
Fast interpolation and multiplication of unbalanced
polynomials

Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche

ISSAC’24, Raleigh, NC, USA
July 16–19, 2024



Motivations

Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

O(d log2 3), . . . , O(d1+o(1)) [Karatsuba 1962, Toom 1963, Cook 1966]

O(d log d log log d) [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

O(d log d) when R = Fq [Harvey-van der Hoeven 2022]

But, bit complexity for Z[x]: O (̃d log H) [Schönhage 1982]
↪ f , g ∈ Z[x]<d with height at most H

⌣ quasi-linear if balanced coefficients
⌢ not quasi-linear with unbalanced coefficients, e.g. ∣∣f ∣∣1 = ∣∣g ∣∣1 = ∣∣fg ∣∣1 = O(H)
⇒ only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]

2/19



Motivations

Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

O(d log2 3), . . . , O(d1+o(1)) [Karatsuba 1962, Toom 1963, Cook 1966]

O(d log d log log d) [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

O(d log d) when R = Fq [Harvey-van der Hoeven 2022]

But, bit complexity for Z[x]: O (̃d log H) [Schönhage 1982]
↪ f , g ∈ Z[x]<d with height at most H

⌣ quasi-linear if balanced coefficients
⌢ not quasi-linear with unbalanced coefficients, e.g. ∣∣f ∣∣1 = ∣∣g ∣∣1 = ∣∣fg ∣∣1 = O(H)
⇒ only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]

2/19



Motivations

Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

O(d log2 3), . . . , O(d1+o(1)) [Karatsuba 1962, Toom 1963, Cook 1966]

O(d log d log log d) [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

O(d log d) when R = Fq [Harvey-van der Hoeven 2022]

But, bit complexity for Z[x]: O (̃d log H) [Schönhage 1982]
↪ f , g ∈ Z[x]<d with height at most H

⌣ quasi-linear if balanced coefficients

⌢ not quasi-linear with unbalanced coefficients, e.g. ∣∣f ∣∣1 = ∣∣g ∣∣1 = ∣∣fg ∣∣1 = O(H)
⇒ only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]

2/19



Motivations

Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

O(d log2 3), . . . , O(d1+o(1)) [Karatsuba 1962, Toom 1963, Cook 1966]

O(d log d log log d) [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

O(d log d) when R = Fq [Harvey-van der Hoeven 2022]

But, bit complexity for Z[x]: O (̃d log H) [Schönhage 1982]
↪ f , g ∈ Z[x]<d with height at most H

⌣ quasi-linear if balanced coefficients
⌢ not quasi-linear with unbalanced coefficients, e.g. ∣∣f ∣∣1 = ∣∣g ∣∣1 = ∣∣fg ∣∣1 = O(H)

⇒ only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]

2/19



Motivations

Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

O(d log2 3), . . . , O(d1+o(1)) [Karatsuba 1962, Toom 1963, Cook 1966]

O(d log d log log d) [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

O(d log d) when R = Fq [Harvey-van der Hoeven 2022]

But, bit complexity for Z[x]: O (̃d log H) [Schönhage 1982]
↪ f , g ∈ Z[x]<d with height at most H

⌣ quasi-linear if balanced coefficients
⌢ not quasi-linear with unbalanced coefficients, e.g. ∣∣f ∣∣1 = ∣∣g ∣∣1 = ∣∣fg ∣∣1 = O(H)
⇒ only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]

2/19



Unbalanced polynomials

Example

x7 + 3x6 − 1000000000x5 − 3x4 − 4x3 − x2 + x − 3
× x7 + 3x6 + 1000000006x5 − 3x4 − 4x3 − 7x2 + x − 3

= x14 +6x13+15x12 +12x11−1000000006000000026x10 −50x9 −37x8 +6000000018x7 +28x6 +8x5 +17x4 +16x3 +25x2 −6x +9

Let f = ∑d
i=0 fix i Ô⇒

⎧⎪⎪⎨⎪⎪⎩

s = bitlen(f ) ≈ ∑ log ∣fi ∣ > d
H = max ∣fi ∣ ≤ 2s

Balanced case: log H = Θ(s/d) ↪ bit complexity O (̃s) ⌣ quasi-optimal
Unbalanced case: log H = Θ(s) ↪ bit complexity O (̃sd) ⌢ possibly quadratic

Can we always compute the polynomial product f × g in time
O (̃bitlen(f ) + bitlen(g) + bitlen(f × g)) ?

