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Problem

Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers

289 237 79  —268 —131
A= 108 —-33 -211 309 b= 321
T | —489 104 24 25 |'7 | 147

308 99 —108 66 43

—5795449
32845073

152262251
98535219

428820914
229915511

1523701534
689746533

Main difficulty : expression swell



Problem

Let A a non-singular matrix and b a vector defined over Z.
Problem : Compute x = A~1h over the rational numbers

280 0 0 —268 ~131
0 -33 0 .
—489 24 -25 | 147

0O 0 —108 66 43

A=

—378283
1282641
—107
11
—4521895
15391692

219038
1282641

Main difficulty : expression swell and take advantage of sparsity



Motivations

Large linear systems are involved in many mathematical applications

Over a finite field : integers factorization [Odlyzko 1999],
discrete logarithm [Odlyzko 1999 ; Thomé 2003].

Over the integers : number theory [Cohen 1993], group theory [Newman 1972],
integer programming [Aardal, Hurkens, Lenstra 1999].

Rational linear systems are central in recent linear algebra algorithms

» Determinant [Abbott, Bronstein, Mulders 1999 ; Storjohann 2005]
» Smith form [Giesbrecht 1995 ; Eberly, Giesbrecht, Villard 2000]

» Nullspace, Kernel [Chen, Storjohann 2005]



Algorithms for non-singular system solving

Dense matrices :

» Gaussian elimination and CRA
— O (n“*'log||A||) bit operations

» P-adic lifting [Monck, Carter 1979 ; Dixon 1982]
< O7(n®log||Al|) bit operations

» High order lifting [Storjohann 2005]
— O"(n“ log||A||) bit operations

Sparse matrices :

» P-adic lifting or CRA [Kaltofen, Saunders 1991]
< O"(yn*log||A||) bit operations with  non-zero elts.



P-adic algorithm with matrix inversion

Scheme to compute A~1h [Dixon 1982]

(11 B:=Almodp
(1-2) r:=b
for i := 0 to k

(2-1) X; := B.r mod p
(2-2) r:=(1/p)(r — A.x;)

. k i
(3-1) X:1= ) i oXi.p'
(3-2) rational reconstruction on x
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P-adic algorithm with matrix inversion

Scheme to compute A~1h [Dixon 1982]

(1-1) B:=A lmodp O (nlog||Al|)
(1-2) r:=b

for i :=0 to k k= 07(n)
(2-1) X; := B.r mod p O (n?log||Al|)
(2-2) r.=(1/p)(r — Ax) O (n*log||A]|)

. k i
(3-1) X 1= ) i oXi.p'
(3-2) rational reconstruction on x

Main operations : matrix inversion and matrix-vector products



Dense linear system solving in practice

Efficient implementations are available : LinBox 1.0 [www.linalg.org]

e Use tuned BLAS floating-point library for exact arithmetic
e matrix inversion over prime field [Dumas, Giorgi, Pernet 2004]
e BLAS matrix-vector product with CRT over the integers

e Rational number reconstruction
e half GCD [schénage 1971]
e heuristic using integer multiplication [NTL library]

random dense linear system with 3 bits entries (P4 - 3.4Ghz)

[ n ] 500 [ 1000 [ 2000 | 3000 | 4000 | 5000 |
[ Time [] 0.6s | 435 | 3L.1s | 99.65 | 236.8s | 449.2s |

performances improvement of a factor 10
over NTL's tuned implementation



What does happen when
matrices are sparse ?

We consider sparse matrices with O(n) non zero elements

< matrix-vector product needs only O(n) operations.



Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :
< use modular minimal polynomial instead of inverse
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Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :
< use modular minimal polynomial instead of inverse

’ Wiedemann approach (1986)

Let A € IF™*" of full rank and b € IF". Then x = A~!b can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let fA(\) = fo+ fid+ ...+ faA? € IF[)\] be the minimal polynomial of A

il
Alp = f—(flb + foAb + ...+ f4A?71b)
0




Sparse linear system and P-adic lifting

Computing the modular inverse is proscribed due to fill-in

Solution [Kaltofen, Saunders 1991] :
< use modular minimal polynomial instead of inverse

’ Wiedemann approach (1986)

Let A € IF™*" of full rank and b € IF". Then x = A~!b can be expressed
as a linear combination of the Krylov subspace {b, Ab, ..., A"b}

Let fA(\) = fo+ fid+ ...+ faA? € IF[)\] be the minimal polynomial of A

-1
Alp = f—(flb + foAb + ...+ f4A?71b)
0

v

~
X

Applying minpoly in each lifting steps cost O"(nd) field operations,
then giving a worst case complexity of O"(n®log ||Al|) bit operations.




