Fast interpolation and multiplication of unbalanced polynomials

Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche

ISSAC'24, Raleigh, NC, USA July 16–19, 2024

Polynomial multiplication complexity over $\mathcal{R}[x]$ is well understood

Algebraic complexity

- $O(d^{\log_2 3}), \dots, O(d^{1+o(1)})$
- $\bullet \ O(d \log d \log \log d)$
- $O(d \log d)$ when $\mathcal{R} = F_q$

[Karatsuba 1962, Toom 1963, Cook 1966] [Schönhage-Strassen 1971, Cantor-Kaltofen 1991] [Harvey-van der Hoeven 2022]

Polynomial multiplication complexity over $\mathcal{R}[x]$ is well understood

Algebraic complexity

- $O(d^{\log_2 3}), \dots, O(d^{1+o(1)})$
- $\bullet \ O(d \log d \log \log d)$
- $O(d \log d)$ when $\mathcal{R} = F_q$

[Karatsuba 1962, Toom 1963, Cook 1966]

[Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

[Harvey-van der Hoeven 2022]

But, bit complexity for $\mathbb{Z}[x]$: $O^{\sim}(d \log H)$ $\hookrightarrow f, g \in \mathbb{Z}[x]_{<d}$ with height at most H

[Schönhage 1982]

Polynomial multiplication complexity over $\mathcal{R}[x]$ is well understood

Algebraic complexity

- $O(d^{\log_2 3}), \dots, O(d^{1+o(1)})$
- $\bullet \ O(d \log d \log \log d)$
- $O(d \log d)$ when $\mathcal{R} = F_q$

[Karatsuba 1962, Toom 1963, Cook 1966] [Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

[Harvey-van der Hoeven 2022]

But, bit complexity for $\mathbb{Z}[x]$: $O^{\sim}(d \log H)$ $\hookrightarrow f, g \in \mathbb{Z}[x]_{\leq d}$ with height at most H

[Schönhage 1982]

③ quasi-linear if balanced coefficients

Polynomial multiplication complexity over $\mathcal{R}[x]$ is well understood

Algebraic complexity

- $O(d^{\log_2 3}), \dots, O(d^{1+o(1)})$
- $\bullet O(d \log d \log \log d)$
- $O(d \log d)$ when $\mathcal{R} = F_q$

[Karatsuba 1962, Toom 1963, Cook 1966]

[Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

[Harvey-van der Hoeven 2022]

But, bit complexity for $\mathbb{Z}[x]$: $O^{\sim}(d \log H)$ $\hookrightarrow f, g \in \mathbb{Z}[x]_{\leq d}$ with height at most H [Schönhage 1982]

- quasi-linear if balanced coefficients
- \bigcirc not quasi-linear with unbalanced coefficients, e.g. $||f||_1 = ||g||_1 = ||fg||_1 = O(H)$

Polynomial multiplication complexity over $\mathcal{R}[x]$ is well understood

Algebraic complexity

- $O(d^{\log_2 3}), \dots, O(d^{1+o(1)})$
- $\bullet \ O(d \log d \log \log d)$
- $O(d \log d)$ when $\mathcal{R} = F_q$

[Karatsuba 1962, Toom 1963, Cook 1966]

[Schönhage-Strassen 1971, Cantor-Kaltofen 1991]

[Harvey-van der Hoeven 2022]

But, bit complexity for $\mathbb{Z}[x]$: $O^{\sim}(d \log H)$ $\hookrightarrow f, g \in \mathbb{Z}[x]_{<d}$ with height at most H

- ③ quasi-linear if balanced coefficients
- \bigcirc not quasi-linear with unbalanced coefficients, e.g. $||f||_1 = ||g||_1 = ||fg||_1 = O(H)$
- \Rightarrow only few works, e.g. Toom-Cook with structured unbalancedness

[Schönhage 1982]

[Bodrato-Zanoni 2020]

Unbalanced polynomials

Example

$$x^{7} + 3x^{6} - 100000000x^{5} - 3x^{4} - 4x^{3} - x^{2} + x - 3$$

$$\times \qquad x^{7} + 3x^{6} + 100000006x^{5} - 3x^{4} - 4x^{3} - 7x^{2} + x - 3$$

 $=x^{14}+6x^{13}+15x^{12}+12x^{11}-100000006000000026x^{10}-50x^9-37x^8+6000000018x^7+28x^6+8x^5+17x^4+16x^3+25x^2-6x+9x^2+10$