3/19



Unbalanced polynomials

Example

x7 + 3x6 − 1000000000x5 − 3x4 − 4x3 − x2 + x − 3
× x7 + 3x6 + 1000000006x5 − 3x4 − 4x3 − 7x2 + x − 3

= x14 +6x13+15x12 +12x11−1000000006000000026x10 −50x9 −37x8 +6000000018x7 +28x6 +8x5 +17x4 +16x3 +25x2 −6x +9

Let f = ∑d
i=0 fix i Ô⇒

⎧⎪⎪⎨⎪⎪⎩

s = bitlen(f ) ≈ ∑ log ∣fi ∣ > d
H = max ∣fi ∣ ≤ 2s

Balanced case: log H = Θ(s/d) ↪ bit complexity O (̃s) ⌣ quasi-optimal
Unbalanced case: log H = Θ(s) ↪ bit complexity O (̃sd) ⌢ possibly quadratic

Can we always compute the polynomial product f × g in time
O (̃bitlen(f ) + bitlen(g) + bitlen(f × g)) ?

3/19



Reinterpretation as a sparse interpolation problem

Imagine that you are given most of the coefficients of f × g
∆ = x14 + 6x13 + 15x12 + 12x11 − 26x10 − 50x9 − 37x8 + 18x7 + 28x6 + 17x4 + 16x3 + 25x2 − 6x + 9
⇒ computing the whole product is a sparse interpolation problem:

f × g −∆ = −1000000006000000000x10 + 6000000000x7 + 8x5

Intermediate Problem
Given f , g ∈ Z[x]
Compute ∆ ≈ f × g

Original Problem
Given f , g ∈ Z[x]
Compute h = f × g

New Problem
Given a way to evaluate h −∆ ∈ Z[x]
Interpolate h −∆ in dense or sparse rep.

Difficulties

h and ∆ may be unbalanced (and sparse)
Evaluating f , g and ∆ might be costly

4/19



Reinterpretation as a sparse interpolation problem

Imagine that you are given most of the coefficients of f × g
∆ = x14 + 6x13 + 15x12 + 12x11 − 26x10 − 50x9 − 37x8 + 18x7 + 28x6 + 17x4 + 16x3 + 25x2 − 6x + 9
⇒ computing the whole product is a sparse interpolation problem:

f × g −∆ = −1000000006000000000x10 + 6000000000x7 + 8x5

Intermediate Problem
Given f , g ∈ Z[x]
Compute ∆ ≈ f × g

Original Problem
Given f , g ∈ Z[x]
Compute h = f × g

New Problem
Given a way to evaluate h −∆ ∈ Z[x]
Interpolate h −∆ in dense or sparse rep.

Difficulties

h and ∆ may be unbalanced (and sparse)
Evaluating f , g and ∆ might be costly

4/19



Sparse interpolation: in a nutshell

Problem definition
Inputs: a way to evaluate f ∈ Z[x]

bounds (D, H, T ) s.t. D ≥ deg f ; H ≥ ∣∣f ∣∣∞; T ≥ ∣∣f ∣∣0 = t
Output: the sparse representation of f = ∑t

i=1 fix ei , with fi ≠ 0

Two main approaches with bit complexity poly(T , log D, log H)

(Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]

Straight-line program [Garg-Schost 2009]

Many works to make more efficient algorithms
⇒ avoiding some bounds [Kaltofen-Lee 2003]
⇒ quasi-linear in one, few, or all parameters [Arnold-Giesbrecht-Roche 2013–2016; Huang 2019]
⇒ first fully quasi-linear [G.-Grenet-Perret du Cray-Roche 2022]

⌢ all results assume f is balanced: bitlen(f ) = O(T log D +T log H)

5/19



Sparse interpolation: in a nutshell

Problem definition
Inputs: a way to evaluate f ∈ Z[x]

bounds (D, H, T ) s.t. D ≥ deg f ; H ≥ ∣∣f ∣∣∞; T ≥ ∣∣f ∣∣0 = t
Output: the sparse representation of f = ∑t

i=1 fix ei , with fi ≠ 0

Two main approaches with bit complexity poly(T , log D, log H)

(Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]

Straight-line program [Garg-Schost 2009]

