extra floating point matrices.
This memory overhead is critical in our comparison. TURBO,
having a better data locality and using square blocks when-
ever possible, requires smaller temporary matrices than the
large and very rectangular blocks used in LQUP. Therefore,
for matrices of order over 8000, LQUP has to swap a lot while
TURBO remains more in RAM. This is strikingly true for ma-
trices between 8000 and 8500, where TURBO manages to keep
its top speed.

Moreover, one can also reduce the memory overhead due
to the conversions to floating point numbers, by using the
modular<double> field representation, as described in sec-
tion 2. There absolutely no allocation is done beside the ini-
tial matrix storage. On the one hand, performances increase
since the conversions and copy are no longer performed, as
long as the computations remain in RAM (see curves 3 and
4). On the other hand, the memory complexities of both al-
gorithms now become identical. Furthermore, this fully in-
place implementation does not create small block copies any-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000

M
fo

ps

Matrix order

TURBO vs LQUP for rank computation over Z101 on a P4−2.4Ghz, 512Mb RAM

(1) TURBO using Givaro−ZpZ
(2) LQUP using Givaro−ZpZ

(3) TURBO using modular<double>
(4) LQUP using modular<double>

Figure 6: TURBO versus LQUP for out of core rank

more. Paradoxically, this prevents the virtual blocks from
fitting in the RAM, since they are just a view of the large
initial matrix. For this reason, both performance losses ap-
pear for matrices of order around 8000. However, the drop
is lower for TURBO thanks to the recursive blocked data for-
mats producing better data locality.

This behavior of course confirms that as soon as the RAM
is full, data locality becomes more important than memory
saves : TURBO over Givaro-Zpz is the fastest for matrices of
size bigger than 8000, despite its bigger memory demand.
This is advocating further uses of recursive blocked data
formats and of more recursive levels of TURBO.

5. RANK, DETERMINANT, INVERSE
The LQUP factorization and the Trsm routines reduce to

matrix multiplication as we have seen in the previous sec-
tions. Theoretically, as matrix multiplication requires 2n3−
n2 arithmetic operations, the factorization, requiring at most
2
3
n3 arithmetic operations, could be computed in about 1

3
of

the time. Now, the matrix multiplication routine Fgemm of
FFLAS package can compute 5000 × 5000 matrix multipli-
cations in only 56.43 seconds on a 2.4GHz pentium 4. This
is achieved with pipelining within the P4 processor and with
very good performances of the BLAS. This corresponds to
4430 millions of finite field arithmetic operations per sec-
onds! Well, table 5 shows that with n × n matrices we are
not very far from these quasi-optimal performances also for
the factorization:

n 400 700 1000 2000 3000 5000
LQUP 0.05s 0.19s 0.45s 2.58s 7.59s 29.9s
Fgemm 0.05s 0.24s 0.66s 4.49s 12.66s 56.43s
Ratio 1 0.78 0.68 0.57 0.6 0.53

Table 5: Comparing cpu time of Matrix Multiplica-
tion and Factorization over Z101, on a P4, 2.4GHz

Moreover, from the two routines, one can also easily derive
several other algorithms:

• The rank is the number of non-zero rows in U .

• The determinant is the product of the diagonal ele-
ments of U (stopping whenever a zero is encountered).

• The inverse is also straightforward:

Algorithm Inverse(A)

Input: A ∈ Zp
m×m, non singular.

Output: A−1 ∈ Zp
m×m.

Scheme
L, U, P := LQUP(A). (A is invertible, so Q = Im)

X := LLeft-Trsm(L, Id).
A−1 := P T ULeft-Trsm(U, X).

Now, the inverse can then be computed with at most
2
3
n3 + 2n3 arithmetic operations which gives a theoretical

ratio of 4
3
. Once again, table 6 proves that our implementa-

tion has pretty good performances: Indeed, operations per-

n 400 700 1000 2000 3000 5000
Inv 0.2s 0.76s 1.9s 11.27s 32.08s 132.72s
Fgemm 0.05s 0.24s 0.66s 4.49s 12.66s 56.43s
Ratio 4 3.17 2.92 2.51 2.53 2.35

Table 6: Comparing cpu time of Matrix Multiplica-
tion and Inverse over Z101, on a P4, 2.4GHz

formed in LQUP, or Trsm are not grouped as well as in Fgemm.
Therefore, the excellent performances of Fgemm make the ra-
tio somewhat unreachable, although the invert routine is
very fast. Note that, as the first LLeft-Trsm call is made
on the identity it could be accelerated in a specific routine.
Indeed, during the course of LUP , L−1 can actually be com-

puted with only a n3

3
overhead, thus reducing the theoretical

ratio from 4/3 to 1.

