SOLVING SPARSE RATIONAL LINEAR SYSTEMS

Pascal Giorgi

University of Waterloo (Canada) / University of Perpignan (France)

joint work with

- A. Storjohann, M. Giesbrecht (University of Waterloo),
- W. Eberly (University of Calgary), G. Villard (ENS Lyon)

ISSAC'2006, Genova - July 11, 2006

Problem

Let A a non-singular matrix and b a vector defined over \mathbb{Z} .

<u>Problem</u>: Compute $x = A^{-1}b$ over the rational numbers

$$A = \begin{pmatrix} 289 & 237 & 79 & -268 \\ 108 & -33 & -211 & 309 \\ -489 & 104 & -24 & -25 \\ 308 & 99 & -108 & 66 \end{pmatrix}, \ b = \begin{pmatrix} -131 \\ 321 \\ 147 \\ 43 \end{pmatrix}.$$

$$x = A^{-1}b = \begin{pmatrix} \frac{-5795449}{32845073} \\ \frac{152262251}{98535219} \\ 428820914 \\ 229915511 \\ \frac{1523701534}{689746533} \end{pmatrix}$$

Main difficulty: expression swell

Problem

Let A a non-singular matrix and b a vector defined over \mathbb{Z} .

<u>Problem</u>: Compute $x = A^{-1}b$ over the rational numbers

$$A = \begin{pmatrix} -289 & 0 & 0 & -268 \\ 0 & -33 & 0 & 0 \\ -489 & 0 & -24 & -25 \\ 0 & 0 & -108 & 66 \end{pmatrix}, \ b = \begin{pmatrix} -131 \\ 321 \\ 147 \\ 43 \end{pmatrix}.$$

$$x = A^{-1}b = \begin{pmatrix} \frac{-378283}{1282641} \\ \frac{-107}{11} \\ -4521895 \\ \overline{15391692} \\ 219038 \\ \overline{1282641} \end{pmatrix}$$

Main difficulty: expression swell and take advantage of sparsity

Motivations

Large linear systems are involved in many mathematical applications

Over a finite field: integers factorization [Odlyzko 1999],

discrete logarithm [Odlyzko 1999; Thomé 2003].

Over the integers: number theory [Cohen 1993], group theory [Newman 1972], integer programming [Aardal, Hurkens, Lenstra 1999].

Rational linear systems are central in recent linear algebra algorithms

- ▶ Determinant [Abbott, Bronstein, Mulders 1999; Storjohann 2005]
- ► Smith form [Giesbrecht 1995; Eberly, Giesbrecht, Villard 2000]
- ► Nullspace, Kernel [Chen, Storjohann 2005]

Algorithms for non-singular system solving

Dense matrices:

- Gaussian elimination and CRA $\hookrightarrow O^{\sim}(n^{\omega+1}\log||A||)$ bit operations
- P-adic lifting [Monck, Carter 1979; Dixon 1982] $\hookrightarrow O^{\sim}(n^3 \log ||A||)$ bit operations
- ► High order lifting [Storjohann 2005] $\hookrightarrow O^{\sim}(n^{\omega} \log ||A||)$ bit operations

Sparse matrices:

- ► P-adic lifting or CRA [Kaltofen, Saunders 1991] $\hookrightarrow O^{\sim}(\gamma n^2 \log ||A||)$ bit operations with γ non-zero elts.

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1}b$ [Dixon 1982]:

```
(1-1) B := A^{-1} \mod p

(1-2) r := b

for i := 0 to k

(2-1) x_i := B.r \mod p

(2-2) r := (1/p)(r - A.x_i)

(3-1) x := \sum_{i=0}^{k} x_i.p^i

(3-2) rational\ reconstruction\ on\ x
```

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1}b$ [Dixon 1982]:

```
(1-1) B := A^{-1} \mod p O^{\sim}(n^3 \log ||A||) (1-2) r := b for i := 0 to k k = O^{\sim}(n) O^{\sim}(n^2 \log ||A||) (2-1) x_i := B.r \mod p O^{\sim}(n^2 \log ||A||) O^{\sim}(n^2 \log ||A||) (3-1) x := \sum_{i=0}^k x_i.p^i (3-2) rational\ reconstruction\ on\ x
```