Many works to make more efficient algorithms
⇒ avoiding some bounds [Kaltofen-Lee 2003]
⇒ quasi-linear in one, few, or all parameters [Arnold-Giesbrecht-Roche 2013–2016; Huang 2019]
⇒ first fully quasi-linear [G.-Grenet-Perret du Cray-Roche 2022]

⌢ all results assume f is balanced: bitlen(f ) = O(T log D +T log H)

5/19



Sparse interpolation: in a nutshell

Problem definition
Inputs: a way to evaluate f ∈ Z[x]

bounds (D, H, T ) s.t. D ≥ deg f ; H ≥ ∣∣f ∣∣∞; T ≥ ∣∣f ∣∣0 = t
Output: the sparse representation of f = ∑t

i=1 fix ei , with fi ≠ 0

Two main approaches with bit complexity poly(T , log D, log H)

(Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]

Straight-line program [Garg-Schost 2009]

Many works to make more efficient algorithms
⇒ avoiding some bounds [Kaltofen-Lee 2003]
⇒ quasi-linear in one, few, or all parameters [Arnold-Giesbrecht-Roche 2013–2016; Huang 2019]
⇒ first fully quasi-linear [G.-Grenet-Perret du Cray-Roche 2022]

⌢ all results assume f is balanced: bitlen(f ) = O(T log D +T log H)

5/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q

2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1

5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)
m mod m2 ⇒ xf ′ mod xp − 1

⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]
6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op.

6/19



Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

Given bounds T , D, H and a modular black box for
f = ∑ fix ei ∈ Z[x]

1 f mod q
2 f mod xp − 1, i.e. f (ω) with ω a p-PRU in Fq

3 Get supports of f mod ⟨xp − 1, q⟩ à la Prony
⇒ complexity O (̃p log q) is quasi-linear

4 Sparse interpolation from known support modulo m = qk ≥ 2DH ⇒ f mod xp − 1
5 embed ei into coefficients : step 4 with xf ′(x) = f ((1+m)x)−f (x)

m mod m2 ⇒ xf ′ mod xp − 1
⇒ei ’s via simple division: xf ′(x)[i]/f (x)[i]

6 Recurse on the new MBB π = f − f ∗ but with sparsity bound T /2

⇒ Monte-Carlo algorithm (proba ≥ 2/3), O(T ) probes to MBB and O (̃T log(DH)) bit op. 6/19



Our contributions

Interpolation of sparse polynomials with unbalanced coefficients
Given a modular black box for f ∈ Z[x] with bounds s ≥ bitlen(f ) and D ≥ deg f

Our ISSAC’22 algo → O (̃s2) since T ≤ 2s/ log s and H ≤ 2s

ISSAC’24: new Monte-Carlo algorithm with proba ≥ 1 − 1
s

↪ O(s log D log s) MBB evaluations and O (̃s log D) extra bit operations

Polynomial multiplication of unbalanced polynomials
Given explicit (dense or sparse) polynomials f , g ∈ Z[x]

Probably correct and probably fast algorithm with proba ≥ 1 − 1
s

Expected bit complexity O (̃s log D)

where s = bitlen(f ) + bitlen(g) + bitlen(fg) and D = deg fg

7/19



Our contributions

Interpolation of sparse polynomials with unbalanced coefficients
Given a modular black box for f ∈ Z[x] with bounds s ≥ bitlen(f ) and D ≥ deg f

Our ISSAC’22 algo → O (̃s2) since T ≤ 2s/ log s and H ≤ 2s

ISSAC’24: new Monte-Carlo algorithm with proba ≥ 1 − 1
s

↪ O(s log D log s) MBB evaluations and O (̃s log D) extra bit operations

Polynomial multiplication of unbalanced polynomials
Given explicit (dense or sparse) polynomials f , g ∈ Z[x]

Probably correct and probably fast algorithm with proba ≥ 1 − 1
s

Expected bit complexity O (̃s log D)

where s = bitlen(f ) + bitlen(g) + bitlen(fg) and D = deg fg

7/19



Our contributions

Interpolation of sparse polynomials with unbalanced coefficients
Given a modular black box for f ∈ Z[x] with bounds s ≥ bitlen(f ) and D ≥ deg f

Our ISSAC’22 algo → O (̃s2) since T ≤ 2s/ log s and H ≤ 2s

ISSAC’24: new Monte-Carlo algorithm with proba ≥ 1 − 1
s

↪ O(s log D log s) MBB evaluations and O (̃s log D) extra bit operations

Polynomial multiplication of unbalanced polynomials
Given explicit (dense or sparse) polynomials f , g ∈ Z[x]