Unbalanced polynomials

Example

$$x^{7} + 3x^{6} - 100000000x^{5} - 3x^{4} - 4x^{3} - x^{2} + x - 3$$

$$\times \qquad x^{7} + 3x^{6} + 100000006x^{5} - 3x^{4} - 4x^{3} - 7x^{2} + x - 3$$

 $=x^{14}+6x^{13}+15x^{12}+12x^{11}-1000000006000000026x^{10}-50x^9-37x^8+6000000018x^7+28x^6+8x^5+17x^4+16x^3+25x^2-6x+9x^2+10x^2+1$

Let
$$f = \sum_{i=0}^{d} f_i x^i \implies \begin{cases} s = \text{bitlen}(f) \approx \sum \log |f_i| > d \\ H = \max |f_i| \le 2^s \end{cases}$$

- Balanced case: $\log H = \Theta(s/d) \hookrightarrow$ bit complexity $O^{\sim}(s)$
- Unbalanced case: $\log H = \Theta(s) \hookrightarrow$ bit complexity $O^{\sim}(sd)$

② quasi-optimal③ possibly quadratic

Can we always compute the polynomial product $f \times g$ in time $O^{\sim}(bitlen(f) + bitlen(g) + bitlen(f \times g))$?

Reinterpretation as a sparse interpolation problem

Imagine that you are given most of the coefficients of $f \times g$ $\Delta = x^{14} + 6x^{13} + 15x^{12} + 12x^{11} - 26x^{10} - 50x^9 - 37x^8 + 18x^7 + 28x^6 + 17x^4 + 16x^3 + 25x^2 - 6x + 9$

 \Rightarrow computing the whole product is a sparse interpolation problem:

 $f \times g - \Delta = -100000006000000000x^{10} + 6000000000x^7 + 8x^5$

Reinterpretation as a sparse interpolation problem

Imagine that you are given most of the coefficients of $f \times g$ $\Delta = x^{14} + 6x^{13} + 15x^{12} + 12x^{11} - 26x^{10} - 50x^9 - 37x^8 + 18x^7 + 28x^6 + 17x^4 + 16x^3 + 25x^2 - 6x + 9$

⇒ computing the whole product is a sparse interpolation problem:

Intermediate Problem

Given $f, g \in \mathbb{Z}[x]$ Compute $\Delta \approx f \times g$

Original Problem

Given $f, g \in \mathbb{Z}[x]$ Compute $h = f \times g$

Difficulties

- h and Δ may be unbalanced (and sparse)
- Evaluating f, g and Δ might be costly

New Problem

Given a way to evaluate $h - \Delta \in \mathbb{Z}[x]$ Interpolate $h - \Delta$ in dense or sparse rep.

Sparse interpolation: in a nutshell

Problem definition

Inputs: a way to evaluate $f \in \mathbb{Z}[x]$ bounds (D, H, T) s.t. $D \ge \deg f$; $H \ge ||f||_{\infty}$; $T \ge ||f||_0 = t$ Output: the sparse representation of $f = \sum_{i=1}^{t} f_i x^{e_i}$, with $f_i \ne 0$

Sparse interpolation: in a nutshell

Problem definition

Inputs: a way to evaluate $f \in \mathbb{Z}[x]$ bounds (D, H, T) s.t. $D \ge \deg f$; $H \ge ||f||_{\infty}$; $T \ge ||f||_0 = t$ Output: the sparse representation of $f = \sum_{i=1}^{t} f_i x^{e_i}$, with $f_i \ne 0$

Two main approaches with bit complexity $poly(T, \log D, \log H)$

- (Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]
- Straight-line program [Garg-Schost 2009]

Sparse interpolation: in a nutshell

Problem definition

Inputs: a way to evaluate $f \in \mathbb{Z}[x]$ bounds (D, H, T) s.t. $D \ge \deg f$; $H \ge ||f||_{\infty}$; $T \ge ||f||_0 = t$ Output: the sparse representation of $f = \sum_{i=1}^{t} f_i x^{e_i}$, with $f_i \ne 0$

Two main approaches with bit complexity $poly(T, \log D, \log H)$

- (Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]
- Straight-line program [Garg-Schost 2009]

Many works to make more efficient algorithms

 \Rightarrow avoiding some bounds [Kaltofen-Lee 2003]