6. CONCLUSIONS
We have achieved the goal of approaching the speed of the

numerical factorization of any shape and any rank matrices,
but for finite fields. For example, the LQUP factorization of
a 3000 × 3000 matrix over a finite field takes 7.59 seconds
where 6 seconds are needed for the numerical LUP factoriza-
tion of lapack6. To reach these performances one could use
blocks that fit the cache dimensions of a specific machine. In
[8] we proved that this was not mandatory for matrix multi-
plication. We think we prove here that this is not mandatory
for any dense linear algebra routine. By the use of recursive
block algorithms and efficient numerical BLAS, one can ap-
proach the numerical performances. Moreover, long range
efficiency and portability are warranted as opposed to every
day tuning with at most 10% loss for large matrices (see
table 2 where delayed can beat BLAS only for big primes
and with a specific empirical threshold).

Besides, the exact equivalent of stability constraints for
numerical computations is coefficient growth. Therefore,
whenever possible, we computed and improved theoretical
bounds on this growth (see bounds 3.3 and [8, Theorem
3.1]). Those optimal bounds enable further uses of the BLAS
routines.

Further developments include:

6
www.netlib.org/lapack

• A Self-adapting Software [5] (to switch to different algo-
rithms during the recursive course of Trsm and TURBO), could
be used to find the best empirical thresholds.
• The other case where our wrapping of BLAS is insufficient
is for very small matrices (see tables 1 and 2). Here also,
automated tuning would produce improved versions.
• The extension of the factorization to some other algo-
rithms as shown for the Inverse (e.g. null-space computation
as in [4]) is in progress.
• Finally, extending the out of core work of section 4.5 to
design a parallel library is promising.

7. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The

Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] D. Bini and V. Pan. Polynomial and Matrix
Computations, Volume 1: Fundamental Algorithms.
Birkhauser, Boston, 1994.

[3] M. Brassel, P. Giorgi, and C. Pernet. LUdivine: A
symbolic block LU factorisation for matrices over
finite fields using blas. In East Coast Computer
Algebra Day, Clemson, South Carolina, USA, Apr.
2003. Poster.

[4] Z. Chen and A. Storjohann. Effective reductions to
matrix multiplication, July 2003. ACA’2003, 9th
International Conference on Applications of Computer
Algebra, Raleigh, North Carolina State University,
USA.

[5] J. Dongarra and V. Eijkhout. Self-adapting numerical
software and automatic tuning of heuristics. Lecture
Notes in Computer Science, 2660:759–770, Jan. 2003.

[6] J.-G. Dumas. Efficient dot product over word-size
finite fields. Rapport de recherche, IMAG-RR1064,
Mar. 2004.

[7] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. LinBox: A generic library for
exact linear algebra. In A. M. Cohen, X.-S. Gao, and
N. Takayama, editors, Proceedings of the 2002
International Congress of Mathematical Software,
Beijing, China, pages 40–50. World Scientific Pub,
Aug. 2002.

[8] J.-G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In T. Mora, editor,
Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, Lille, France,
pages 63–74. ACM Press, New York, July 2002.

[9] J.-G. Dumas and J.-L. Roch. On parallel block
algorithms for exact triangularizations. Parallel
Computing, 28(11):1531–1548, Nov. 2002.

[10] J.-G. Dumas and G. Villard. Computing the rank of
sparse matrices over finite fields. In V. G. Ganzha,
E. W. Mayr, and E. V. Vorozhtsov, editors,
Proceedings of the fifth International Workshop on
Computer Algebra in Scientific Computing, Yalta,
Ukraine, pages 47–62. Technische Universität
München, Germany, Sept. 2002.

[11] P. Giorgi. From blas routines to finite field exact
linear algebra solutions, July 2003. ACA’2003, 9th
International Conference on Applications of Computer

Algebra, Raleigh, North Carolina State University,
USA.

[12] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the
complexity of polynomial matrix computations. In
Sendra [21], pages 135–142.

[13] F. Gustavson, A. Henriksson, I. Jonsson, and
B. Kaagstroem. Recursive blocked data formats and
BLAS’s for dense linear algebra algorithms. Lecture
Notes in Computer Science, 1541:195–206, 1998.