Probably correct and probably fast algorithm with proba ≥ 1 − 1
s

Expected bit complexity O (̃s log D)

where s = bitlen(f ) + bitlen(g) + bitlen(fg) and D = deg fg

7/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse

3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m

4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m

4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: the wrong easy solution

Given bounds s ≥ bitlen(f ), D ≥ deg f and a MBB
for unbalanced f = ∑ fix ei ∈ Z[x]

1 Pick smallish m and interpolate f ∗ = f mod m
(balanced case)

2 f − f ∗: more sparse
3 Interpolate π = f − f ∗ mod m for double size m
4 Update π and go to step 3

⌣ O(log s) balanced interpolations with T ≈ s/2k and log H ≈ 2k

⌢ at some point m = O(2s), and sparsity of f ∗ might be O(s)
↪ one evaluation of π costs O (̃s2) due to explicit representation of f ∗

!!! leads to a quadratic time complexity !!!
8/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

First recover some huge terms f ∗ of f
Recursively interpolate f − f ∗ ⇒ more balanced, smaller coeff, but same sparsity

Illustration:
1 Account for sparsity of huge terms
2 Interpolate (f , xf ′) mod ⟨xp − 1, m⟩
↪ dense ok if p log m = O (̃s log D)

3 Identify and remove huge terms

Difficulties

Expression swell with collisions
Embedding exponents into coeffs

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

First recover some huge terms f ∗ of f
Recursively interpolate f − f ∗ ⇒ more balanced, smaller coeff, but same sparsity

Illustration:
1 Account for sparsity of huge terms

2 Interpolate (f , xf ′) mod ⟨xp − 1, m⟩
↪ dense ok if p log m = O (̃s log D)

3 Identify and remove huge terms

Difficulties

Expression swell with collisions
Embedding exponents into coeffs

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

First recover some huge terms f ∗ of f
Recursively interpolate f − f ∗ ⇒ more balanced, smaller coeff, but same sparsity

Illustration:
1 Account for sparsity of huge terms
2 Interpolate (f , xf ′) mod ⟨xp − 1, m⟩
↪ dense ok if p log m = O (̃s log D)

3 Identify and remove huge terms

Difficulties

Expression swell with collisions
Embedding exponents into coeffs

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

First recover some huge terms f ∗ of f
Recursively interpolate f − f ∗ ⇒ more balanced, smaller coeff, but same sparsity

Illustration:
1 Account for sparsity of huge terms
2 Interpolate (f , xf ′) mod ⟨xp − 1, m⟩
↪ dense ok if p log m = O (̃s log D)

3 Identify and remove huge terms

Difficulties

Expression swell with collisions
Embedding exponents into coeffs

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

First recover some huge terms f ∗ of f
Recursively interpolate f − f ∗ ⇒ more balanced, smaller coeff, but same sparsity

Illustration:
1 Account for sparsity of huge terms
2 Interpolate (f , xf ′) mod ⟨xp − 1, m⟩
↪ dense ok if p log m = O (̃s log D)

3 Identify and remove huge terms

Difficulties

Expression swell with collisions
Embedding exponents into coeffs

9/19



Recovering the huge terms

huge terms are those beyond half the maximal bit-length (e.g. ≥ 2s/2)

On terms’ collision:

only one large/many small still allows exponent decoding using xf ′(x)
only non-large/non-large do not produce erroneous huge terms

↪ reconstructed huge terms must avoid large/medium collisions

10/19



Recovering the huge terms

huge terms are those beyond half the maximal bit-length (e.g. ≥ 2s/2)

On terms’ collision:

only one large/many small still allows exponent decoding using xf ′(x)
only non-large/non-large do not produce erroneous huge terms

↪ reconstructed huge terms must avoid large/medium collisions

10/19



Recovering the huge terms

huge terms are those beyond half the maximal bit-length (e.g. ≥ 2s/2)

On terms’ collision:

only one large/many small still allows exponent decoding using xf ′(x)
only non-large/non-large do not produce erroneous huge terms

↪ reconstructed huge terms must avoid large/medium collisions
10/19



Recovering the huge terms: controlling the collisions

Remarks: it is hard to avoid all large/medium collision in f mod xp − 1 with p = O(s)