P-adic algorithm with matrix inversion

Scheme to compute $A^{-1}b$ [Dixon 1982]:

```
(1-1) B := A^{-1} \mod p O^{\sim}(n^3 \log ||A||) (1-2) r := b for i := 0 to k k = O^{\sim}(n) O^{\sim}(n^2 \log ||A||) (2-1) O^{\sim}(n^2 \log ||A||) O^{\sim}(n^2 \log ||A||) (3-1) O^{\sim}(n^2 \log ||A||) (3-2) O^{\sim}(n^2 \log ||A||)
```

Main operations: matrix inversion and matrix-vector products

Dense linear system solving in practice

Efficient implementations are available: LinBox 1.0 [www.linalg.org]

- Use tuned BLAS floating-point library for exact arithmetic
 - matrix inversion over prime field [Dumas, Giorgi, Pernet 2004]
 - BLAS matrix-vector product with CRT over the integers
- Rational number reconstruction
 - half GCD [Schönage 1971]
 - heuristic using integer multiplication [NTL library]

random dense linear system with 3 bits entries (P4 - 3.4Ghz)

n	500	1000	2000	3000	4000	5000
Time	0.6s	4.3s	31.1s	99.6s	236.8s	449.2s

performances improvement of a factor 10 over NTL's tuned implementation

What does happen when matrices are sparse?

We consider sparse matrices with O(n) non zero elements \hookrightarrow matrix-vector product needs only O(n) operations.

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{n \times n}$ of full rank and $b \in \mathbb{F}^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $f^A(\lambda) = f_0 + f_1\lambda + ... + f_d\lambda^d \in \mathbb{F}[\lambda]$ be the minimal polynomial of A

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{n \times n}$ of full rank and $b \in \mathbb{F}^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $f^A(\lambda) = f_0 + f_1\lambda + ... + f_d\lambda^d \in \mathbb{F}[\lambda]$ be the minimal polynomial of A

$$A^{-1}b = \frac{-1}{f_0}(f_1b + f_2Ab + ... + f_dA^{d-1}b)$$

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :

Wiedemann approach (1986)

Let $A \in \mathbb{F}^{n \times n}$ of full rank and $b \in \mathbb{F}^n$. Then $x = A^{-1}b$ can be expressed as a linear combination of the Krylov subspace $\{b, Ab, ..., A^nb\}$

Let $f^A(\lambda)=f_0+f_1\lambda+...+f_d\lambda^d\in \mathbb{F}[\lambda]$ be the minimal polynomial of A

$$A^{-1}b = \underbrace{\frac{-1}{f_0}(f_1b + f_2Ab + \dots + f_dA^{d-1}b)}_{X}$$

Applying minpoly in each lifting steps cost $O^{\sim}(nd)$ field operations, then giving a worst case complexity of $O^{\sim}(n^3 \log ||A||)$ bit operations.

Sparse linear system solving in practice

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

• random systems with 3 bits entries and 10 elts/row (plus identity)

		system order							
	400	400 900 1600 2500 3600							
Maple	64.7s	849s	11098s	_	_				
CRA-Wied	14.8s	168s	1017s	3857s	11452s				
P-adic-Wied	10.2s	113s	693s	2629s	8034s				
Dixon	0.9s	10s	42s	178s	429 s				

Sparse linear system solving in practice

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

random systems with 3 bits entries and 10 elts/row (plus identity)

	system order								
	400	400 900 1600 2500 3600							
Maple	64.7s	849s	11098s		_				
CRA-Wied	14.8s	168s	1017s	3857s	11452s				
P-adic-Wied	10.2s	113s	693s	2629s	8034s				
Dixon	0.9s	10s	42s	178s	429 s				

main difference :

$$(2-1) \quad x_i = B.r \mod p$$

$$(2-1) \quad x_i := \frac{-1}{f_0} \sum_{i=1}^{\deg f^A} f_i A^{i-1} r \mod p$$

$$(P-adic-Wied)$$

Remark:

n sparse matrix applications is far from level 2 BLAS in practice.

