

Context

Let \mathbb{K} be a field, $F = \sum_{i \ge 0} F_i x^i \in \mathbb{K}[[x]]^{m \times n}$ a matrix of power series, σ a positive integer and (F, σ) be the $\mathbb{K}[x]$ -module defined by the set of $v \in \mathbb{K}[x]^{1 \times m}$ such that $vF \equiv 0 \mod x^{\sigma}$.

Definition of Order basis: $P \in \mathbb{K}[x]^{m \times m}$ is a (left) (σ, \vec{s}) -order basis of F if the rows of P form a \vec{s} -row reduced basis of (F, σ) (see [1]).

Order basis are used in: column reduction [2]; minimal nullspace basis [3]; block Wiedemann algorithm [4]; ...

Two existing algorithms

Input: $F \in \mathbb{K}[[x]]^{m \times n}, \sigma \in \mathbb{N}^*$ and $\vec{s} \in \mathbb{Z}^m$ **Output:** $P \in \mathbb{K}[x]^{m \times m}$ a (σ, \vec{s}) -order basis of F and $\vec{u} \in \mathbb{Z}^m$ the shifted \vec{s} -row degree of P.

To simplify the presentation, let us assume w.l.o.g. that:

- 1 the procedure $Basis(F, \vec{s})$ handles the $(1, \vec{s})$ -order basis case
- 2 n = O(m) and the shift \vec{s} is balanced, as in [2]

M-Basis

Naive algorithm, iterative on the order σ , which costs $O(m^{\omega}\sigma^2)$ op. in \mathbb{K} .

- X Quadratic complexity in the precision σ
- Easy to stop at any intermediate step
- \checkmark Minimal knowledge on F, only coefficients F_0, \ldots, F_k at step k

Algorithm 1: M-Basis(F, σ, \vec{s})

 $P, \vec{u} := \mathsf{Basis}(F \mod x, \vec{s})$

for k = 1 to $\sigma - 1$ do

- $F' := x^{-k}P \cdot F \mod x^{k+1}$
- $P_k, \vec{u} := \mathsf{Basis}(F', \vec{u})$
- $P := P_k \cdot P$ 5:

```
return P, \vec{u}
```

PM-Basis

Recursive variant using a divide and conquer strategy on the order σ which costs $O(m^{\omega}\mathsf{M}(\sigma)\log(\sigma)) = O^{\widetilde{}}(m^{\omega}\sigma)$ operations in \mathbb{K} . Quasi-linear complexity in the precision σ × Not convenient for early termination \checkmark Often requires to know coefficients of F in advance Algorithm 2: PM-Basis(F, σ, \vec{s}) if $\sigma = 1$ then return Basis($F \mod x, \vec{s}$) else

```
P_1, \vec{u}_1 := \mathsf{PM}\text{-}\mathsf{Basis}(F, \sigma/2, \vec{s})
```

```
F' := (x^{-\sigma/2}P_1 \cdot F) \mod x^{\sigma/2}
5:
```

```
P_{\mathbf{h}}, \vec{u}_{\mathbf{h}} := \mathsf{PM}\text{-}\mathsf{Basis}(F', \sigma/2, \vec{u}_{\mathbf{l}})
```

```
return P_h \cdot P_l, \vec{u}_h
```

Relaxing Order Basis Computation

Pascal Giorgi and Romain Lebreton

LIRMM, Université Montpellier 2 - CNRS

Our contribution

Fast iterative algorithm

Iterative-PM-Basis

Iterative version of PM-Basis that regroups computations step by step

- \checkmark Quasi-linear complexity in the precision σ
- ✓ Convenient for early termination
- \checkmark Often requires to know coefficients of F in advance

Algorithm 3: Iterative-PM-Basis(F, σ, \vec{s})