Our solution

1 Compute a superset T of the large terms exponents (erroneous= large/medium )
2 Use T to filter out large/medium collisions in the reconstruction of huge terms
↪ (somehow) interpolation with overestimated support

11/19



Recovering the huge terms: controlling the collisions

Remarks: it is hard to avoid all large/medium collision in f mod xp − 1 with p = O(s)

Our solution

1 Compute a superset T of the large terms exponents (erroneous= large/medium )
2 Use T to filter out large/medium collisions in the reconstruction of huge terms
↪ (somehow) interpolation with overestimated support

11/19



Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let c0x e0 be any large terms of f . If c0x e0 only collides with many small terms cix ei :

e0 = ⌊
c0e0 +∑i∈S ciei

c0 +∑i∈S ci
⌉ assuming m ≥ 4H7/6, log H = Ω(log s + log D)

Algorithm sketch for computing T :
Take p so that most collisions are large/small p = O(s log D/ log H)

Dense interpolation of (f , xf ′) mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add to T the coefficient-wise divisions
Repeat for O(log s) random primes p

Remark

The superset is not too large: #T = O(s log s/ log H), overestimated by O(log s)
Bit complexity: O (̃s log D)

12/19



Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let c0x e0 be any large terms of f . If c0x e0 only collides with many small terms cix ei :

e0 = ⌊
c0e0 +∑i∈S ciei

c0 +∑i∈S ci
⌉ assuming m ≥ 4H7/6, log H = Ω(log s + log D)

Algorithm sketch for computing T :
Take p so that most collisions are large/small p = O(s log D/ log H)

Dense interpolation of (f , xf ′) mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add to T the coefficient-wise divisions
Repeat for O(log s) random primes p

Remark

The superset is not too large: #T = O(s log s/ log H), overestimated by O(log s)
Bit complexity: O (̃s log D)

12/19



Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let c0x e0 be any large terms of f . If c0x e0 only collides with many small terms cix ei :

e0 = ⌊
c0e0 +∑i∈S ciei

c0 +∑i∈S ci
⌉ assuming m ≥ 4H7/6, log H = Ω(log s + log D)

Algorithm sketch for computing T :
Take p so that most collisions are large/small p = O(s log D/ log H)

Dense interpolation of (f , xf ′) mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add to T the coefficient-wise divisions
Repeat for O(log s) random primes p

Remark

The superset is not too large: #T = O(s log s/ log H), overestimated by O(log s)
Bit complexity: O (̃s log D)

12/19



Algorithm for computing all huge terms

Idea: use T to detect erroneous huge terms in f mod ⟨xp − 1, m⟩

Algorithm sketch:

Take p so that most terms in T do not collide p = O(#T log D)

Let cx e mod p be any huge term of f mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add cx e to f ∗ only if e mod p is collision-free in T mod p
Repeat for O(log s) random primes p (abort if bitlen(f ∗) > s)

Remark

All huge terms of f are added to f ∗, plus some non-large collisions, still ∣∣f − f ∗∣∣∞ <
√

H
Bit complexity: O(s log D log3 s log log H) = O (̃s log D)

13/19



Algorithm for computing all huge terms

Idea: use T to detect erroneous huge terms in f mod ⟨xp − 1, m⟩

Algorithm sketch:

Take p so that most terms in T do not collide p = O(#T log D)

Let cx e mod p be any huge term of f mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add cx e to f ∗ only if e mod p is collision-free in T mod p
Repeat for O(log s) random primes p (abort if bitlen(f ∗) > s)

Remark

All huge terms of f are added to f ∗, plus some non-large collisions, still ∣∣f − f ∗∣∣∞ <
√

H
Bit complexity: O(s log D log3 s log log H) = O (̃s log D)

13/19



Algorithm for computing all huge terms

Idea: use T to detect erroneous huge terms in f mod ⟨xp − 1, m⟩

Algorithm sketch:

Take p so that most terms in T do not collide p = O(#T log D)

Let cx e mod p be any huge term of f mod ⟨xp − 1, m⟩ log m = O(log H)
↪ add cx e to f ∗ only if e mod p is collision-free in T mod p
Repeat for O(log s) random primes p (abort if bitlen(f ∗) > s)

Remark

All huge terms of f are added to f ∗, plus some non-large collisions, still ∣∣f − f ∗∣∣∞ <
√