Sparse linear system solving in practice

use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

e random systems with 3 bits entries and 10 elts/row (plus identity)

system order
400 900 1600 2500 3600

Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s 2629s 8034s
Dixon 09s 10s 42s 178s 429s




Sparse linear system solving in practice

use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

e random systems with 3 bits entries and 10 elts/row (plus identity)

system order
400 900 1600 2500 3600
Maple 64.7s 849s 11098s — —
CRA-Wied 14.8s 168s 1017s 3857s 11452s
P-adic-Wied | 10.2s 113s 693s  2629s 8034s
Dixon 09s 10s 42s 178s 429s

main difference :
(2-1) x; = B.rmod p

A .
(2-1) Xxj:= }—01 ?iglf fiA~r mod p

Remark :

(Dixon)
(P-adic-Wied)

n sparse matrix applications is far from level 2 BLAS in practice.



Our objectives

In practice :

Integrate level 2 and 3 BLAS in integer sparse solver

In theory :
Improve bit complexity of sparse linear system solving

— O"(n%) bits operations with § < 37



Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures

Let v € IF**" and v € TF"*® s.t. following matrices are non-singular
u
uA

U= . V=|v]|Av|...|A™ v | e F™

uAm—l



Our alternative to Block Wiedemann

Express the inverse of the sparse matrix through a structured form
— block Hankel/Toeplitz structures
Let v € IF**™ and v € IF"*® s.t. following matrices are non-singular

u

uA
U= . V=|v]|Av|...|A™ v | e F™

uAm—l

then we can define the block Hankel matrix

al a2 ... am

Gy Qa3 -t QAmyd . Sxs
H = UAV = . , aj=uA'v el

am Qym - ;-1

and thus we have A1 = VH1U



Alternative to Block Wiedemann

e Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Choi, Cabay 1990]

H =

* * * *

7‘/(1 7—1 Hs 7—2
where H;, H, are block Hankel matrices and Ty, T, are block Toeplitz
matrices



Alternative to Block Wiedemann

e Nice property on block Hankel matrix inverse [Gohberg, Krupnik 1972, Labahn,
Choi, Cabay 1990]

H,]_: . - . . : . .
% £ ES £

Ijl(l ‘721 Hs 7—2
where H;, H, are block Hankel matrices and Ty, T, are block Toeplitz

matrices

e Block coefficients in Hy, H,, T; , T, come from Hermite Pade
approximants of H(z) = a; + apz + ... + Qom_122™72 [Labahn, Choi, Cabay

1990].

e Complexity of H™! reduces to polynomial matrix multiplication [Giorgi,
Jeannerod, Villard 2003].



Alternative to Block Wiedemann
Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'=t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k
(2-1) x;i = VH1U.r mod p
(2-2) r:=(1/p)(r — Ax;)

n .
(1) X:i=); oX.p'
(3-2) rational reconstruction on x
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Alternative to Block Wiedemann
Scheme to compute A~1h :

2m—1
1-1) H(z) = Z uA'v.z'=t mod p
i=1
(1-2) compute H~! mod p from H(z)
(1-3) r:=0>b

for i := 0 to k k= 07(n)
21 x:=V U.r mod p O ((n? ) log ||Al])
(2-2) r:=(1/p)(r — A.x;)

n .
(B-1) X:i=); oX.p'
(3-2) rational reconstruction on x

Not yet satisfying : applying matrices U and V is too costly




Applying block Krylov subspaces
V = | v|Av|...|A™ v | € IF™ " and v € F"*®
can be rewrite as

V=|v +A v + ...+ AT

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v

e m — 1 applications of A
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Applying block Krylov subspaces

V = | v|Av|...|A™ v | € IF™ " and v € F"*®

can be rewrite as

V=1|v + A v + ...+ AT v

Therefore, applying V to a vector corresponds to :
e m — 1 linear combinations of columns of v O(m x snlog ||A]||)

e m — 1 applications of A

How to improve the complexity 7

= using special block projections v and v



Candidates as suitable block projections

Considering A € TF™*" non-singular and n = m x s.

Let us denote K(A,v):=[ v |Av|---| A" 1y | e ™"

Conjecture :

for any non-singular A € IF"*" and s|n there exists a suitable block
projection (R, u,v) € IF™*" x TF**™ x [F"*®

such that :
1. K(RA,v) and K((RA)T,uT) are non-singular,
2. R can be applied to a vector with O”(n) operations,
3. u,u”, vand vT can be applied to a vector with O”(n) operations.




A structured block projection

Let v be defined as follow

Vi...Vp
T _ V4l - .- Vom c ]Fs><n

Vi-m41 --- Vp

where v;’s are chosen randomly from a sufficient large set.



A structured block projection

Let v be defined as follow

Vi...Vp
T _ V4l - .- Vom c ]Fs><n

Vi-m41 --- Vp
where v;’s are chosen randomly from a sufficient large set.

open question : Let R diagonal and v as defined above,

is L(RA, v) necessarily non-singular ?