- $P_0, \vec{u} := \mathsf{Basis}(F \mod x, \vec{s})$ 1:
- $P := [P_0]$ and $S := [0, \ldots, 0, F]$ with $\lceil \log_2(\sigma) \rceil$ zeros
- for k = 1 to $\sigma 1$ do 3:
- $\ell := \nu_2(k) \text{ and } \ell' := \begin{cases} \lceil \log_2(\sigma) \rceil & \text{if } k = 2^{\ell} \\ \nu_2(k 2^{\ell}) & \text{otherwise} \end{cases}$
- Merge first $\ell + 1$ elements of P by multiplication 5:
- $S[\ell+1] := (x^{-2^{\ell}} P[1] \cdot S[\ell'+1]) \mod x^{2^{\ell}}$ 6:
- $P_k, \vec{u} := \mathsf{Basis}(S[\ell+1] \mod x, \vec{u})$
- Insert P_k at the beginning of P
- 8: return $\prod_i P[i]$

Relaxing the order basis algorithm

Problem:

9:

At step $k = 2^{\ell}$, Iterative-PM-Basis requires $S[\lceil \log_2(\sigma) \rceil + 1] \mod x^{2^{\ell+1}}$, that is $F \mod x^{2^{\ell+1}}$, to perform the middle product of step 6. However, we only need the middle product modulo x at step k, and therefore $F \mod x^{1+2^{\ell}}$. The other coefficients of the middle product will be used in the next steps.

Solution:

Compute the middle products gradually with the additional constraint of not using any coefficient of the input before necessary, *i.e.* using a **relaxed** algorithm.

Definition of relaxed (or on-line) algorithm:

When computing the coefficient in x^k of the output, a *relaxed* algorithm can read at most the coefficients in $1, \ldots, x^k$ of the input.

Relaxed middle product

```
product tree step 7
middle product step 5
recursive leafs step 2
```

Two methods for a relaxed middle product algorithm:

- Compute a full $2n \times n$ product using a relaxed multiplication algorithm on polynomial of matrices ([5])
- 2 Compute just the middle product as in Figure 1 to gain asymptotically a factor 2 compared to method 1.

Relaxed-PM-Basis

Using this relaxed middle product within Iterative-PM-Basis, we obtain a new order basis algorithm relaxed w.r.t. F, which costs $O(k^{\omega} M(\sigma) \log^2(\sigma))$.

- Convenient for early termination
- \checkmark Requires minimal knowledge on F

Application to block Wiedemann algorithm

Let $A \in \operatorname{GL}_N(\mathbb{K})$ with O(N) non-zero elements and $S = \sum_{i \in \mathbb{N}} UA^i V x^i$ for random $U, V^T \in \mathbb{K}^{n \times N}$. The block Wiedemann approach uses a (σ, \vec{s}) -order basis of $F = [S^T | I_n]^T \in \mathbb{K}[[x]]^{2n \times n}$ to solve sparse linear systems Ay = b.

Current approach:

Computing S at precision σ costs $O(n^{\omega-1}N\sigma)$ operations in K, which is dominant since $n \ll N$. An *a priori* bound δ on the order σ is hard to find or may be loose. To circumvent this the paper [6] proposes a stopping criteria which has to be integrated into an iterative algorithm.

Benefits of our approach:

- time complexity that can use stopping criteria from [6].
- factor because less coefficients of S need to be computed.

- *Comput.*, vol. 47, no. 7, pp. 793 819, 2012.
- computations," in *ISSAC'03*, pp. 135–142, ACM, 2003.
- *ISSAC'12*, pp. 366–373, ACM, 2012.
- [4] W. J. Turner, *Black Box Linear Algebra with the LinBox Library*. PhD thesis, North Carolina State University, 2002.
- *System Sci.*, vol. 9, pp. 317–331, 1974.
- Algorithms, 2013. To appear.

✓ Quasi-linear complexity in the precision σ (with an extra $\log_2(\sigma)$)

1 Iterative-PM-Basis provides the first iterative algorithm with quasi-linear

2 Relaxed-PM-Basis improves the complexity of 1 on average by a constant

References

[1] W. Zhou and G. Labahn, "Efficient algorithms for order basis computation," J. Symbolic

[2] P. Giorgi, C.-P. Jeannerod, and G. Villard, "On the complexity of polynomial matrix

[3] W. Zhou, G. Labahn, and A. Storjohann, "Computing minimal nullspace bases," in

[5] M. J. Fischer and L. J. Stockmeyer, "Fast on-line integer multiplication," J. Comput.

[6] E. Kaltofen and G. Yuhasz, "On the matrix berlekamp-massey algorithm," ACM Trans. on