H
Bit complexity: O(s log D log3 s log log H) = O (̃s log D)

13/19



Our unbalanced sparse interpolation algorithm

Algorithm
Input: Modular black box for f ∈ Z[x] and bounds s ≥ bitlen(f ), D ≥ deg(f )
Output: an explicit f ∗ ∈ Z[x] or error if bitlen(f ∗) > s

1. H ← 2s , f ∗ ← 0
2. while H ≥ max(61, 15 log s, 6 log D)
3. compute the huge terms of (f − f ∗) and update f ∗

4. H ←
√

H
5. compute remaining terms of (f − f ∗) via (balanced) sparse interpolation

Theorem [G.-Grenet-Perret du Cray-Roche 2024]
The algorithm returns an explicit representation of f with probability ≥ 1 − 1/s, using
O (̃s log D) bit operations and O(s log D log s) MBB evaluations.

14/19



Back to our application

Unbalanced polynomial multiplication
Inputs: unbalanced polynomials f , g ∈ Z[x] with bitlen(f ), bitlen(g) ≤ ℓ

Output: h = f × g ∈ Z[x] with s = bitlen(h) + 2ℓ

If s known ⇒ direct application of our sparse interpolation: O (̃s log D)
Otherwise, need a bound estimation:

might be quadratic

bitlen(h) ≤ 4ℓ2/ log ℓ and ∣∣h∣∣∞ ≤ 4ℓℓ

× =

15/19



Back to our application

Unbalanced polynomial multiplication
Inputs: unbalanced polynomials f , g ∈ Z[x] with bitlen(f ), bitlen(g) ≤ ℓ

Output: h = f × g ∈ Z[x] with s = bitlen(h) + 2ℓ

If s known ⇒ direct application of our sparse interpolation: O (̃s log D)
Otherwise, need a bound estimation:

might be quadratic

bitlen(h) ≤ 4ℓ2/ log ℓ and ∣∣h∣∣∞ ≤ 4ℓℓ

× =

15/19



Back to our application

Unbalanced polynomial multiplication
Inputs: unbalanced polynomials f , g ∈ Z[x] with bitlen(f ), bitlen(g) ≤ ℓ

Output: h = f × g ∈ Z[x] with s = bitlen(h) + 2ℓ

If s known ⇒ direct application of our sparse interpolation: O (̃s log D)
Otherwise, need a bound estimation: might be quadratic

bitlen(h) ≤ 4ℓ2/ log ℓ and ∣∣h∣∣∞ ≤ 4ℓℓ

× =

15/19



Our unbalanced polynomial multiplication algorithm

Idea: guess s ≥ bitlen h through probabilistic verification of h = f × g

Algorithm sketch:

Unbalanced sparse interpolation of MBB f × g with tentative bound s
?
≥ bitlen(fg)

Probabilistically verify whether h = f × g in O (̃s log D) [G.-Grenet-Perret du Cray 2023]

Start with s = ℓ and double its value until verification succeeds or 4ℓ/ log ℓ is reached

Probably correct and probably fast

Both with probability ≥ 1 − 1/s
Expected bit complexity O (̃s log D log5 s(log log s)2) = O (̃s log D)

16/19



Our unbalanced polynomial multiplication algorithm

Idea: guess s ≥ bitlen h through probabilistic verification of h = f × g

Algorithm sketch:

Unbalanced sparse interpolation of MBB f × g with tentative bound s
?
≥ bitlen(fg)

Probabilistically verify whether h = f × g in O (̃s log D) [G.-Grenet-Perret du Cray 2023]

Start with s = ℓ and double its value until verification succeeds or 4ℓ/ log ℓ is reached

Probably correct and probably fast

Both with probability ≥ 1 − 1/s
Expected bit complexity O (̃s log D log5 s(log log s)2) = O (̃s log D)

16/19



Our unbalanced polynomial multiplication algorithm

Idea: guess s ≥ bitlen h through probabilistic verification of h = f × g

Algorithm sketch:

Unbalanced sparse interpolation of MBB f × g with tentative bound s
?
≥ bitlen(fg)

Probabilistically verify whether h = f × g in O (̃s log D) [G.-Grenet-Perret du Cray 2023]

Start with s = ℓ and double its value until verification succeeds or 4ℓ/ log ℓ is reached

Probably correct and probably fast

Both with probability ≥ 1 − 1/s
Expected bit complexity O (̃s log D log5 s(log log s)2) = O (̃s log D)

