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Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

m O(d"e:3),..., 0(d*°W) [Karatsuba 1962, Toom 1963, Cook 1966]
m O(dlogdloglogd) [Schénhage-Strassen 1971, Cantor-Kaltofen 1991]
m O(dlogd) when R = Fq [Harvey-van der Hoeven 2022]
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Polynomial multiplication complexity over R[x] is well understood

Algebraic complexity

m O(d"e3), ..., 0(dt*oM) [Karatsuba 1962, Toom 1963, Cook 1966]
m O(dlogdloglogd) [Schénhage-Strassen 1971, Cantor-Kaltofen 1991]
m O(dlogd) when R = Fq [Harvey-van der Hoeven 2022]
But, bit complexity for Z[x]: O"(dlog H) [Schénhage 1982]

— f,g € Z[x]<q with height at most H

© quasi-linear if balanced coefficients
® not quasi-linear with unbalanced coefficients, e.g. [Ifl. = |lgllx = |lIfgll = O(H)
= only few works, e.g. Toom-Cook with structured unbalancedness [Bodrato-Zanoni 2020]
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Unbalanced polynomials

x" +3x% - 1000000000x° - 3x* = 4x3 - x> +x -3
x x" +3x% + 1000000006x° — 3x* - 4x3 - 7x®> + x -3

= x4+ 6x'3 + 15x1% + 12x! - 1000000006000000026x° — 50x° — 37x® + 6000000018x” +28x° +8x° + 17x* + 16x> + 25x% —6x + 9
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Unbalanced polynomials

x" +3x% - 1000000000x° - 3x* = 4x3 - x> +x -3
x x" +3x% + 1000000006x° — 3x* - 4x3 - 7x®> + x -3

= x4+ 6x'3 + 15x1% + 12x! - 1000000006000000026x° — 50x° — 37x® + 6000000018x” +28x° +8x° + 17x* + 16x> + 25x% —6x + 9

. = bitlen(f) ~ Y. log|fi| > d
Let £ = 59 fixi — | ° = Ditlen(F) » Zlogl|
H = max|f;| < 2°
m Balanced case: log H = ©(s/d) — bit complexity O7(s)
m Unbalanced case: log H = ©(s) < bit complexity O7(sd)

® quasi-optimal
® possibly quadratic

9 Can we always compute the polynomial product f x g in time
O~ (bitlen(f) + bitlen(g) + bitlen(f x g)) ?

3/19



Reinterpretation as a sparse interpolation problem

Imagine that you are given most of the coefficients of f x g
A = x4 6x + 15x2 + 12xM - 26x1° - 50x7 - 37x% + 18x7 + 28x°% + 17x* + 16x% + 25x* = 6x + 9

= computing the whole product is a sparse interpolation problem:

f x g — A = —~1000000006000000000x° + 6000000000x” + 8x°
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Imagine that you are given most of the coefficients of f x g
A = x4 6x + 15x2 + 12xM - 26x1° - 50x7 - 37x% + 18x7 + 28x°% + 17x* + 16x% + 25x* = 6x + 9

= computing the whole product is a sparse interpolation problem:

f x g — A = —~1000000006000000000x° + 6000000000x” + 8x°

Intermediate Problem
Given f,g € Z[x]
Compute A~fxg

Original Problem New Problem
Given f, g € Z[x] Given a way to evaluate h— A € Z[x]
Compute h=fx g Interpolate h— A in dense or sparse rep.

Difficulties

m h and A may be unbalanced (and sparse)

m Evaluating f, g and A might be costly
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Sparse interpolation: in a nutshell

Problem definition

Inputs: a way to evaluate f € Z[x]
bounds (D,H, T) s.t. D>degf; H>||fllo;: T 2 ||fllo=1t
Output: the sparse representation of f = Zle fix€, with f; #0
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bounds (D,H, T) s.t. D>degf; H>||fllo;: T 2 ||fllo=1t
Output: the sparse representation of f = Zle fix€, with f; #0

Two main approaches with bit complexity poly(T,log D, log H)

[ | (Modular) Blackbox [Prony 1795; Ben-Or-Tiwary 1988, Kaltofen 2010]

m Straight-line program [Garg-Schost 2009]

Many works to make more efficient algorithms

= avoiding some bounds [Kaltofen-Lee 2003]
= quasi-linear in one, few, or all parameters [Arnold-Giesbrecht-Roche 2013-2016; Huang 2019]

= first fully quasi-linear [G.-Grenet-Perret du Cray-Roche 2022]