Our objectives

In practice:

Integrate level 2 and 3 BLAS in integer sparse solver

In theory:

Improve bit complexity of sparse linear system solving

 $\implies O^{\sim}(n^{\delta})$ bits operations with $\delta < 3$?

Express the inverse of the sparse matrix through a structured form → block Hankel/Toeplitz structures

Let $u \in \mathbb{F}^{s \times n}$ and $v \in \mathbb{F}^{n \times s}$ s.t. following matrices are non-singular

$$U = \begin{pmatrix} u \\ uA \\ \vdots \\ uA^{m-1} \end{pmatrix}, V = \begin{pmatrix} v & Av & \dots & A^{m-1}v \end{pmatrix} \in \mathbb{F}^{n \times n}$$

Express the inverse of the sparse matrix through a structured form → block Hankel/Toeplitz structures

Let $u \in \mathbb{F}^{s \times n}$ and $v \in \mathbb{F}^{n \times s}$ s.t. following matrices are non-singular

$$U = \begin{pmatrix} u \\ uA \\ \vdots \\ uA^{m-1} \end{pmatrix}, V = \begin{pmatrix} v & Av & \dots & A^{m-1}v \end{pmatrix} \in \mathbb{F}^{n \times n}$$

then we can define the block Hankel matrix

$$H = UAV = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ \alpha_2 & \alpha_3 & \cdots & \alpha_{m+1} \\ \vdots & & & \\ \alpha_m & \alpha_m & \cdots & \alpha_{2m-1} \end{pmatrix}, \quad \alpha_i = uA^i v \in \mathbb{F}^{s \times s}$$

and thus we have $A^{-1} = VH^{-1}U$

• Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

matrices

• Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn, Choi, Cabay 1990]

$$H^{-1} = \underbrace{\begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \\ * \end{pmatrix}}_{H_1} \underbrace{\begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \\ * \end{pmatrix}}_{*} - \underbrace{\begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \\ * \end{pmatrix}}_{H_2} \underbrace{\begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \\ * \end{pmatrix}}_{*} \underbrace{\begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \\ * \end{pmatrix}}_{*}}_{T_2}$$
where H_1 , H_2 are block Hankel matrices and T_1 , T_2 are block Toeplitz matrices

- Block coefficients in H_1 , H_2 , T_1 , T_2 come from Hermite Pade approximants of $H(z)=\alpha_1+\alpha_2z+\ldots+\alpha_{2m-1}z^{2m-2}$ [Labahn, Choi, Cabay 1990].
- \bullet Complexity of H^{-1} reduces to polynomial matrix multiplication [Giorgi, Jeannerod, Villard 2003].

Scheme to compute $A^{-1}b$:

Cheffice to compute
$$A = b$$
.

$$(1-1) \quad H(z) := \sum_{i=1}^{2m-1} uA^i v. z^{i-1} \mod p$$

$$(1-2) \quad \text{compute } H^{-1} \mod p \text{ from } H(z)$$

$$(1-3) \quad r := b$$

$$\text{for } i := 0 \text{ to } k$$

$$(2-1) \quad x_i := VH^{-1}U.r \mod p$$

$$(2-2) \quad r := (1/p)(r - A.x_i)$$

$$(3-1) \quad x := \sum_{i=0}^k x_i.p^i$$

$$(3-2) \quad rational \ reconstruction \ on \ x$$

Scheme to compute $A^{-1}b$:

$$(1-1) \ \ H(z) := \sum_{i=1}^{2m-1} uA^{i}v.z^{i-1} \bmod p$$

$$(1-2) \ \text{compute } H^{-1} \bmod p \text{ from } H(z)$$

$$(1-3) \ \ r := b$$

$$\text{for } i := 0 \text{ to } k$$

$$(2-1) \ \ x_{i} := VH^{-1}U.r \bmod p$$

$$(2-2) \ \ r := (1/p)(r - A.x_{i})$$

$$(3-1) \ \ x := \sum_{i=0}^{k} x_{i}.p^{i}$$

$$(3-2) \ \ rational \ reconstruction \ on \ x$$

$$O^{\sim}(sn^{2} \log ||A||)$$

$$O^{\sim}(s^{2} n \log ||A||)$$

$$O^{\sim}((n^{2} + sn) \log ||A||)$$

$$O^{\sim}((n^{2} + sn) \log ||A||)$$

Scheme to compute $A^{-1}b$:

$$(1-1) \ \ H(z) := \sum_{i=1}^{2m-1} uA^{i}v.z^{i-1} \bmod p$$

$$(1-2) \ \text{compute } H^{-1} \bmod p \text{ from } H(z)$$

$$(1-3) \ \ r := b$$

$$\text{for } i := 0 \text{ to } k$$

$$(2-1) \ \ x_{i} := VH^{-1}U.r \bmod p$$

$$(2-2) \ \ r := (1/p)(r - A.x_{i})$$

$$(3-1) \ \ x := \sum_{i=0}^{k} x_{i}.p^{i}$$

$$(3-2) \ \ rational \ reconstruction \ on \ x$$

$$O^{\sim}(sn^{2} \log ||A||)$$

$$O^{\sim}(s^{2} n \log ||A||)$$

$$O^{\sim}((n^{2} + sn) \log ||A||)$$

$$O^{\sim}((n^{2} + sn) \log ||A||)$$

Not yet satisfying : applying matrices U and V is too costly

$$V = \left(v \middle| Av \middle| \dots \middle| A^{m-1}v
ight) \in {
m I\!F}^{n imes n} \ {
m and} \ v \in {
m I\!F}^{n imes s}$$

can be rewrite as

$$V = \begin{pmatrix} v \\ \end{pmatrix} + A \begin{pmatrix} & & \\ & v \\ \end{pmatrix} + \dots + A^{m-1} \begin{pmatrix} & & & \\ & & \end{pmatrix}$$

Therefore, applying V to a vector corresponds to :

- m-1 linear combinations of columns of v
- m-1 applications of A

$$V = \left(v \middle| Av \middle| \dots \middle| A^{m-1}v
ight) \in {
m I\!F}^{n imes n} \ {
m and} \ v \in {
m I\!F}^{n imes s}$$

can be rewrite as

$$V = \begin{pmatrix} v \\ \end{pmatrix} + A \begin{pmatrix} & & \\ & v \\ \end{pmatrix} + \dots + A^{m-1} \begin{pmatrix} & & & \\ & & \end{pmatrix}$$

Therefore, applying V to a vector corresponds to :

- m-1 linear combinations of columns of v $O(m \times sn \log ||A||)$
 - m-1 applications of A $O(mn \log ||A||)$

$$V = \left(v \middle| Av \middle| \dots \middle| A^{m-1}v
ight) \in {
m I\!F}^{n imes n} \ {
m and} \ v \in {
m I\!F}^{n imes s}$$

can be rewrite as

$$V = \begin{pmatrix} v \\ \end{pmatrix} + A \begin{pmatrix} & & \\ & & \end{pmatrix} + \dots + A^{m-1} \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

Therefore, applying V to a vector corresponds to :

- m-1 linear combinations of columns of v $O(m \times sn \log ||A||)$
- m-1 applications of A

How to improve the complexity?

$$V = \left(v \middle| Av \middle| \dots \middle| A^{m-1}v \right) \in {
m I\!F}^{n imes n} \ {
m and} \ v \in {
m I\!F}^{n imes s}$$

can be rewrite as

$$V = \begin{pmatrix} v \\ \end{pmatrix} + A \begin{pmatrix} & & \\ & & \end{pmatrix} + \dots + A^{m-1} \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

Therefore, applying V to a vector corresponds to :

- m-1 linear combinations of columns of v $O(m \times sn \log ||A||)$
- m-1 applications of A

How to improve the complexity?