[14] B. Hovinen, 2002. Personal communication.

[15] X. Huang and V. Y. Pan. Fast rectangular matrix
multiplications and improving parallel matrix
computations. In ACM, editor, PASCO ’97.
Proceedings of the second international symposium on
parallel symbolic computation, July 20–22, 1997,
Maui, HI, pages 11–23, New York, NY 10036, USA,
1997. ACM Press.

[16] O. H. Ibarra, S. Moran, and R. Hui. A generalization
of the fast LUP matrix decomposition algorithm and
applications. Journal of Algorithms, 3(1):45–56, Mar.
1982.

[17] E. Kaltofen, M. S. Krishnamoorthy, and B. D.
Saunders. Parallel algorithms for matrix normal
forms. Linear Algebra and its Applications,
136:189–208, 1990.

[18] C. Pernet. Implementation of Winograd’s matrix
multiplication over finite fields using ATLAS level 3
BLAS. Technical report, Laboratoire Informatique et
Distribution, July 2001.
www-id.imag.fr/Apache/RR/RR011122FFLAS.ps.gz.

[19] C. Pernet. Calcul du polynôme caractéristique sur des
corps finis. Master’s thesis, University of Delaware,
June 2003.

[20] C. Pernet and Z. Wan. LU based algorithms for the
characteristic polynomial over a finite field. In Sendra
[21]. Poster.

[21] R. Sendra, editor. ISSAC’2003. Proceedings of the
2003 International Symposium on Symbolic and
Algebraic Computation, Philadelphia, Pennsylvania,
USA. ACM Press, New York, Aug. 2003.

[22] W. J. Turner. Blackbox linear algebra with the LinBox
library. PhD thesis, North Carolina State University,
May 2002.

[23] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimizations of software and
the ATLAS project. Parallel Computing, 27(1–2):3–35,
Jan. 2001. www.elsevier.nl/gej-ng/10/35/21/47/-
25/23/article.pdf.

APPENDIX

A. PROOF OF THEOREM 3.2
Theorem 3.2 Let T ∈ Z

n×n be a unit diagonal upper
triangular matrix, and b ∈ Z

n, with |T | ≤ p − 1 and |b| ≤
p − 1. Let X = (xi)i∈[1..n] ∈ Z

n be the solution of T.X = b
over the integers.

Then

∀ k ∈ [0..n − 1]

{
−uk ≤ xn−k ≤ vk if k is even
−vk ≤ xn−k ≤ uk if k is odd

(4)

where
{

un = p−1
2

[pn − (p − 2)n]

vn = p−1
2

[pn + (p − 2)n]

Proof. Let us define the induction hypothesis IHl to be
that the equations (4) are true for k ∈ [0..l − 1] .

When l = 0, xn = bn which implies that −u0 = 0 ≤ xn ≤
p − 1 = v0. Thus IH0 is proven.

Let us suppose that ∀j ∈ [0..l] IHj is true, and prove
IHl+1. There are two cases: either l is odd or not !
If l is odd, l+1 is even. Now, by induction, an upper bound
for xn−l−1 is

(p − 1)




1 +

l−1

2∑

i=0

u2i + v2i+1






≤ p − 1 +

l−1

2∑

i=0

(p − 1)2

2

[
p
2i

− (p − 2)2i + p
2i+1 + (p − 2)2i+1

]

≤ p − 1 +

l−1

2∑

i=0

(p − 1)2

2

[
p2i(p + 1) + (p − 2)2i(p − 3)

]

≤ p − 1 +
(p − 1)2

2

[

(p + 1)
pl+1 − 1

p2 − 1
+ (p − 3)

(p − 2)l+1 − 1

(p − 2)2 − 1

]

≤
p − 1

2

[

pl+1 + (p − 2)l+1
]

≤ vl+1

Similarly, a lower bound for xn−l−1 is

−(p − 1)

l−1

2∑

i=0

v2i + u2i+1

≥ −
(p − 1)2

2

l−1

2∑

i=0

[
p
2i + (p − 2)2i + p

2i+1
− (p − 2)2i+1

]

≥ −
(p − 1)2

2

l−1

2∑

i=0

[
p2i(p + 1) − (p − 2)2i(p − 3)

]

≥ −
p − 1

2

[

p
l+1

− (p − 2)l+1
]

≥ −ul+1

Finally, If l is even, a similar proof leads to

−vl+1 ≤ xn−l+1 ≤ ul+1