® all results assume f is balanced: bitlen(f) = O(T log D + T log H)
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Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

log f; i
Given bounds T, D, H and a modular black box for

f=%fix%eZ[x]
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Fast balanced sparse interpolation [G.-Grenet-Perret du Cray-Roche (ISSAC 2022)]

log f;
' Given bounds T, D, H and a modular black box for
f=%fix%eZ[x]
f mod g
f mod xP -1, i.e. f(w) with w a p-PRU in Fq

Get supports of  mod (x” —1.q) a la Prony
= complexity O"(plogq) is quasi-linear

1 50 100

Sparse interpolation from known support modulo m = g¥ > 2DH = fmodxP-1

embed ¢; into coefficients : step B with xf'(x) = me)’f(x) mod m*> = xf’ mod xP -1
=¢;'s via simple division: xf’(x)[i]/f(x)[i]

@ Recurse on the new MBB 7 = f — f* but with sparsity bound T/2

= Monte-Carlo algorithm (proba >2/3), O(T) probes to MBB and O7(T log(DH)) bit op. 6/10



Our contributions

Interpolation of sparse polynomials with unbalanced coefficients

Given a modular black box for f € Z[x] with bounds s > bitlen(f) and D > deg f

m Our ISSAC'22 algo - O7(s?) since T <2s/logs and H < 2°
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Our contributions

Interpolation of sparse polynomials with unbalanced coefficients

Given a modular black box for f € Z[x] with bounds s > bitlen(f) and D > deg f

m Our ISSAC'22 algo - O7(s?) since T <2s/logs and H < 2°

m ISSAC'24: new Monte-Carlo algorithm with proba >1 - %
< O(slogDlogs) MBB evaluations and O”(slog D) extra bit operations

Polynomial multiplication of unbalanced polynomials

Given explicit (dense or sparse) polynomials f, g € Z[x]

m Probably correct and probably fast algorithm with proba > 1 — %
m Expected bit complexity O (slog D)

where s = bitlen(f) + bitlen(g) + bitlen(fg) and D = deg g
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Unbalanced (sparse) interpolation: the wrong easy solution

log f; Given bounds s > bitlen(f), D > deg f and a MBB
2
for unbalanced f = Y ;ix® € Z[x]
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Unbalanced (sparse) interpolation: the wrong easy solution

log f; Given bounds s > bitlen(f), D > deg f and a MBB
2
for unbalanced f = Y ;ix® € Z[x]

Pick smallish m and interpolate 7* = f mod m
(balanced case)

f —f*: more sparse
Interpolate © = f — f* mod m for double size m

Update 7 and go to step

n
I I ~ €

1 50 100

© O(logs) balanced interpolations with T ~ s/2% and log H ~ 2%

® at some point m = O(2°), and sparsity of f* might be O(s)
> one evaluation of 7 costs O”(s?) due to explicit representation of f*

Il leads to a quadratic time complexity !!!

8/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

m First recover some huge terms f* of f

m Recursively interpolate f — f* =

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

m First recover some huge terms f* of f

m Recursively interpolate f — f* = more balanced, smaller coeff, but same sparsity

[llustration: log f;
2

Account for sparsity of huge terms

€;
1 50 100

9/19



Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach

m First recover some huge terms f* of f

m Recursively interpolate f — f* = more balanced, smaller coeff, but same sparsity

[llustration:
log f;
Account for sparsity of huge terms

Interpolate (f,xf") mod (xP -1, m)
< dense ok if plogm = O"(slog D)

: ~ €
1 50 100

9/19
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Using a top-down approach
m First recover some huge terms f* of f
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Unbalanced (sparse) interpolation: our efficient solution

Using a top-down approach
m First recover some huge terms f* of f

m Recursively interpolate f — f* = more balanced, smaller coeff, but same sparsity

[llustration: log f;
?