 \Rightarrow using special block projections u and v

Candidates as suitable block projections

Considering $A \in \mathbb{F}^{n \times n}$ non-singular and $n = m \times s$.

Let us denote $\mathcal{K}(A, v) := [v \mid Av \mid \cdots \mid A^{m-1}v] \in \mathbb{F}^{n \times n}$

Conjecture:

for any non-singular $A \in \mathbb{F}^{n \times n}$ and $s \mid n$ there exists a suitable block projection $(R, u, v) \in \mathbb{F}^{n \times n} \times \mathbb{F}^{s \times n} \times \mathbb{F}^{n \times s}$

such that :

- 1. $\mathcal{K}(RA, v)$ and $\mathcal{K}((RA)^T, u^T)$ are non-singular,
- 2. R can be applied to a vector with $O^{\sim}(n)$ operations,
- 3. u, u^T , v and v^T can be applied to a vector with $O^{\sim}(n)$ operations.

A structured block projection

Let v be defined as follow

$$v^{T} = \begin{pmatrix} v_{1} \dots v_{m} & & & \\ & v_{m+1} \dots v_{2m} & & \\ & & & \ddots & \\ & & & & v_{n-m+1} \dots v_{n} \end{pmatrix} \in \mathbb{F}^{s \times n}$$

where v_i 's are chosen randomly from a sufficient large set.

A structured block projection

Let v be defined as follow

$$v^{\mathsf{T}} = \begin{pmatrix} v_1 & \dots & v_m & & & & \\ & & v_{m+1} & \dots & v_{2m} & & & \\ & & & & \ddots & & \\ & & & & & v_{n-m+1} & \dots & v_n \end{pmatrix} \in \mathbb{F}^{s \times n}$$

where v_i 's are chosen randomly from a sufficient large set.

open question : Let R diagonal and v as defined above, is $\mathcal{K}(RA, v)$ necessarily non-singular?

We prooved it for case s = 2 but answer is still unknown for s > 2

Our new algorithm

Scheme to compute $A^{-1}b$:

```
(1-1) choose structured blocks u and v
(1-2) choose R and A := R.A, b := R.b
(1-3) H(z) := \sum uA^i v.z^{i-1} \mod p
(1-4) compute H^{-1} \mod p from H(z)
(1-5) r := b
     for i := 0 to k
(2-1) x_i := VH^{-1}U.r \mod p
(2-2) r := (1/p)(r - A.x_i)
(3-1) X := \sum_{i=0}^{k} x_i . p^i
(3-2) rational reconstruction on x
```

Our new algorithm

Scheme to compute $A^{-1}b$:

```
(1-1) choose structured blocks u and v
(1-2) choose R and A := R.A, b := R.b
(1-3) H(z) := \sum uA^{i}v.z^{i-1} \mod p
(1-4) compute H^{-1} \mod p from H(z)
(1-5) r := b
     for i := 0 to k
(2-1) x_i := VH^{-1}U.r \mod p
(2-2) r := (1/p)(r - A.x_i)
(3-1) X := \sum_{i=0}^{k} x_i . p^i
      rational reconstruction on x
(3-2)
```

$$O^{\sim}(n^2 \log ||A||)$$

$$O^{\sim}(s^2 n \log ||A||)$$

$$k = O^{\sim}(n)$$

$$O^{\sim}((mn + sn) \log ||A||)$$

$$O^{\sim}(n \log ||A||)$$

Our new algorithm

Scheme to compute $A^{-1}b$:

```
(1-1) choose structured blocks u and v
(1-2) choose R and A := R.A, b := R.b
(1-3) H(z) := \sum uA^i v.z^{i-1} \mod p
(1-4) compute H^{-1} \mod p from H(z)
(1-5) r := b
     for i := 0 to k
                                                             k = O^{\sim}(n)
(2-1) x_i := VH^{-1}U.r \mod p
                                               O^{\sim}((mn+sn)\log||A||)
(2-2) r := (1/p)(r - A.x_i)
(3-1) X := \sum_{i=0}^{k} x_i p^i
(3-2) rational reconstruction on x
```

taking the optimal $m = s = \sqrt{n}$ gives a complexity of $O(n^{2.5} \log ||A||)$