 \Rightarrow quasi-linear in one, few, or all parameters [Arnold-Giesbrecht-Roche 2013–2016; Huang 2019]

 \Rightarrow first fully quasi-linear [G.-Grenet-Perret du Cray-Roche 2022]

 \bigcirc all results assume f is balanced: bitlen(f) = $O(T \log D + T \log H)$

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

 $\log f_i$

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 *f* mod *q*

 $\log f_i$

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 $f \mod q$ 2 $f \mod x^p - 1$, i.e. $f(\omega)$ with $\omega = p$ -PRU in F_q

 $\log f_i$

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 *f* mod *q*

2 $f \mod x^p - 1$, i.e. $f(\omega)$ with ω a p-PRU in F_q

■ Get supports of $f \mod \langle x^p - 1, q \rangle$ à la Prony ⇒ complexity $O^{\sim}(p \log q)$ is quasi-linear

4 Sparse interpolation from known support modulo $m = q^k \ge 2DH$ \Rightarrow $f \mod x^p - 1$

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 *f* mod *q*

2 $f \mod x^p - 1$, i.e. $f(\omega)$ with $\omega = p$ -PRU in F_q

■ Get supports of $f \mod (x^p - 1, q)$ à la Prony ⇒ complexity $O^{\sim}(p \log q)$ is quasi-linear

If a sparse interpolation from known support modulo m = q^k ≥ 2DH ⇒ f mod x^p - 1
 if a mod e_i into coefficients : step I with xf'(x) = f((1+m)x)-f(x)/m mod m² ⇒ xf' mod x^p - 1 ⇒ e_i's via simple division: xf'(x)[i]/f(x)[i]

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 *f* mod *q*

2 $f \mod x^p - 1$, i.e. $f(\omega)$ with ω a *p*-PRU in F_q

3 Get supports of $f \mod \langle x^p - 1, q \rangle$ à la Prony ⇒ complexity $O^{\sim}(p \log q)$ is quasi-linear

4 Sparse interpolation from known support modulo m = q^k ≥ 2DH ⇒ f mod x^p - 1
 5 embed e_i into coefficients : step 4 with xf'(x) = f((1+m)x)-f(x)/m mod m² ⇒ xf' mod x^p - 1 ⇒ e_i's via simple division: xf'(x)[i]/f(x)[i]
 6 Recurse on the new MBB π = f - f^{*} but with sparsity bound T/2

Given bounds T, D, H and a modular black box for $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

1 *f* mod *q*

2 $f \mod x^p - 1$, i.e. $f(\omega)$ with ω a *p*-PRU in F_q

3 Get supports of $f \mod \langle x^p - 1, q \rangle$ à la Prony ⇒ complexity $O^{\sim}(p \log q)$ is quasi-linear

4 Sparse interpolation from known support modulo m = q^k ≥ 2DH ⇒ f mod x^p - 1
 5 embed e_i into coefficients : step 4 with xf'(x) = f((1+m)x)-f(x)/m mod m² ⇒ xf' mod x^p - 1 ⇒ e_i's via simple division: xf'(x)[i]/f(x)[i]
 7 Provide the second state of the seco

6 Recurse on the new MBB $\pi = f - f^*$ but with sparsity bound T/2

⇒ Monte-Carlo algorithm (proba $\geq 2/3$), O(T) probes to MBB and $O(T\log(DH))$ bit op.

Interpolation of sparse polynomials with unbalanced coefficients

Given a modular black box for $f \in \mathbb{Z}[x]$ with bounds $s \ge \text{bitlen}(f)$ and $D \ge \deg f$

• Our ISSAC'22 algo $\rightarrow O^{\sim}(s^2)$ since $T \leq 2s/\log s$ and $H \leq 2^s$

Our contributions

Interpolation of sparse polynomials with unbalanced coefficients

Given a modular black box for $f \in \mathbb{Z}[x]$ with bounds $s \ge \text{bitlen}(f)$ and $D \ge \deg f$

- Our ISSAC'22 algo $\rightarrow O^{\sim}(s^2)$ since $T \leq 2s/\log s$ and $H \leq 2^s$
- ISSAC'24: new Monte-Carlo algorithm with proba ≥ 1 ¹/_s
 → O(s log D log s) MBB evaluations and O[~](s log D) extra bit operations