Account for sparsity of huge terms

Interpolate (f,xf") mod (xP -1, m)
< dense ok if plogm = O"(slog D)

Identify and remove huge terms

Difficulties

m Expression swell with collisions

€
m Embedding exponents into coeffs 1 50 100
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Recovering the huge terms

are those beyond half the maximal bit-length (e.g. > 25/2
g g

log f;
log H
\ 1/2log H
arge
) 13/30 log H
medium I

I 1/6 log H

small I I I I I I I
€i

1 50 100
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Recovering the huge terms

I -< those beyond half the maximal bit-length (e.g. > 25/2)

log f;

log H

i 1/2log H
large
) 13/30 log H
medium I

I 1/6 log H

small I I I I I I I .
i

1 50 100

On terms’ collision:

m only [one [large /many small‘ still allows exponent decoding using xf’(x)

m only [non-large/non-large| do not produce erroneous [JliBR terms

< reconstructed [JllB8 terms must avoid [[l@fgé / medium | collisions
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Recovering the huge terms: controlling the collisions

small

medium ‘ large

1/6 log H

13/30logH  1/2logH log H

Remarks: it is hard to avoid all |large/ medium| collision in f mod xP — 1 with p = O(s)
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Recovering the huge terms: controlling the collisions

small

medium ‘ large

1/6 log H

13/30logH  1/2logH log H

Remarks: it is hard to avoid all |large/ medium| collision in f mod xP — 1 with p = O(s)

Our solution

Compute a superset T of the large terms exponents (erroneous=|large / medium|)
Use T to filter out |large/ medium | collisions in the reconstruction of |HUEEHEHmE

< (somehow) interpolation with overestimated support
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Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let |[gx®™ be any large terms of f. If [ggx® only collides with many small terms ¢x%:

{Coeo + Yies Ci€i
Q="

] assuming m > 4H/® log H = Q(log s + log D)
Co + ZIES Ci
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Let |[gx®™ be any large terms of f. If [ggx® only collides with many small terms ¢x%:

{Coeo + Yies Ci€i
Q="

] assuming m > 4H/® log H = Q(log s + log D)
Co + ZIES Ci

Algorithm sketch for computing 7T :
m Take p so that most collisions are p=O(slogD/log H)
m Dense interpolation of (f,xf’") mod (x? — 1, m) log m = O(log H)
— add to T the coefficient-wise divisions

m Repeat for O(logs) random primes p
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Recovering the huge terms: superset of large terms

Lemma [G.-Grenet-Perret du Cray-Roche 2024]

Let |[gx®™ be any large terms of f. If [ggx® only collides with many small terms ¢x%:

{Coeo + Yies Ci€i
Q="

] assuming m > 4H/® log H = Q(log s + log D)
Qo+ Lies Ci

Algorithm sketch for computing 7T :
m Take p so that most collisions are p=O(slogD/log H)
m Dense interpolation of (f,xf’") mod (x? — 1, m) log m = O(log H)
— add to T the coefficient-wise divisions

m Repeat for O(logs) random primes p

Remark
m The superset is not too large: #7 = O(slogs/log H), overestimated by O(logs)
m Bit complexity: O"(slogD)
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Algorithm for computing all huge terms

Idea: use 7T to detect erroneous [l terms in f mod (x? — 1, m)
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m Take p so that most terms in 7 do not collide p=O(#T logD)

m Let cx®™4P be any [JlB8 term of f mod (xP — 1, m) logm = O(log H)
< add cx® to f* only if e mod p is collision-free in 7 mod p
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Algorithm for computing all huge terms

Idea: use 7T to detect erroneous [l terms in f mod (x? — 1, m)

Algorithm sketch:

m Take p so that most terms in 7 do not collide p=O(#T logD)
m Let cx®™4P be any [JlB8 term of f mod (xP — 1, m) log m = O(log H)
< add cx® to f* only if e mod p is collision-free in 7 mod p
m Repeat for O(logs) random primes p (abort if bitlen(f*) > s)
Remark

w <VH

m All Jilig8 terms of f are added to f*, plus some collisions, still [|f — 7~

m Bit complexity: O(slog D log®sloglog H) = O"(slog D)
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Our unbalanced sparse interpolation algorithm

Algorithm
Input: Modular black box for f € Z[x] and bounds s > bitlen(f), D > deg(f)
Output: an explicit £* € Z[x] or error if bitlen(f*) > s

1. He25,f* <0

2. while H > max(61,15log s, 6 log D)

3. compute the huge terms of (f — f*) and update f*

4 H <« \/ﬁ

5. compute remaining terms of (f — f*) via (balanced) sparse interpolation

Theorem [G.-Grenet-Perret du Cray-Roche 2024]
The algorithm returns an explicit representation of f with probability > 1-1/s, using
O"(slog D) bit operations and O(slog Dlogs) MBB evaluations.
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Back to our application

Unbalanced polynomial multiplication

Inputs: unbalanced polynomials 7, g € Z[x] with
Output: h=f x g € Z[x] with
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Back to our application