High level implementation

LinBox project (Canada-France-USA): www.linalg.org

Our tools:

- BLAS-based matrix multiplication and matrix-vector product
- fast application of H^{-1} is needed to get $O(n^{2.5} \log ||A||)$

High level implementation

LinBox project (Canada-France-USA): www.linalg.org

Our tools:

- BLAS-based matrix multiplication and matrix-vector product
- fast application of H^{-1} is needed to get $O(n^{2.5} \log ||A||)$
 - ▶ Lagrange's representation of H^{-1} at the beginning (Horner's scheme)
 - ▶ use evaluation/interpolation on polynomial vectors
 - → use Vandermonde matrix to have dense matrix operations

Comparing performances

use of LinBox library on Itanium II - 1.3Ghz, 128Gb RAM

random systems with 3 bits entries and 10 elts/row (plus identity)

]				
	900	1600	2500	3600	4900	extra memor
Maple 10	849s	11 098s				O(1)
CRA-Wied	168s	11 090s 1 017s	3 857s	11 /52	= ≈ 28 000s	O(1)
P-adic-Wied	113s		2 629s	11 452s	$\approx 20000s$ $\approx 20000s$	O(n)
Dixon	1135 10s	693s 42s	2 029s 178 <i>s</i>	8 034s 429s	≈ 20 000s 1 257s	O(n)
			1705 175s	4295 426s		$O(n^{-1})$
Our algo.	15s	61s	17 35	4205	937s	$\int O(n^{2n})$

The expected \sqrt{n} improvement is unfortunately amortized by a high constant in the complexity.

Sparse solver vs Dixon's algorithm

Our algorithm performances are depending on matrix sparsity

Practical effect of blocking factors

 \sqrt{n} blocking factor value is theoretically optimal

Is this still true in practice?

Practical effect of blocking factors

\sqrt{n} blocking factor value is theoretically optimal

Is this still true in practice?

system order = 10000, optimal block = 100

block size	80	125	200	400	500
timing	7213s	5264s	4059s	3833s	4332s

system order = $20\,000$, optimal block ≈ 140

block size	125	160	200	500	800
timing	44720s	35967s	30854s	28502s	37318s

Practical effect of blocking factors

\sqrt{n} blocking factor value is theoretically optimal

Is this still true in practice?

system order = 10000, optimal block = 100

block size	80	125	200	400	500
timing	7213s	5264s	4059s	3833s	4332s

system order = 20000, optimal block ≈ 140

block size	125	160	200	500	800
timing	44720s	35967s	30854s	28502s	37318s

best practical blocking factor is dependent upon the ratio of sparse matrix/dense matrix operations efficiency

Conclusions

We provide a new approach for solving sparse integer linear systems :

- ▶ improve the complexty by a factor \sqrt{n} (heuristic).
- improve efficiency by minimizing sparse matrix operations and maximizing BLAS use.

<u>drawback</u>: not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra \hookrightarrow inverse of sparse matrix in $O(n^{2.5})$ field op.

Conclusions

We provide a new approach for solving sparse integer linear systems :

- ▶ improve the complexty by a factor \sqrt{n} (heuristic).
- improve efficiency by minimizing sparse matrix operations and maximizing BLAS use.

<u>drawback</u>: not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra \hookrightarrow inverse of sparse matrix in $O(n^{2.5})$ field op.

Ongoing work:

- provide an automatic choice of block dimension (non square?)
- prove conjecture for our structured block projections
- handle the case of singular matrix
- introduce fast matrix multiplication in the complexity

Sparse solver vs Dixon's algorithm

The sparser the matrices are, the earlier the crossover appears