16/19



Summary of results

Unbalanced (sparse or dense) polynomials
New complexity of O (̃s log D) bit operations

Interpolation: Monte-Carlo algorithm with proba ≥ 1 − 1/s
Multiplication: probably correct probably fast algorithm with proba ≥ 1 − 1/s

⌣ quasi linear for dense and moderately sparse polynomials, i.e. log D = poly(log s)

⌢ not for supersparse polynomials, i.e. log D = poly(s)

17/19



Summary of results

Unbalanced (sparse or dense) polynomials
New complexity of O (̃s log D) bit operations

Interpolation: Monte-Carlo algorithm with proba ≥ 1 − 1/s
Multiplication: probably correct probably fast algorithm with proba ≥ 1 − 1/s

⌣ quasi linear for dense and moderately sparse polynomials, i.e. log D = poly(log s)

⌢ not for supersparse polynomials, i.e. log D = poly(s)

17/19



Open problems

Algorithms of complexity O (̃s) for unbalanced polynomials
↪ difficulty p ≥ log D to avoid collisions
How to remove the a priori bounds s and log D in the interpolation ?
Fast evaluation of large low-height polynomial at few points to very high precision

→

Thank you !

18/19



Open problems

Algorithms of complexity O (̃s) for unbalanced polynomials
↪ difficulty p ≥ log D to avoid collisions
How to remove the a priori bounds s and log D in the interpolation ?
Fast evaluation of large low-height polynomial at few points to very high precision

→

Thank you !
18/19



Funding

Ce travail a bénéficié d’une aide de l’État gérée par l’Agence Nationale de la Recherche au titre
de France 2030 portant la référence ANR-22-PECY-0010

19/19



Under the carpet: MBB/polynomial evaluations

The input is always π = f − f ∗ bitlen(f ), bitlen(f ∗) ≤ s

Need to evaluate π on (1, ω, ω2, . . . , ωp−1) for interpolating π mod ⟨xp − 1, m⟩
↪ ω a p-PRU in Z/mZ,
↪ when m increases, p decreases s.t. p log m = O(s log D log H)

Evaluation cost for explicit polynomial f ∗

1 First, reduce f ∗ mod ⟨xp − 1, m⟩ → O(s log log m + s log log p)
2 Then, evaluate with (dense) Bluestein’s FFT → O(p log p log m log log m)

⇒ overall cost is O (̃s log D) bit op.

Evaluation cost of the MBB for f

Let f (α) mod m costs O(B + L log m log log m) bit op.
Our algo need O (̃(B + L)s log D) bit op.

20/19



Under the carpet: MBB/polynomial evaluations

The input is always π = f − f ∗ bitlen(f ), bitlen(f ∗) ≤ s

Need to evaluate π on (1, ω, ω2, . . . , ωp−1) for interpolating π mod ⟨xp − 1, m⟩
↪ ω a p-PRU in Z/mZ,
↪ when m increases, p decreases s.t. p log m = O(s log D log H)

Evaluation cost for explicit polynomial f ∗

1 First, reduce f ∗ mod ⟨xp − 1, m⟩ → O(s log log m + s log log p)
2 Then, evaluate with (dense) Bluestein’s FFT → O(p log p log m log log m)

⇒ overall cost is O (̃s log D) bit op.

Evaluation cost of the MBB for f

Let f (α) mod m costs O(B + L log m log log m) bit op.
Our algo need O (̃(B + L)s log D) bit op.

20/19



Under the carpet: MBB/polynomial evaluations

The input is always π = f − f ∗ bitlen(f ), bitlen(f ∗) ≤ s

Need to evaluate π on (1, ω, ω2, . . . , ωp−1) for interpolating π mod ⟨xp − 1, m⟩
↪ ω a p-PRU in Z/mZ,
↪ when m increases, p decreases s.t. p log m = O(s log D log H)

Evaluation cost for explicit polynomial f ∗

1 First, reduce f ∗ mod ⟨xp − 1, m⟩ → O(s log log m + s log log p)
2 Then, evaluate with (dense) Bluestein’s FFT → O(p log p log m log log m)

⇒ overall cost is O (̃s log D) bit op.

Evaluation cost of the MBB for f

Let f (α) mod m costs O(B + L log m log log m) bit op.
Our algo need O (̃(B + L)s log D) bit op.

20/19