Our contributions

Interpolation of sparse polynomials with unbalanced coefficients

Given a modular black box for $f \in \mathbb{Z}[x]$ with bounds $s \ge \text{bitlen}(f)$ and $D \ge \deg f$

- Our ISSAC'22 algo $\rightarrow O^{\sim}(s^2)$ since $T \leq 2s/\log s$ and $H \leq 2^s$
- ISSAC'24: new Monte-Carlo algorithm with proba ≥ 1 ¹/_s
 → O(s log D log s) MBB evaluations and O[~](s log D) extra bit operations

Polynomial multiplication of unbalanced polynomials

Given explicit (dense or sparse) polynomials $f, g \in \mathbb{Z}[x]$

- Probably correct and probably fast algorithm with proba $\geq 1 \frac{1}{s}$
- Expected bit complexity $O^{\sim}(s \log D)$

where s = bitlen(f) + bitlen(g) + bitlen(fg) and $D = \deg fg$

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

Given bounds $s \ge bitlen(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

Pick smallish m and interpolate f* = f mod m (balanced case)

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

Pick smallish m and interpolate f* = f mod m (balanced case)

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

Pick smallish m and interpolate f* = f mod m (balanced case)

2 $f - f^*$: more sparse

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

- Pick smallish m and interpolate f* = f mod m (balanced case)
- **2** $f f^*$: more sparse
- 3 Interpolate $\pi = f f^* \mod m$ for double size m

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

- Pick smallish m and interpolate f* = f mod m (balanced case)
- **2** $f f^*$: more sparse
- 3 Interpolate $\pi = f f^* \mod m$ for double size m

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

- Pick smallish m and interpolate f* = f mod m (balanced case)
- **2** $f f^*$: more sparse
- 3 Interpolate $\pi = f f^* \mod m$ for double size m
- 4 Update π and go to step 3

Given bounds $s \ge bitlen(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

- Pick smallish m and interpolate f* = f mod m (balanced case)
- **2** $f f^*$: more sparse
- 3 Interpolate $\pi = f f^* \mod m$ for double size m
- 4 Update π and go to step 3

 $\textcircled{O}(\log s)$ balanced interpolations with $T\approx s/2^k$ and $\log H\approx 2^k$

Given bounds $s \ge \text{bitlen}(f), D \ge \deg f$ and a MBB for unbalanced $f = \sum f_i x^{e_i} \in \mathbb{Z}[x]$

- Pick smallish m and interpolate f* = f mod m (balanced case)
- **2** $f f^*$: more sparse
- 3 Interpolate $\pi = f f^* \mod m$ for double size m
- 4 Update π and go to step 3

O(log s) balanced interpolations with T ≈ s/2^k and log H ≈ 2^k
 at some point m = O(2^s), and sparsity of f* might be O(s)
 → one evaluation of π costs O[~](s²) due to explicit representation of f*

!!! leads to a quadratic time complexity !!!

Using a top-down approach

- First recover some *huge terms* f^* of f
- Recursively interpolate $f f^* \Rightarrow$ more balanced, smaller coeff, but same sparsity

Using a top-down approach

- First recover some *huge terms* f^* of f
- Recursively interpolate $f f^* \Rightarrow$ more balanced, smaller coeff, but same sparsity

Illustration:

1 Account for sparsity of *huge terms*

Using a top-down approach

- First recover some *huge terms* f^* of f
- Recursively interpolate $f f^* \Rightarrow$ more balanced, smaller coeff, but same sparsity

Illustration:

- 1 Account for sparsity of *huge terms*
- 2 Interpolate $(f, xf') \mod \langle x^p 1, m \rangle$

 \hookrightarrow dense ok if $p \log m = O^{\sim}(s \log D)$

Using a top-down approach

- First recover some *huge terms* f^* of f
- Recursively interpolate $f f^* \Rightarrow$ more balanced, smaller coeff, but same sparsity

Illustration:

- 1 Account for sparsity of *huge terms*
- 2 Interpolate $(f, xf') \mod \langle x^p 1, m \rangle$
 - \hookrightarrow dense ok if $p \log m = O^{\sim}(s \log D)$
- **3** Identify and remove *huge terms*

Using a top-down approach

- First recover some *huge terms* f^* of f
- Recursively interpolate $f f^* \Rightarrow$ more balanced, smaller coeff, but same sparsity

Illustration:

- 1 Account for sparsity of *huge terms*
- 2 Interpolate $(f, xf') \mod \langle x^p 1, m \rangle$
 - \hookrightarrow dense ok if $p \log m = O^{\sim}(s \log D)$
- **3** Identify and remove *huge terms*

Difficulties

- Expression swell with collisions
- Embedding exponents into coeffs

Recovering the huge terms

huge terms are those beyond half the maximal bit-length (e.g. $\geq 2^{s/2}$)

Recovering the huge terms

On terms' collision:

- **only** one large/many small still allows exponent decoding using xf'(x)
- **only** non-large/non-large do not produce erroneous huge terms

Recovering the huge terms

On terms' collision:

- **only** one large/many small still allows exponent decoding using xf'(x)
- **only** non-large/non-large do not produce erroneous huge terms

↔ reconstructed huge terms **must** avoid large/medium collisions

Recovering the huge terms: controlling the collisions

small	medium					
			large			
				huge		
1/61	$\log H = 13/30 \log$	H	$1/2 \log H$		log	Η

Remarks: it is hard to avoid all large/medium collision in $f \mod x^p - 1$ with p = O(s)

Recovering the huge terms: controlling the collisions

Remarks: it is hard to avoid all large/medium collision in $f \mod x^p - 1$ with p = O(s)

Our solution

Compute a superset T of the large terms exponents (erroneous=large/medium)
 Use T to filter out large/medium collisions in the reconstruction of huge terms

 → (somehow) interpolation with overestimated support

Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let $c_0 x^{e_0}$ be any large terms of f. If $c_0 x^{e_0}$ only collides with many small terms $c_i x^{e_i}$:

$$e_0 = \left\lfloor \frac{c_0 e_0 + \sum_{i \in \mathcal{S}} c_i e_i}{c_0 + \sum_{i \in \mathcal{S}} c_i} \right| \quad \text{assuming } m \ge 4H^{7/6}, \quad \log H = \Omega(\log s + \log D)$$

Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024] Let $c_0 x^{e_0}$ be any large terms of f. If $c_0 x^{e_0}$ only collides with many small terms $c_i x^{e_i}$: $e_0 = \left| \frac{c_0 e_0 + \sum_{i \in S} c_i e_i}{c_0 + \sum_{i \in S} c_i c_i} \right|$ assuming $m \ge 4H^{7/6}$, $\log H = \Omega(\log s + \log D)$

Algorithm sketch for computing $\ensuremath{\mathcal{T}}$:

- Take *p* so that most collisions are large/small
- Dense interpolation of (f, xf') mod (x^p 1, m) → add to T the coefficient-wise divisions
- Repeat for $O(\log s)$ random primes p

 $p = O(s \log D / \log H)$ $\log m = O(\log H)$

Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024] Let $c_0 x^{e_0}$ be any large terms of f. If $c_0 x^{e_0}$ only collides with many small terms $c_i x^{e_i}$: $e_0 = \left| \frac{c_0 e_0 + \sum_{i \in S} c_i e_i}{c_0 + \sum_{i \in S} c_i} \right|$ assuming $m \ge 4H^{7/6}$, $\log H = \Omega(\log s + \log D)$

Algorithm sketch for computing $\ensuremath{\mathcal{T}}$:

- Take *p* so that most collisions are large/small
- Dense interpolation of (f, xf') mod (x^p 1, m) → add to T the coefficient-wise divisions
- Repeat for $O(\log s)$ random primes p

Remark

- The superset is not too large: $\#T = O(s \log s / \log H)$, overestimated by $O(\log s)$
- Bit complexity: $O^{\sim}(s \log D)$

 $p = O(s \log D / \log H)$ $\log m = O(\log H)$

Idea: use \mathcal{T} to detect erroneous huge terms in $f \mod \langle x^p - 1, m \rangle$

Idea: use \mathcal{T} to detect erroneous huge terms in $f \mod \langle x^p - 1, m \rangle$

Algorithm sketch:

- \blacksquare Take p so that most terms in ${\mathcal T}$ do not collide
- Let $cx^{e \mod p}$ be any huge term of $f \mod \langle x^p 1, m \rangle$ \Rightarrow add cx^e to f^* only if $e \mod p$ is collision-free in $\mathcal{T} \mod p$