We prooved it for case s = 2 but answer is still unknown for s > 2



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose structured blocks u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z~ mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k
x; = VH™1U.r mod p
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose structured blocks u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z = mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k
x; = VH™1U.r mod p
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x

O"(n? log [|Al|)
O (s?nlog ||Al|)
k= 0(n)

O"((mn + sn) log||Al|)
O (nlog [|Al])



Our new algorithm

Scheme to compute A~1h :

(1-1)

(1-2)

(1-3)

choose structured blocks u and v

choose R and A:= R.A, b:=R.b
2m—1 ) )

H(z) = Z uA'v.z~ mod p
=il

compute H~! mod p from H(z)

r==>b

for i := 0 to k k= 0(n)
xi .= VH™'U.r mod p O"((mn + sn) log ||A[|)
r:=(1/p)(r — Ax;)

Nk i
X 1= o0Xi.P
rational reconstruction on x

taking the optimal m = s = \/n gives a complexity of O"(n** log ||A||)



High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product

e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product

e fast application of H~! is needed to get O"(n*°log||A||)
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High level implementation

LinBox project (Canada-France-USA) : www.linalg.org

Our tools :
e BLAS-based matrix multiplication and matrix-vector product
e polynomial matrix arithmetic (block Hankel inversion)
— FFT, Karatsuba, middle product
e fast application of H~! is needed to get O"(n*°log||A||)

» Lagrange's representation of H™! at the beginning (Horner's scheme)

> use evaluation/interpolation on polynomial vectors

— use Vandermonde matrix to have dense matrix operations


www.linalg.org

Is our new algorithm efficient in practice ?



Comparing performances

use of LinBox library on Itanium Il - 1.3Ghz, 128Gb RAM

e random systems with 3 bits entries and 10 elts/row (plus identity)

system order
900 1600 2500 3600 4900 extra
memory

Maple 10 849s  11098s - - — 1 0(1)
CRA-Wied 168s  1017s 3857s 11452s =~ 28000s | O(n)
P-adic-Wied | 113s 693s 2629s 8034s = 20000s | O(n)
Dixon 10s 42s  178s 429s 1257s | O(n?)
Our algo. 15s 6ls  175s 426s 937s | O(n'?®)

The expected \/n improvement is unfortunately amortized by a high
constant in the complexity.



Sparse solver vs Dixon's algorithm

sparsity = 10elts/row sparsity = 30elts/row
6 , T T T . 6 , T T T
Our algo. —=— Our algo. —=— é
Dixon e Dixon e 3
°
5r a 5r 1
4 r . 1 4 r 1
= r =
< : <
o § o
Z 3¢t {4 T 3t 1
() (9]
€ £
= =
2 1 2 r 1
1+ — 1r 1
0 T L L L L L 0 L L L L L L
4900 6400 8100 10000 12100 14400 4900 6400 8100 10000 12100 14400
System order System order

Our algorithm performances are depending on matrix sparsity



Practical effect of blocking factors

v/n blocking factor value is theoretically optimal

Is this still true in practice ?
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Practical effect of blocking factors

v/n blocking factor value is theoretically optimal

Is this still true in practice ?

system order = 10000, optimal block = 100

blocksize | 80 | 125 | 200 | 400 | 500

timing 7213s  5264s  4059s 3833s  4332s

system order = 20000, optimal block =~ 140

block size | 125 | 160 | 200 | 500 | 800

timing 44720s 35967s 30854s 28502s 37318s

best practical blocking factor is dependent upon the ratio of
sparse matrix/dense matrix operations efficiency



Conclusions

We provide a new approach for solving sparse integer linear systems :
» improve the complexty by a factor /n (heuristic).

» improve efficiency by minimizing sparse matrix operations and
maximizing BLAS use.

drawback : not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra
< inverse of sparse matrix in O(n*®°) field op.



Conclusions

We provide a new approach for solving sparse integer linear systems :
» improve the complexty by a factor /n (heuristic).

» improve efficiency by minimizing sparse matrix operations and
maximizing BLAS use.

drawback : not taking advantage of low degree minimal polynomial

We propose special block projections for sparse linear algebra
< inverse of sparse matrix in O(n*®°) field op.

Ongoing work :
» provide an automatic choice of block dimension (non square ?)
» prove conjecture for our structured block projections
» handle the case of singular matrix

» introduce fast matrix multiplication in the complexity



Sparse solver vs Dixon's algorithm

sparsity=0.07% —*—

sparsity=0.30% @

sparsity=1.00%
crossover line

speed up

1000 2000 3000 4000 5000 6000
System order

The sparser the matrices are, the earlier the crossover appears