Unbalanced polynomial multiplication

Inputs: unbalanced polynomials £, g € Z[x] with bitlen(f). bitlen(g) </
Output: h=f x g € Z[x] with s = bitlen(h) + 2/

m If s known = direct application of our sparse interpolation: O7(slog D)

m Otherwise, need a bound estimation: might be quadratic

bitlen(h) < 4¢%/log¢ and ||hlje < 4°¢

log f; log g; log ;

e; | e;

15/19



Our unbalanced polynomial multiplication algorithm

Idea: guess s > bitlen h through probabilistic verification of h=1f x g
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Our unbalanced polynomial multiplication algorithm

Idea: guess s > bitlen h through probabilistic verification of h=1f x g

Algorithm sketch:

?
m Unbalanced sparse interpolation of MBB f x g with tentative bound s > bitlen(fg)
m Probabilistically verify whether h=f x g in O"(slog D) [G.-Grenet-Perret du Cray 2023]

m Start with s = £ and double its value until verification succeeds or 4¢/log ¢ is reached
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Our unbalanced polynomial multiplication algorithm

Idea: guess s > bitlen h through probabilistic verification of h=1f x g

Algorithm sketch:

?
m Unbalanced sparse interpolation of MBB f x g with tentative bound s > bitlen(fg)
m Probabilistically verify whether h=f x g in O"(slog D) [G.-Grenet-Perret du Cray 2023]

m Start with s = £ and double its value until verification succeeds or 4¢/log ¢ is reached

Probably correct and probably fast
m Both with probability >1-1/s
m Expected bit complexity O"(slog D log® s(loglogs)?) = O"(slog D)
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Summary of results

Unbalanced (sparse or dense) polynomials

New complexity of O"(slog D) bit operations

m Interpolation: Monte-Carlo algorithm with proba >1-1/s

m Multiplication: probably correct probably fast algorithm with proba >1-1/s
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Summary of results

Unbalanced (sparse or dense) polynomials

New complexity of O"(slog D) bit operations

m Interpolation: Monte-Carlo algorithm with proba >1-1/s

m Multiplication: probably correct probably fast algorithm with proba >1-1/s

© quasi linear for dense and moderately sparse polynomials, i.e. log D = poly(logs)

® not for supersparse polynomials, i.e. log D = poly(s)
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Open problems

m Algorithms of complexity O7(s) for unbalanced polynomials
— difficulty p > log D to avoid collisions

m How to remove the a priori bounds s and log D in the interpolation ?
m Fast evaluation of large low-height polynomial at few points to very high precision

log fz log f(w")

| 1 |- i - € w
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Open problems

m Algorithms of complexity O7(s) for unbalanced polynomials
— difficulty p > log D to avoid collisions

m How to remove the a priori bounds s and log D in the interpolation ?
m Fast evaluation of large low-height polynomial at few points to very high precision

log fz log f(w")

| 1 |- i - € w

Thank you !

18/19



Ce travail a bénéficié d'une aide de I'Etat gérée par I'’Agence Nationale de la Recherche au titre
de France 2030 portant la référence  ANR-22-PECY-0010

19/19



Under the carpet: MBB /polynomial evaluations

m The input is always 7= f — f* bitlen(f), bitlen(f*) <'s

m Need to evaluate 7 on (1,w,w?,...,wP™) for interpolating ™ mod (x? — 1, m)
- w a p-PRU in Z/mZ,
< when m increases, p decreases s.t. plogm = O(slog Dlog H)
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< when m increases, p decreases s.t. plogm = O(slog Dlog H)
Evaluation cost for explicit polynomial f*
First, reduce f* mod (x? -1, m) - O(sloglog m+ sloglog p)
Then, evaluate with (dense) Bluestein's FFT — O(plog plog mloglog m)

= overall cost is O"(slog D) bit op.
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m The input is always m=f — f* bitlen(f), bitlen(f*) <'s
m Need to evaluate 7 on (1,w,w?,...,wP™) for interpolating ™ mod (x? — 1, m)
- w a p-PRU in Z/mZ,
< when m increases, p decreases s.t. plogm = O(slog Dlog H)
Evaluation cost for explicit polynomial f*
First, reduce f* mod (x? —1,m) - O(sloglog m + sloglog p)
Then, evaluate with (dense) Bluestein's FFT — O(plog plog mloglog m)

= overall cost is O"(slog D) bit op.

Evaluation cost of the MBB for

m Let () mod m costs O(B + Llog mloglog m) bit op.
m Our algo need O7((B + L)slog D) bit op.
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