 $p = O(\#T \log D)$ $\log m = O(\log H)$

• Repeat for $O(\log s)$ random primes p

(abort if $bitlen(f^*) > s$)

Idea: use \mathcal{T} to detect erroneous huge terms in $f \mod \langle x^p - 1, m \rangle$

Algorithm sketch:

- Take *p* so that most terms in \mathcal{T} do not collide = $D(\#\mathcal{T} \log D)$ ■ Let $cx^{e \mod p}$ be any huge term of $f \mod \langle x^p - 1, m \rangle$ \Rightarrow add cx^e to f^* only if $e \mod p$ is collision-free in $\mathcal{T} \mod p$
- Repeat for $O(\log s)$ random primes p

(abort if $bitlen(f^*) > s$)

Remark

- All huge terms of f are added to f^* , plus some non-large collisions, still $||f f^*||_{\infty} < \sqrt{H}$
- Bit complexity: $O(s \log D \log^3 s \log \log H) = O^{\sim}(s \log D)$

Algorithm

Input: Modular black box for $f \in \mathbb{Z}[x]$ and bounds $s \ge bitlen(f)$, $D \ge deg(f)$ Output: an explicit $f^* \in \mathbb{Z}[x]$ or error if $bitlen(f^*) > s$

1. $H \leftarrow 2^s, f^* \leftarrow 0$

- 2. while $H \ge \max(61, 15 \log s, 6 \log D)$
- 3. compute the huge terms of $(f f^*)$ and update f^*
- 4. $H \leftarrow \sqrt{H}$
- 5. compute remaining terms of $(f f^*)$ via (balanced) sparse interpolation

Theorem [G.-Grenet-Perret du Cray-Roche 2024]

The algorithm returns an explicit representation of f with probability $\ge 1 - 1/s$, using $O^{\sim}(s \log D)$ bit operations and $O(s \log D \log s)$ MBB evaluations.

Back to our application

Unbalanced polynomial multiplication

Inputs: unbalanced polynomials $f, g \in \mathbb{Z}[x]$ with $bitlen(f), bitlen(g) \le \ell$ Output: $h = f \times g \in \mathbb{Z}[x]$ with $s = bitlen(h) + 2\ell$

Back to our application

Unbalanced polynomial multiplication

Inputs: unbalanced polynomials $f, g \in \mathbb{Z}[x]$ with $bitlen(f), bitlen(g) \le \ell$ Output: $h = f \times g \in \mathbb{Z}[x]$ with $s = bitlen(h) + 2\ell$

- If s known \Rightarrow direct application of our sparse interpolation: $O(s \log D)$
- Otherwise, need a bound estimation:

Back to our application

Unbalanced polynomial multiplication

Inputs: unbalanced polynomials $f, g \in \mathbb{Z}[x]$ with $bitlen(f), bitlen(g) \le \ell$ Output: $h = f \times g \in \mathbb{Z}[x]$ with $s = bitlen(h) + 2\ell$

- If s known \Rightarrow direct application of our sparse interpolation: $O^{\sim}(s \log D)$
- Otherwise, need a bound estimation: might be quadratic

bitlen $(h) \leq 4\ell^2 / \log \ell$ and $||h||_{\infty} \leq 4^\ell \ell$

Idea: guess $s \ge$ bitlen h through probabilistic verification of $h = f \times g$

Idea: guess $s \ge$ bitlen h through probabilistic verification of $h = f \times g$

Algorithm sketch:

- Unbalanced sparse interpolation of MBB $f \times g$ with tentative bound $s \ge bitlen(fg)$
- Probabilistically verify whether $h = f \times g$ in $O^{\sim}(s \log D)$ [G.-Grenet-Perret du Cray 2023]
- Start with $s = \ell$ and *double* its value until verification succeeds or $4^{\ell} / \log \ell$ is reached

Idea: guess $s \ge$ bitlen h through probabilistic verification of $h = f \times g$

Algorithm sketch:

- Unbalanced sparse interpolation of MBB $f \times g$ with tentative bound $s \ge bitlen(fg)$
- Probabilistically verify whether $h = f \times g$ in $O^{\sim}(s \log D)$ [G.-Grenet-Perret du Cray 2023]
- Start with $s = \ell$ and *double* its value until verification succeeds or $4^{\ell} / \log \ell$ is reached

Probably correct and probably fast

- Both with probability $\geq 1 1/s$
- Expected bit complexity $O^{\sim}(s \log D \log^5 s (\log \log s)^2) = O^{\sim}(s \log D)$

Unbalanced (sparse or dense) polynomials

New complexity of $O^{\sim}(s \log D)$ bit operations

- **Interpolation**: Monte-Carlo algorithm with proba $\geq 1 1/s$
- **Multiplication**: probably correct probably fast algorithm with proba $\geq 1 1/s$

Unbalanced (sparse or dense) polynomials

New complexity of $O^{\sim}(s \log D)$ bit operations

- **Interpolation**: Monte-Carlo algorithm with proba $\geq 1 1/s$
- **Multiplication**: probably correct probably fast algorithm with proba $\geq 1 1/s$

(c) quasi linear for dense and moderately sparse polynomials, i.e. $\log D = poly(\log s)$ (c) not for supersparse polynomials, i.e. $\log D = poly(s)$

Open problems

- Algorithms of complexity $O^{\sim}(s)$ for unbalanced polynomials \Rightarrow difficulty $p \ge \log D$ to avoid collisions
- How to remove the *a priori* bounds s and $\log D$ in the interpolation ?
- Fast evaluation of large low-height polynomial at few points to very high precision

Open problems

- Algorithms of complexity $O^{\sim}(s)$ for unbalanced polynomials \Rightarrow difficulty $p \ge \log D$ to avoid collisions
- How to remove the *a priori* bounds s and $\log D$ in the interpolation ?
- Fast evaluation of large low-height polynomial at few points to very high precision

Thank you !

Ce travail a bénéficié d'une aide de l'État gérée par l'Agence Nationale de la Recherche au titre de France 2030 portant la référence ANR-22-PECY-0010

Under the carpet: MBB/polynomial evaluations

• The input is **always** $\pi = f - f^*$

$bitlen(f), bitlen(f^*) \le s$

■ Need to evaluate π on $(1, \omega, \omega^2, ..., \omega^{p-1})$ for interpolating $\pi \mod \langle x^p - 1, m \rangle$ $\hookrightarrow \omega$ a *p*-PRU in $\mathbb{Z}/m\mathbb{Z}$,

 \hookrightarrow when *m* increases, *p* decreases s.t. $p \log m = O(s \log D \log H)$

Under the carpet: MBB/polynomial evaluations

• The input is **always** $\pi = f - f^*$

$$bitlen(f), bitlen(f^*) \le s$$

■ Need to evaluate π on $(1, \omega, \omega^2, ..., \omega^{p-1})$ for interpolating $\pi \mod \langle x^p - 1, m \rangle$ $\Rightarrow \omega$ a *p*-PRU in $\mathbb{Z}/m\mathbb{Z}$,

 \hookrightarrow when *m* increases, *p* decreases s.t. $p \log m = O(s \log D \log H)$

Evaluation cost for explicit polynomial f^*

- I First, reduce $f^* \mod \langle x^p 1, m \rangle \rightarrow O(s \log \log m + s \log \log p)$
- **2** Then, evaluate with (dense) Bluestein's FFT $\rightarrow O(p \log p \log m \log \log m)$
- \Rightarrow overall cost is $O^{\sim}(s \log D)$ bit op.

Under the carpet: MBB/polynomial evaluations

• The input is **always** $\pi = f - f^*$

```
bitlen(f), bitlen(f^*) \le s
```

■ Need to evaluate π on $(1, \omega, \omega^2, ..., \omega^{p-1})$ for interpolating $\pi \mod \langle x^p - 1, m \rangle$ $\hookrightarrow \omega$ a *p*-PRU in $\mathbb{Z}/m\mathbb{Z}$,

 \hookrightarrow when *m* increases, *p* decreases s.t. $p \log m = O(s \log D \log H)$

Evaluation cost for explicit polynomial f^*

- **1** First, reduce $f^* \mod \langle x^p 1, m \rangle \rightarrow O(s \log \log m + s \log \log p)$
- **2** Then, evaluate with (dense) Bluestein's FFT $\rightarrow O(p \log p \log m \log \log m)$
- \Rightarrow overall cost is $O^{\sim}(s \log D)$ bit op.

Evaluation cost of the MBB for f

- Let $f(\alpha) \mod m \operatorname{costs} O(B + L \log m \log \log m)$ bit op.
- Our algo need $O^{\sim}((B+L)s \log D)$ bit op.